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Extended phonon-scattering mechanism as an explanation for low mobility
in highly concentrated electron layers at silicon interfaces
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Mobility data for electrons in very-high-density accumulation layers at the Si(111)/polymer-
electrolyte interface are presented which identify phonons as the major scattering source even in

this density range. Next we present a revised treatment of usual acoustic-phonon and intervalley-

phonon scattering mechanisms including the case of a degenerate Si(111) two-dimensional electron

gas. However, this approach overestimates the experimental —100 cm'/V s mobilities by a factor of
5-10. Hence, a new extended scattering mechanism by acoustic phonons is proposed which ac-
counts for these low mobilities as well as for those observed in concentrated accumulation and in-

version layers at the Si/SiO& interface around room temperature. This is done by using the k p ex-

pansion of the phonon-scattering matrix element one order higher than the usual deformation-

potential mechanism in order to establish a simplified expression which is further adapted to the
two-dimensional case. A simple interpretation is proposed, consisting of a deformation-induced dis-

placement of the position of valley minima in reciprocal space. Finally, the order of magnitude of
this new mechanism is explained by considering the vicinity of the conduction-band minima relative

to the Brillouin-zone edges,

I. INTRODUCTION

Electron accumulation (inversion) layers at the sur-
face of n-type (p-type) silicon, a well-known two-dimen-
sional electron gas (2D EG),' exhibit low mobilities
(less than 400 cm2/V s) at high concentrations
(N, ) 5 X 10' e /cm ) around room temperature
(100—500 K): In this range, phonon scattering is expect-
ed to be dominant, as confirmed by the temperature
dependence of the mobility. In such systems, however,
"the theory of phonon scattering is. . . at an unsatisfac-
tory stage, " as Ando et al. remarked in their 1982 review
article, ' because of the largely overestimated mobility
values obtained by adapting the usual deformation-
potential theory to 2D EG. Attempts by Ezawa et al. in
the early 1970s to take into account the exact phonon in-
terface modes yielded limited results. It was also pro-
posed that "surface deformation potentials" should be
noticeably greater than their bulk counterparts. ' Such
approaches were not confirmed, and owing to the limited
work carried out on this problem since then, the 1982
statement of Ando et aI. remains essentially valid.

The recent demonstration that (n-type Si)/india'erent-
electrolyte interfaces can circumvent the density limita-
tion of the Si/insulator interfaces classically used for
creating 2D EG's has opened the way to new investiga-
tions. It is instructive to compare these two systems:
in both cases the interface is polarized in order to accu-
mulate electrons on the silicon side. In standard metal-
insulator-semiconductor (MIS) structures, the corre
sponding positive countercharge lies in the metallic gate
and a relatively large electric field is present across the in-
sulator (e.g., oxide) layer. On the other hand, in a

Si/electrolyte interface, the countercharge can be seen as
an accumulation of cations, which are able to screen the
electronic charge within only atomic distances of the sil-
icon surface. ' This is the narrow double layer" (the so-
called Helmholtz layer) where the electric field is very
large but over one or two nanorneters at most.

For this reason, the polarization is limited by very
difFerent processes in these two systems: in MIS struc-
tures, breakdown in the insulator prevents densities
larger than 1-2X 10' e /cm . It arises from carrier ac-
celeration inside the relatively thick insulator layer. On
the other hand, Faradaic currents are the limiting process
at the Si/electrolyte interface: beyond a given polariza-
tion, electrons can be transferred to the electrolyte, in-
ducing an electrochemical reaction. This limitation is far
more intrinsic than breakdown: it does not rely on insu-
lator defects but on the availability of "empty electronic
levels" in the electrolyte; Faradaic currents arise only
when the Fermi level of silicon is aligned to these elec-
tronic levels due to the polarization. ' The relevant elec-
trochemical concept for this naive image is the "domain
of stability" of the electrolyte. To accumulate electrons,
we are interested in the "cathodic" limit of this domain,
i.e., a negative electrode potential for the electrochemists
who usually refer to the potential of the solution' —as in
this paper —whereas the similar situation for a usual MIS
structure corresponds to a positive gate (metal) potential.
The cathodic 1imit of the domain of stability of the elec-
trolyte finally rejects the energetical cost for an electron
to be transferred from silicon to the electrolyte. It is thus
a key factor to maximize accumulation at the
Si/electrolyte interface. Fortunately, for "indifFerent"
electrolytes such as acetonitrile+0. 1M alkaline salt, the
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onset of Faradaic currents takes place only at very strong
(cathodic) polarizations ( —2. 5 V): at such strong polar-
izations, surface densities N, of almost 10' e /cm have
been reached at [n-type Si(111)]/electrolyte interfaces at
room temperature. This is almost a 1-order-of-
magnitude increase with respect to MIS structures.

At such high densities, these "giant" accumulation lay-
ers offer the unique opportunity of a quasidegenerate 2D
EG at room temperature. Conductivity measurements
indicate that, at these large concentrations, the electronic
mobility decreases to —50 cm /Vs at 8X10' e /cm
while its dependence as a function of density lies between
N, ' and N, ', a behavior compatible with a phonon-
scattering mechanism.

It was further shown that very-high-density accumu-
lation layers up to 4.5X10' e /cm can be created
at an all-solid interface using indifferent polymer
electrolytes. ' These electrolytes consist
of a very-high-molecular-weight poly(ethyleneoxide)
[CH2—CH2—0—)]„"solvent" (PEO) solvating a suit-
able salt such as KC104 or CsCF3SO3. The whole poly-
mer electrolyte will be abbreviated as PEO. We report
here on the results obtained with these Si(111)/PEO in-
terfaces in the 300-400 K range. Furthermore, the re-
sults obtained from an [n-type Si(111)]/methanol-
electrolyte interface in the 200—300 K range will also be
Used.

Section II is devoted to the experimental results. The
mobility limited by acoustic-phonon and intervalley-
phonon scattering in Si(111) 2D EG is calculated in Sec.
III. Taking advantage of the equivalence between the six
valleys for the Si(111) surface, we present a treatment in
the one-subband approximation which corrects previous
ones, clarifying some misconceptions which appeared in
the literature regarding the intervalley-phonon choice
(Sec. III A) and the treatment of degeneracy (Sec. III B).
Using deformation potentials of bulk silicon, this theory
is shown to yield mobility values overestimated by a fac-
tor of 5 —10.

This discrepancy motivates the attempt of Sec. IV to
formulate a new mechanism, specific to highly concen-
trated electron accumulation layers. We suggest that at
these high densities the whole change of the band struc-
ture induced by the acoustic-phonon perturbation must
be taken into account. An intuitive approach is present-
ed in Sec. IV A: the next step beyond the uniform shift
approximation amounts to considering a phonon-induced
displacement of the position of conduction-band minima
in reciprocal space. The resulting expression is justified
in Sec. IV B, using the 30-year-old k.p expansion of the
electron-phonon interaction in nonpolar semiconductors
from Harrison a simplified three-dimensional (3D)
"linear-in-k" matrix element is derived using symmetries.
Its two-dimensional (2D} adaptation requires a generali-
zation of previous calculations. We get an expression for
the scattering time which allows the determination of the
order of magnitude of the "linear-in-k" deformation po-
tential. In Sec. IV C, we discuss the proposed value for
this new parameter assuming that the vicinity of the val-
leys relative to the zone edges is the key factor for this
"linear-in-k" mechanism.

II. KXPKRIMKNTAL RESULTS
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FIG. 1. Electron mobility as a function of temperature for
various Si(111) electron layers at high concentrations: (A),
MOSFET inversion layer at 0.46 X 10' e /cm, the highest den-
sity of Sato et al. (Ref. 3); (oo, V, , 0), Si/PEO- and
Si/methanol-electrolyte interfaces (our results) at 1.0, 1.6, 2.5,
and 3.0X10"e /cm, respectively; dotted symbols refer to
Si/acetonitrile-electrolyte interfaces of Ref. 7 at densities given
by the corresponding nondotted symbols above.

The experimental procedure for the realization of
Si(111)/PEO polymer-electrolyte interfaces has been de-
scribed in Refs. 9 and 14 and those relative to
Si/[methanol+0. 1M LiC104] electrolyte interfaces in the
180—290-K range ( —95 to +15'C) are in Ref. 14. Due
to specific electrochemical factors, our meaningful densi-
ty ranges above -3X 10' e /cm . Because methanol is
more reactive than acetonitrile, the maximum attainable
density lies between 2.5X10' and 4X10' e /cm de-
pending upon the temperature.

We obtain the charge-potential Q( V) relation of the
accumulated interface toward negative ("cathodic") po-
tentials from capacitance measurements. The conduc-
tance variation between the two contacts of the n-type-Si
sample yields the accumulation layer sheet conductance
as a function of potential cr„,(V}. Eliminating V, one
gets the mobility in the 2D EG )M= ~cr,«IQ~ =@(N„T)
since Q =eN, . Temperature scans allow the determina-
tion of the p( T) relation at a given density N, .

The dependence of the mobility upon N, for our pre-
treated Si(111)/PEO interfaces ranges typically from
N, at "low" densities (3 X 10' —l. 5 X 10' e Icm )

to about N, at the highest densities
(3X10' —4X10' e /cm ). A similar behavior is ob-
tained with Si/methanol-electrolyte interfaces. '

Figure 1 shows the mobility as a function of tempera-
ture at various densities between 1.0 X 10' and
3.0XIO' e /crn, for Si/POE and Si/methanol inter-
faces in the 300-400-K and the 200-300-K ranges, re-
spectively. ' Data from Sato et al.3 at a somewhat lower
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density are presented, as well as room-temperature data
from Ref. 7 at corresponding densities. The overall
dependence of the mobility as a function of temperature
T ranges from T ' for the methanol-electrolyte experi-
ments to T for the PEO-electrolyte experiments at
the densities shown here. At lower densities, the uncer-
tainty on the exponent (less than 20%%uo here) increases,
since the mobility is the ratio of two smaller quantities,
but nevertheless, we could not detect any indication in
contradiction with a T '-T temperature depen-
dence of the mobility. The order of magnitude of the
measured mobilities is very low, especially for the
Si/PEO interfaces (50—120 cm /V s},and does not exceed
-250 cm2/V s for the methanol electrolyte in the investi-
gated range.

The methanol data are in agreement with the PEO
data regarding the negative temperature dependence and
the low order of magnitude of the mobility (100—250
cm /Vs}. In detail, the temperature dependence of the
mobility is less steep (T ' instead of T ~2) and its mag-
nitude seems somewhat larger than that of Si/PEO inter-
faces. These minor discrepancies might be due to the
chemical effects of methanol on the electrode surface' 's
and we will not discuss them further. Finally, the most
salient features of our mobility results are the N, T
dependence (0.3 & a & 0.7 and 1.0 & P & 1.5 ) and the low
order of magnitude (50—250 cm /V s).

Both systems clearly confirm the predominance of pho-
non scattering in highly concentrated accumulation lay-
ers in the 200—400-K range, in the continuation of results
obtained for Si/SiOz metal-oxide-semiconductor field-
effect transistor (MOSFET) systems. ' The order of
magnitude of the mobility here is strikingly low, still
lower than observed in MOSFET's. As can be seen, this
low order of magnitude is mainly due to the high density
range investigated in our interfaces, since our data extra-
polate fairly well those on MOSFET's.

The simplest theory for phonon-limited mobility in 2D
EG is that for acoustic phonons from Kawaji' which
predicts a N, ' T ' behavior of the mobility. Since in-
tervalley phonons are known to be the major scattering
source in bulk silicon at room temperature, ' ' the actual
temperature dependence of the mobility is expected to be
somewhat steeper than T ', as observed in MOSFET's. '

Hence, the T dependence of the Si/PEO data leads
us to consider the theory of acoustic and intervalley pho-
non scattering in the case of a concentrated and possibly
degenerate Si(111)2D EG around room temperature.

acoustic phonons as computed from Refs. 22 and 23 is
not important (less than 15%); since it is negligible for in-

tervalley phonons, it will not be considered here. On the
other hand, two important points have been misunder-
stood in the literature: the choice of intervalley phonons
and the problem of degenerate statistics. We will discuss
these two points in Secs. III A and III B, respectively.

A. Choice of intervalley phonons in Si(111)2D EG

There are two types of relevant intervalley phonons in
bulk silicon connecting either "noncoaxial" valleys (f
type) or "coaxial" valleys (g type). ' ' Both are umklapp
phonons: the umklapp qf and q~ phonon wave vectors
are displayed in Fig. 2 showing three adjacent First Bril-
louin zones (FBZ) in the cubic centered reciprocal lattice.

qf and qs involve, respectively, a (2m/a)(1, 1, 1) and a
(2n /a)(2, 0,0) reciprocal-lattice vector (a is the lattice pa-
rameter). Because qf is only 12' off a (001) direction,
Long has considered the phonon dispersion relation only
along line I X and has gathered the energies of the vari-
ous branches as 55 meV for f (T&=630 K), while the g
energy was taken within the most populated low-energy
acoustic branches, at q =0.3krr, as 16 meV (T =190
K) 20

Ferry further remarked that the g phonon is forbidden
at the zeroth order of the Harrison k p expansion of the
electron-phonon (e-ph) interaction. ' He gave a more
correct "first-order" expression' and the revised defor-
mation potentials. He also applied this treatment to elec-
tron inversion layers but did not take into account the de-
generacy properly. Roychoudhury and Basu pointed out
a correct treatment of degeneracy' but made a criticiz-
able choice for intervalley phonons: they neglected any
component of the intervalley wave vector out of the inter-
face plane; their phonons therefore differ from those of
Long or Ferry (the fact that they were investigating the
(100) face does not affect this point). This confused situa-

III. THEORY OF ACOUSTIC AND INTERVALLEY
PHONON SCATTERING IN Si(111)2D EG

Highly accumulated electron layers combine possible
degeneracy and efficient intervalley scattering. The
Si(111) face may be treated within the one-subband ap-
proximation for two reasons: (i) most carriers lie in the
fundamental subband, and (ii) in the case of the funda-
mental subband, intersubband coupling appears much
weaker than its intrasubband counterpart, as will be ex-
plained later.

At the temperatures of interest here, the screening of

FIG. 2. Intervalley umklapp f and g phonons in the silicon
reciprocal lattice; three adjacent first Brillouin zones are used.
The valleys are represented by constant-energy ellipsoids.
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tion leads us to first show in detail how and why Long's f
and g phonons are still to be considered in the 2D case,
and to further combine this choice with the correct treat-
ment of degeneracy from Roychoudhury and Basu. '

Within the envelope-function framework, ' the wave
function of an electron in an accumulation (or inversion)

layer reads

amkll) = A ' F (z)exp(ikll rll)exp(iK .R)g (R),

where R —= (rll, z) is the space coordinate in and normal to
I

the interface plane, respectively, A being its area. I' is

the envelope wave function in the mth subband of energy
E of the ath valley located at K: the last two factors
represent the usual Bloch function at the ath minimum

and kII is the electron wave vector in the interface plane

referred to the projection of K in this plane. For the
sake of simplicity, we assume an isotropic F. (kll) relation

with the density-of-state mass mD.
We deal with a phonon q —= (qll, q, ). The corresponding

phonon perturbation is proportional to exp(iq R) and its
matrix element thus contains the factor

(~nkIIexp iq. Iamk„)=—f 'r„f dz „'(z}F(z}exp{i[(K.—Kp},+q, ]z)
1

II

Xexp[i(kll —kjl+q„)rll]exp[i(K —
K&)ll rll]X&(R)X (R),

and one reads a selection rule in the interface plane:

kll kl+qll+ K —Kp
II

g (3)

where gII is a vector of the reciprocal lattice of the sur-
face. Along z, the integral is reduced by F F„*to the in-

terfacial region, so that no selection rule may apply stric-
to sensu.

The intravalley case (a =P) classically yields the
Fourier transform I „(q,}of the F F„'product:

selection rule in the z direction by allowing some spread-
ing around the (K —K&), 3D value. Since (K —K&), is

of the order of the FBZ and the (z ) ' spreading of the
order of a small fraction of the FBZ, this spreading will

be of little consequence on the relevant phonon energies
and populations. Omitting the m, n indexes to focus on
the fundamental subband approximation (m =0), Eq. (5)
reduces to a simple form in the useful case of a q-
independent matrix element:

I „(q,)=f dz exp(iq, z)F (z)F„'(z). (4) IM I

= —JIM

The width of I „(q,) hence characterizes an approximate
selection rule in the z direction. Summing the z com-
ponent of the phonons in the classical deformation-
potential Hamiltonian, one obtains a rule for adapting a
3D matrix element M& to the 2D case:

f " 'II ( )I
p' +~ dqq

q
I „q,

Only matrix elements explicitly containing the electron
wave vector k need a different treatment; this question
will be addressed in Sec. IV. We may now compare the
strength of intersubband (mAn} and intrasubband
(m =n) couplings, taking Mz as 1 in the above formula.
In the case of the fundamental (m =0) and using self-
consistent envelope functions, one obtains much larger
strengths for n =0 (internal coupling) than for n )0
(coupling to excited subbands), typically in a ratio of 10
to 1.

The intervalley case (aAP) yields in turn the expres-
sion

I'"„(q,)=f dz F„(z)F(z)exp{i[(K —K&), +q, ]zj .

with

Fo(z) = (
i 5 3z 2) 1/2exp

33 n, eN,
' 1/3

E 6'pA

—bz

2

(9)

where e, is the semiconductor dielectric constant, E'p the
vacuum permittivity, and m, the effective mass normal to
the interface; A is the quotient of Planck's constant by 2~.
Note that many parameters such as (z ) =3b ' vary like
N, '~ because of Eq. (9). One gets the simple J value: '

To our knowledge, this general formulation for J [espe-
cially with I'"(q, ) =I(q,') in the —intervalley case] has not
been given elsewhere before. Both J and its intervalley
analog are of the order of (z ) ', as may be seen by re-
placing q, by q,'. We now use the approximate Fang-
Howard wave function for the fundamental:

J=36/16 . (10)

I"(q, ) is identical with I ( q,
'

) of Eq. (4) where

q,
' =q, + ( K —K&), . This function will peak around

—q, =(K —K&)„with a characteristic width of the or-
der of (z ) ', where (z ) is the typical extent of the en-
velope wave functions. This form somewhat relaxes the

We have checked that this value does not differ from the
values obtained by self-consistent calculations by more
than 15%%uo, and is, rather, lower than that. Acoustic pho-
nons are a useful example for the computations that we
have to carry out. We start from the well-known 3D ma-
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D ksT 3bD ksT

2p As i 32p As i
(12)

We calculate the corresponding scattering time v

using the classical Fermi golden rule, the Boltzmann
equation for elastic collisions, ' ' ' and the energy-
independent density of states (density-of-state mass mi'i}.
We get an expression independent of energy and degen-
eracy:

1

PD, ac

3bD ~k~ Tma'

16ps, vari

(13)

The squared matrix element for intervalley-phonon
scattering has been given by Ferry ' and Roychoudhury
and Basu' for the f zero-order mechanism:

D, ,A

2p A coq

XJ[nq5(E(kl) E(kI }+ftcoq)

+(n, +1)5( E(kii) —E(kii) —M.)]

(14)

trix element (+ for emission, —for absorption):

2pVs)

where ks is the Boltzmann constant, D is the (averaged)
acoustic deformation potential, p the silicon volumic
mass, s, the sound velocity in silicon, and V the crystal
volume; the selection rule k' —k+q=0 is applied to re-
move the q sum. It is independent of q so that one gets
the 2D matrix element

where q=K&—K, coq is the phonon pulsation, and Dppt,
the relevant deformation potential, is so called because
the f phonon is essentially optical. For the g phonon,
some additional indications will be given in Sec. IV: as
mentioned above, the 3D matrix element explicitly con-
tains the electron wave vectors with respect to their
minima —and not only the phonon wave vector —so that
Eqs. (4) and (5) are not valid in principle; Ferry's nota-
tions of Ref. 21 may be misleading on this point. Howev-
er, because of our pedagogical purpose and the very small
relative weight of the g phonon, in this section we will use
the expressions directly derived from those of Ferry for
the scattering time after the issue of degeneracy is
clarified.

8. Treatment of degeneracy

Ferry has given an expression for the nondegenerate
case. As stated in Ref. 17, in the treatment of collisions
randomizing isotropically the final velocity such as
intervalley-phonon scattering, the collision term of the
Boltzmann equation gives the following expression for
the scattering rate in the 2D case:

1

PD
1 —f0(k')fd'k'P(k, k'}

(2ir )
(15)

where P(k, k ) is the transition probability as given by
the Fermi golden rule, and fo(k) the equilibrium Fermi-
Dirac distribution function in reciprocal space. The
denominator [1—fo(k)] is often omitted although it
stems directly from the application of the detailed bal-
ance principle.

Taking into account the choice made in Sec. III A for
intervalley phonons, we get the relevant expression for
the scattering rate due to intervalley-phonon scattering in
a variably degenerate Si(111)accumulation layer:

1

P»f(E)

2mDD, ,
2piii cd

J 1 fo(E +fico )—
nq

1 f (E)
'+(nq+1) 1 fo(E —fiai )—

1 —fo(E)
(16)

«r the f "zeroth-order" phonon, where 8 is the Heaviside unit-step function [e(x)=Q if x & Q and e(x)=1 if x & Q].
From Ref. 21, we derive the following scattering rate for the g first-order phonon in the degenerate case using the D,
deformation potential (see also Sec. IV):

~ 42D2 1 fo(E +ficoq)— 1 fo(E —%co )—
J nq(2E+fuo ) +(n +1)(2E—iris) ) e(E fg~ ) . (17)—'s(E) fi pcoq 1 —o(E 1 fo(E)—

Using Eq. (12) for the acoustic scattering time, we get the energy-independent scattering time by adding the various
contributions and by using the 2D average:

& 0(E) D,(i.)= fdEE g [i '(E)] ' ' fdEE

The mobility is p, =e (i.) /m, ', m,* being the conductivity
mass. For numerical computations, we use the values
from Refs. 1 and 21 (see Table I).

The resulting mobility is plotted versus temperature
between 20 and 500 K at densities scaled as powers of 2
from 0. 125 X 10' e /cm to 16X 10' e /cm on the

log(p)-log( T) plot of Fig. 3. Experimental data of Sec. II
for the Si/PEO and Si/methanol interfaces are shown as
rectangles.

As can be seen, the theory overestimates the mobility
by a factor of 6—9. Within the above framework, reduc-
ing this discrepancy without changing the deformation
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TABLE I. Numerical data used for the computations.

Bulk silicon data
Volumic mass
Sound velocity (this is an optimized average)
Electron mass
Density-of-state mass
Conductivity mass
—e/mc ratio
Uniaxial deformation potential

p=2. 33 X 10 kg m

si =9.00X 10 m s
mo=9 05X 10 ' kg
mD =0.32m o

mc =0.30mo
—e/mc =5.89X10" Ckg
D=9 eV

Parallel effective masses
Perpendicular effective mass
Density-of-state effective mass (parallel)
Conductivity effective mass (parallel)

Si(111) face
m, =0.71mo m2 =0 19mo
m3 =m, =0.26mo
mD =0.367mo
mg =0.30mo

Long parameters as revised by Ferry
Intervalley f phonon ("zero order" ) Tf =630 K Dop& 9X 10' eV/m
Intervalley g phonon ("first order") T, =190 K, D&=5.6 eV

potentials seems difficult. Effects such as screening,
which has not been taken into account, increase the pre-
dicted mobility. The use of the "exact" self-consistent
envelope wave function instead of the Fang-Howard ap-
proximation used here would lower the predicted mobili-
ty because it tends to increase the integral J of Eq. (8),
but by no more than 15%%uo. Hence the unsatisfactory situ-
ation quoted for classical MOSFET inversion layers' be-
comes still worse at the higher densities of our very-
high-density accumulation layers. The use of specific "in-
terface" phonon modes (surfons) has been investigated by
Ezawa and co-workers in the early 1970's without much
success. Other authors ' suggested later that the defor-
mation potential would be enhanced near the surface, but
they did not give good reasons or confirm their predic-
tion. Hence, in the following we are attempting to sug-
gest a suitable mechanism for such a scattering enhance-
ment.
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FIG. 3. Computed electron scattering time and mobihty of
electrons limited by acoustic and intervalley phonon scattering
as a function of temperature for densities scaling as powers of
two from 0. 125X10' e /cm to 16X10' e /cm in a Si(111)
accumulation layer. Our data on Si/PEO- and Si/methanol-
electrolyte interfaces at 2.5X10"e /cm are shown as rectan-
gles.

A. Intuitive formulation

The effect of strain on the band structure is usually de-
scribed by the deformation potential D: there is a local
shift 5E, =DE of the energy of the band edge propor-
tional to the local dilation h. If electrons do populate a
significant region around minima, we might have to allow
D to become wave-vector dependent. A simple way to
achieve this to a first-order approximation is to assume a
shift 5E, proportional to k, the wave vector relative to
the minima, with some constant Dk.

5E, =(Do+Dkk)b . (19)

This shift of the band edge, linear in k, obviously corre-
sponds to a displacement 5K of the minima, as suggested
in Fig. 4. Using the effective mass m ', one has

Dkh=A 5K/m' . (20)

IV. SCATTERING MECHANISM OF HIGHER
ORDER IN R.p AT HIGHER DENSITIES

The trend of decreased mobility with increasing elec-
tron density strongly suggests the existence of a mecha-
nism specific to these large electronic concentrations.

One might think first that the large electric field in-
duces some kind of additional scattering mechanism by
changing locally the nonpolar nature of silicon, thus
making a layer of Si+ -Si silicon analogous to III-V
compounds. In this layer, polar-optical phonon and
piezoelectric scattering might become noticeable. It
can be easily predicted that the resulting mobility would
depend on N, too strongly to fit any part of the experi-
mental data while its predicted order of magnitude, al-
though more difficult to assess, would still be too high.

A more direct consequence of the high densities is the
increased occupancy of the reciprocal space (RS) around
the valley minima so that the deformation-induced be-
havior of the bands in the vicinity of the minima can
affect the conduction electrons. It is simpler first to dis-
cuss this matter in the case of bulk silicon.
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The additional mechanism proposed here may thus be
seen as a deformation-induced displacement of the mini-
ma locations in the reciprocal space, in addition to the
uniform band-edge shift described by the usual
deformation-potential mechanism. However, the above
expression is not a rigorous perturbation Hamiltonian. A
more proper formulation of this mechanism will now be
given.

H, , (k)
XK+k XK X E E Xk.

j (~0 I J

HI(k)H;(k)

(22)

8. Harrison k.p expansion of e-ph interaction
in nonpolar semiconductors;

Origin of the "linear-in-k" mechanism

Harrison' has formulated the matrix elements for e-ph
scattering in nonpolar centrosymmetric semiconductors
(e.g., Si) using the k p expansion: the matrix element of
the phonon perturbation between two electronic states
k, k', counted relative to their respective minima K, and

K& reads

d rX~ +„Xx+&Re~.V,V,3D 3

C P a (21)

Energy
ik

c

wave vector

FIG. 4. First-order effect of strain on band structure at a
band Ininimum K far from zone center: instead of an even shift
of the band everywhere around the minimum, the minimum lo-
cation is shifted by 5K corresponding to a k-dependent shift of
the band edge (vertical arrows).

where C is the two-atom unit cell where the r space vari-
able runs, the y's are the periodic parts of the Bloch wave
functions of the k, k' states in the ath and Pth valleys, eq
is a unit vector describing the atomic displacement in-
duced by the phonon whose wave vector is q. The selec-
tion rule k+q —k'=0 has been used previously and the
phonon amplitude (or occupation number) is dropped. R
is a function describing the symmetries of the phonon
mode (acoustical or optical) and having additional crystal
symmetries (see Ref. 15 for details); V is the potential of
crystal atoms.

We must consider all the bands and add a band index i
to the wave functions. We assume fi=m'=1 for con-
venience and drop the valley index (a,P); expressions of
interest for the intervalley case (Sec. III) will be men-
tioned. In the k p expansion, one of the Xz+z is expand-
ed on the set of the XQ wave functions, using the pertur-
bation operator k( i V, +K) a—t first order in k:

where

H;(k)= i—k f d re"V,X~ .

Successive orders in k thus appear in Mk&. . For acousti-
cal phonons, a symmetrical R„function is used and the
zero-order term:

M'„p"'=e,f d'rXitX'„R„V,&
C

(23)

vanishes: this is obvious at the zone center, where the
XK's may be taken as real and of a given symmetry (even
or odd), whereas V,V is odd. Similar arguments far from
the zone center require a more careful use of the inver-
sion operator. ' The first-order term is also obtained
through the use of this operator, restricting the summa-
tion to the half-cell C/2. The R,z, function to be used
for optical phonons changes sign under inversion,
whereas R„,its acoustical counterpart, does not. The re-
sult reads

Mpz'"= g e f d r(XKXQ+c c )RV.,V.

J+I

X (k+k') f d rXtcV,X~x
C

(24)

with the plus sign standing for optical phonons and the
minus sign for acoustical phonons. In the latter case, one
gets the usual matrix element proportional to k —k'=q.
The optical case, restoring the omitted valley indexes,
corresponds to the "first-order" g-type intervalley pho-
non, forbidden at zero order as pointed out by Ferry. It
contains (k+k') explicitly and cannot therefore be ex-
pressed exactly with q only. Hence, the use of Eqs.
(4)—(6) above is not correct in principle for this matrix
element; this question will be addressed in Sec. IVC.
Note also that Ferry's treatment' neglects the k.k' term
appearing in ~M~ . This approximation has little effect on
the result and is also justified by the fact that the g pho-
non has both acoustical and optical components notice-
able since it lies at a low-symmetry point of the FBZ,
hence a further reduction of the small k-k' contribution.

Now, we are interested in the second-order terms, one
order more than the usual matrix element. We restrict
ourselves to acoustical phonons. A first part comes from
the first-order terms in the k and k' states; it contains
terms such as
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~M~ ~Dk~q~[k +(k') ]' (27)

k'f ~ rX ~X
C

f "xk' ~,Sic
C

(25)

(ii) We temporarily ignore the coherent nature of the
higher-order perturbation, i.e., the fact that it has
a priori a given phase relative to the usual 5E, =DE per-
turbation.

Table II gives a summary of the expressions of the vari-
ous terms of the e-ph interaction for orders 0-2 in k.p.

i.e., terms in k„k'„.Similar terms are also obtained be-
tween the zero- and second order of each state, but yield
instead a contribution of the type k„—(k'„). It may be
seen by taking the complex conjugate that the result
changes sign when inverting k and k'.

Hence, the relevant higher-order matrix element is ob-
tained by substituting the (k —k') term of the usual
acoustical-phonon matrix element by a quadratic form in
(k, k'), antisymmetrical in (k, k'). The 36 coefficients of
its representative matrix may be reduced to only 15 using
the form symmetry and the (k, k') antisymmetry. How-
ever, group theory is required to predict which of the H;,
vanish due to symmetry. Since the conduction-band val-
leys in silicon lie at a low-symmetry point, one may ex-
pect that a sufficient part of these terms will not vanish so
that a noticeable second-order term is expected. Finally,
an expression such as

C. 2D treatment of the higher-order mechanisms

4(k, )=f dz exp( ik, z)F(z—) . (28)

Equation (27) above contains explicitly k and k', and
not only q. Also the first-order interaction of the g pho-
non as deduced from Eq. (24) gives a term quite similar to
Eq. (26) from this point of view, or Eq. (27} if the same
isotropic approximation is made. For such cases, we can-
not use the framework of Sec. III as such. Instead, we
must come back to Eq. (2} for the general 2D matrix ele-
ment, express the envelope wave-function F(z) on the
plane-wave basis exp(ik, z), and sum over k, before sum-

ming over space coordinates. We restrict the discussion
to the fundamental subband for clarity. We make use of
the Fourier transform of F(z):

Ml, i, ccDk(k k —) (k'+. k ) D'=kq (k+k ), ' (26)

where Dk is an appropriate constant, meets the symmetry
requirements and describes satisfactorily a "linear-in-k"
effect similar to that inferred in Sec. IV A.

Two further approximations ultimately simplify the
treatment.

(i) Only the isotropic part of the matrix element is

used, as for the "first-order" treatment of the g-type in-

tervalley phonon

Out of the three vectors k, k', q, we can use immediate-

ly the kI~=ki+ql selection rule of Eq. (3) so that we are
left with the nonredundant variables k, k', q, before sum-

mation; whenever q will appear in the following, it will
stand for (kI~

—ki, q, ) and only the nonredundant vari-
ables (k, k', q, ) will be used in the subscript for the matrix
element. One obtains the following generalization of Eq.
(5) of Sec. III:

TABLE II. Schematic form of the matrix elements of the electron-phonon interaction for acoustical
and optical phonons for orders 0—2 of the k p expansion of the periodic part of the electronic Bloch
wave functions.

Phonon

Relative displacement
of the atoms in the
elementary unit cell

Acoustical

In phase
at zero order in q

(center of FBZ)

Optical

In opposition
at zero order in q

(center of FBZ)

Remarks

The phase relation is
more complicated at

FBZ edge

Electronic transition Intravalley
(k~k')

Intravalley (k~k')
or intervalley

(K +k~Kp+k')

Order in k
Expression of Mkk

[ k —[k2+ ( k )2] I /2]
Isotropic

approximation

zero
Dq

(usual deformation
potential)

Dl, kq
(displacement

of the minimum)

D,p,
—Do

D, k

[D,k']

optical phonon f
optical phonon g

"linear-in-k" mechanism



12 576 H. BENISTY AND J.-N. CHAZALVIEL 41

+~ dqz dk,
'

dk,
lM~ „,l

=—f f dz f ' 4*(k,')f ' 4(k, )exp[i(k, —k,'+q, )z]M&i, (29)

V +„dq, dk,f " ' f ' e*(k,+q, )e(k, )M',
A — 2~ 2

L

(30)

Fortunately, this may be simplified using the relation fdz exp[i (k, —k,'+q, )z] =2ir5(k, —k,'+q, }; this Dirac function
allows the suppression of the k,

'
integral, substituting 4'(k,') by 4'(k, +q, ) and k' by k+q:

2

We split M into a q-dependent part C(q)(nq+ —,'+ —,')'
and a k-dependent part R (k, k') which would have been
1 in the cases seen above:

M ~ =C(q)(n + —,'2 —,
')' R(k, k') ."" z

(31)

D2k T 1/2

lC(q)l(n + —,
'+

—,
')' '=

2p Vs,
(32)

On the other hand, the first-order inechanism (g phonon)
makes use of a constant

l C(q) l:
' 1/2

D A

2p Vcoq
lC(q)l= (33)

From Eqs. (30) and (31), we see that the treatment of Sec.
III is modified essentially for the k-dependent part of the
matrix element: the q-dependent part is taken out of the
square modulus of Eq. (30) and plays the role of the 3D
matrix element in Eq. (5) of Sec. III. The integral
remaining in the square modulus is also similar to I(q, ),
the Fourier transform of lFl, but this integral now con-
tains the additional k-dependent part R (k,k'} of the ma-
trix element; it is therefore logical to call it Ii, (q, ):

k,
Ii, (q, )=f 4'(k, +q, )4(k, )R(k, k+q) .2' (34)

The calculation of I„(q,) is made in Appendix A in the
case of the Fang-Howard wave function, for elastic or in-
elastic scattering; in the latter case, one simply replaces
the k

i factor of the former by (k i
+ k'~~ ) /2 so that we

need deal with only the elastic case in the following; the
computation results in a complex expression which is
analytical but somewhat involved. It is possible to find a
simple approximation of the square modulus lI&(q, )l in
terms of the product of lI(q, )l and an expression bilin-
ear in kII and q, . It avoids the numerical integration of
IIq(q, )I, the last step to obtain the 2D matrix element,
as confirmed in Appendix A. It eventually results in an
excellent approximation of Ji, = J(dq, /2m. )le, (q, )l, the
equivalent of J in Sec. III, but using I&(q, } instead of
I(q, ); this expression may be written as

Ji, =f lI„(q,)l =b( Aob + A, k,
~

), (35)

In the two cases of interest here, R (k, k') = [k +(k') ]'
is the same. The "linear-in-k" mechanism has the same
q-dependent part C(q)(nq+ —,'+—,

'
) as acoustic phonons if

one uses D instead of Dk ..

where the constants are AD =0.0784 and A, =0.426 (see
Appendix A). The scattering time for our new higher-
order mechanism taken separately is simply obtained by
substituting the term JD by J&Df, in Eq. (11) of the
scattering time for acoustic phonons:

3b
0 1 II kD ~b(A b +A k )D (36)

We may therefore define the scattering time r '"(E) of
this mechanism (taken separately from the usual
deformation-potential mechanism) for electrons at energy
E within the plane:

1

+D, k(E)

kii TmDb 2mDE
Dk APb +A

ph' S,
(37)

1 —fo(E&fia) )
X(n + —,'+—')

q Y 2 (38)

as explained in Appendix B, the difference with Eq. (17)
of Sec. III is noticeable, but the relatively small contribu-
tion of the g phonon makes it barely detectable, so that
we do not discuss it further.

We may now discuss Eq. (37) for the "linear-in-k"
mechanism: the Tb term yields a N, 'T ' dependence
of the mobility p, whereas the TbE term yields a

T behavior in the nondegenerate regime and a
T ' behavior in the degenerate regime. This last

term is just the one that we ~ould have found upon sim-
ple substitution of D by D„k~D&(E)' . All these ex-
ponents are compatible with experimental results, keep-
ing in mind that we are near the borderline of the degen-
erate domain (N, ' T ~N, ~ T '). From Eq. (37),
the p(N, ) relation should also become steeper at the
higher densities, whereas the p( T) relation should be less
steep when increasing the degeneracy; for example, by in-
creasing N, or decreasing T. Experimental results exhibit
a systematically steeper p(N, ) relation toward higher
densities. However, the slope barely reaches —0.7 in-
stead of the steeper —1 predicted slope. As for the p(T)
relation, its softening at higher densities is more diScult

A similar treatment is applied to obtain the scattering
rate due to the first-order g phonon in Appendix B, start-
ing from Eq. (16) since the collision is no more elastic; the
result, given for the absorption (i.+) and emission (r )
contributions independently (~ '=i. +'+7 ), reads

mD&, , A1m~
D i Aob +

z (2Ekfia)q}r P'g(E) 2pfi coq A'
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FIG. 5. (a) Computed scattering time and mobility of elec-
trons as a function of temperature for various densities in a
Si(111) accumulation layer including the new "linear-in-k"
mechanism in addition to the acoustic and intervalley ones of
Fig. 3. We use the same densities as in Fig. 3. (b) Comparison
between the predicted mobility as a function of temperature due
to acoustic and intervalley phonons (upper curve) or including
the "linear-in-k" mechanism (lower curve) and the experimental
data at 2.5 X 10"e /cm . Our results on Si/PEO- and
Si/methanol-electrolyte interfaces are indicated as PEO and
MeOH, whereas those of Ref. 7 at room temperature on
Si/acetonitrile-electrolyte interfaces are indicated by ACN.

to assess because only a small effect is expected in the ex-
perimental temperature range. However, the data seem
to exhibit such a trend, in agreement with theory.

We can finally improve the agreement with theory by
including the term of crossed interference between our
new mechanism and the usual deformation-potential
mechanism. Indications on this additional term are
given in Appendix C. The main result therein
is easy to explain: this crossed term reads
J(dq, /2n. )2Re[I(q, )Ik(q, )]. Its behavior as a function
of kii

cc E is therefore similar to that of (JJk )'~, i.e., (con-
stant +E)'~ . At high energy, this crossed term yields a
N, '~3T 3~2 behavior of the mobility in the nondegen-
erate regime and a N, T ' behavior in the degenerate
regime. At low energy, it yields a X, T ' behavior.
These trends are quite close to the experimental ones.
This good behavior as well as the low values of the mobil-
ity suggest the presence of a constructive crossed term,
which will now be assumed.

Figure 5(a) shows the result of computations including
this new mechanism and a constructive crossed term in
addition to the intravalley and intervalley mechanisms of
Sec. III. The value of the constant Dk has been adjusted

to 10 eV m in order to fit the experimental data. As ex-
pected, this new mechanism has a rather poor efficiency
at low densities and temperatures, just as it has a negligi-
ble effect on the 3D mobility, but it greatly overcomes the
usual acoustic mechanism at the highest densities for any
temperature. Notice that a sizeable contribution comes
from the crossed term. The absolute mobility values are
in correct agreement with the experiments, as may be
seen in Fig. 5(b), where we have chosen only the
2.5X10' e /cm density value in order to compare to
our experiments and those of Ref. 7 as well as to the pre-
vious result of Sec. III: it may be seen how inadequate
the latter is.

Our theoretical prediction seems fully compatible with
the observed p ~ T dependence, the experimental un-
certainties suitably accounting for the residual
difFerences. This new mechanism is thus altogether satis-
factory and has seemingly never been contradicted by the
experiments.

D. Relation with silicon band structure

The value of the usual deformation-potential D has
been cross checked with values obtained from different
experiments. Such a check is more difficult for the
quantity DI, introduced here. However, we may combine
this value with an adequate wave vector to carry out a
comparison with the known D and D,~, values of acousti-
cal and intervalley scattering. In particular, due to the
degeneracy, the kinetic energy perpendicular to the inter-
face can reach about 100 meV, this is the energy of elec-
trons at the X zone edge within the parabolic approxima-
tion. Such a region is very likely to exhibit enhanced
effects of strain on band energy: when bands cross at a
high-symmetry point such as X, any uniaxial strain is ex-
pected to lift the degeneracy; in the case of a perturbation
of, say, first order, the gap that opens at the anticrossing
point is one order less relative to the perturbation than
the band displacement far from this point. Hence, a
much larger zeroth-order effect than elsewhere is expect-
ed at points such as X. We have seen that the interaction
of electrons with acoustic phonons is of first order with
respect to the k p expansion. It should therefore induce
a zeroth-order effect near degenerate points, that is, of
the same order of magnitude as the matrix element of an
optical phonon.

An adequate wave vector for our comparison is thus
the one going from the valley minima at 0.85k„~,the ori-
gin of the k p expansion, to the X point, where we expect
enhanced effects. The magnitude of this vector is

q /2-0. 17X10' m '. Let us now compare the cou-
pling constant of a typical zeroth-order element such as
D, , =9X 10' eV/I or of a first-order element such as
D =9 eV to our second-order element Dk. Using qs/2,
we get D, , /(q /2) =3.1 X 10 eV m in the first case and
D /(qg /2) =0.53 X 10 eV m in the second case. It is seen
that our proposed value Dk = 10 eV m takes place
reasonably well in this range. This leads us to assume
that the proximity of the zone edge enhances the second-
order element to a magnitude similar to those of the
first-order and zeroth-order elements. To substantiate
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our point of view, we have studied the band structure of
silicon near the X point.

We have computed and plotted constant-energy sur-
faces in this region, using the pseudopotential method of
Cohen and Bergstresser. Figure 6 presents a 3D view of
the surface whose energy is —170 meV above the X-point
energy, revealing significant features. The surface corre-
sponding to the 6, band moves toward the X-point inside
the FBZ. Far from X, its shape resembles an ellipsoid
centered on the 0.85kr» X-valley minimum. When ap-
proaching X, on the other hand, the shape diverges com-
pletely from the parabolic approximation and the con-
tours (perpendicular to line I X) become highly warped,
with extensions along line XU ((110) directions). In the
X plane, these extensions meet at almost right angles on
the XW segments, as indicated by the arrows: at these
points, 5& and h2 bands are degenerate. The surface cor-
responding to 62. has been plotted toward the outside of
the FBZ (e.g., in the adjacent FBZ) for clarity. It extends
in some respect the former one: in the X-U-W plane, it
indeed prolongs the arcs of ellipse of 5, so that its cusps
appear as the intersection of two ellipses. As soon as one
leaves the X-U-W plane, the degeneracy is lifted, and the
anticrossing structure appears. It should be noted that
this second convex shaped surface is (also) inside the
former one. Its lateral extent decreases very rapidly and
vanishes at a small distance from point X.

The degeneracy points indicated by the arrows should
be, as suggested above, very sensitive to the strain and
should induce enhancement of the higher-order terms in
the deformation-potential k p expansion. Furthermore,
it may be easily verified that the strong warping shown
here persists even at energies below that of the X point,
and exists as soon as the surface approaches this point.

All these elements suggest that the effect of strain on
band structure strongly affects the electrons, which be-

I

/

J
/

I
I

I
/

I
I

come sensitive to these regions of reciprocal space in our
accumulation layers.

U. CONCLUSION

We have analyzed the mobility data of our experiments
on very-high-density accumulation layers at the n-type-
Si/electrolyte interface, using PEO-based indifferent po-
lymer electrolytes and a methanol-based electrolyte. The
dependence of the mobility upon temgerature T and
density N, is of the form N, T (0.3 &a &0.7,
1.0&P&1.5) at the very high concentrations studied
here (up to 4. 5 X 10' e /cm ) whereas the observed order
of magnitude of the mobility is very low (-100 cm /V s).
Its temperature dependence in particular has prompted
us to study acoustic-phonon and intervalley-phonon
scattering of electrons in a two-dimensional layer at the
silicon (111)surface. A more correct treatment has been
obtained for intervalley phonons. It shows why the
three-dimensional intervalley phonons are still relevant
but also how the 2D matrix element has to be derived, in-
cluding, if necessary, terms depending on the electron
wave vector rather than the phonon wave vector only.
With this proper formulation, and taking into account
degeneracy effects, we find, however, that the mobility
values, computed from acoustic-phonon and intervalley-
phonon scattering, overestimate experimental data by a
factor of 5-10. Attempts to explain similar but smaller
discrepancies observed in the case of MOSFET-type Si
electron layers were based mostly on possible interface-
phonon peculiarities such as the "surfons" studied by
Ezawa et a/. with limited results. The increased
discrepancy observed in our accumulation layers at very
high densities has prompted us to take into account pecu-
liarities of these highly concentrated electron systems.
We propose that the increased band occupancy caused by
the high densities makes the electrons sensitive to
higher-order terms in the deformation-potential lt p ex-
pansion, thus leading to an overall increase of the
acoustic-phonon-induced scattering. We introduce a
tractable theoretical approach, using a "linear-in-k" de-
formation potential as the first term of this expansion;
only one additional constant, Dk =10 eVm, is used.
We suggest that the peculiarities of the band structure of
silicon may account for the strength of the higher-order
terms and thus be responsible for the low order of magni-
tude of the observed mobility: degeneracies in the con-
duction band lie only at about 100 meV above the bottom
of the conduction band. Finally, our simple theoretical
approach, aimed at describing simply these higher-order
terms, yields a good explanation for our mobility data but
also for those relative to the common electron layers of
high-density room-temperature MOSFET's.

FIG. 6. Constant-energy surface of the silicon conduction
band near the X point; the energy is 170 meV above that of the
X point; contours perpendicular to line I X are plotted. The 52
band (small protruding "nose") is plotted in the adjacent Bril-
louin zone for clarity. The four arrows denote the degenerate
points whose sensitivity to strain may be enhanced.
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APPENDIX A: ANALYTICAL EVALUATION
OF THE "LINEAR-IN-k" MECHANISM

We start from Eq. (34), which defines the equivalent
Ik (q, ) of I (q, ) appearing in the squared modulus of the
two-dimensional matrix element:

I„(q,) =

b&Z
m.p

(a +p tan v)'
dU

1+tan v

n/2
dv(a cos v+P sin v)'/ cosv,—m/2

(A 10)
+„dk,

Ik(q, )=f 4 (k, +q, )4(k, )R(k, k+q) . (Al)

ik,
1+2

+„dk, 8 ik,
Ik(q, )=f —1+2

' —2

i (k, +q, )
X 1 —2

b

' —2

R(k, k+q) . (A3)

We introduce the reduced variable

For the Fang-Howard approximated fundamental wave
function Eq. (9},we have

' 1/2
' —2

4(k, )=2 2
(A2)

or similarly, with w =sinu, w running from —1 to 1,

Ik(q, )=
3 f dw[a'+(P —a )w']'/ . (All)

b&2

Finally,
' 1/2

b&Z a2 p2 a2
2 2 1/2

harp (p —a ) a , (A12)

where the Argsinh function is defined by X(x)
=ln[x+(x +1)'/ ], ln being the complex logarithm.

The squared modulus lIk(q, )l contains the factor
l 1/p l

which is indeed the usual expression lI(q, )l . To
carry out further computations more easily, Ik may be
conveniently approximated writing first from Eq. (A9):

u =(2k, +q, )/b and u, =q, /b, (A4)

so that the integral now reads

Ik(q, )=f du —[(1—iu, ) +u ] R(k, k+q) .
du du

2b +, + (a +u )'/2 [a +(u') ]'/
2 (p2+ u 2)2 (pe2+ 2)2

(A13)

In our case, the 8 function is

R(k, k')=[k +(k') ]'/

=[k +(k') +k +(k') ]'

(
2 + 2+ 2)1/2

uii ui u

(A5)

(A6)

( 2+ 2)l/2[ 2+( i )2]1/2 a2+ lu

so that one can write

2b +
2

lI„(q,}l'=,a' f du
(p2+ u')'

(A14)

and approximating the numerator to keep only terms
symmetrical in u, u':

where we use k' =k+ q to get the right-hand term and we
have also introduced

22b' f +- lul
2 J (p2+ 2)2

(A15)

u~~ =2[k~~+(kt~) ]/b (A7)

This variable avoids making any difference between the

elastic and inelastic cases. Taking finally

and one uses again tanv =u/p to carry out the sumina-
tions. We get the "bilinear approximation" in reduced or
standard variables, focusing on the elastic case for this
latter expression:

a'=u'„+u,', P=1—iu, ,

we obtain

(A8)
lIk(q, )l =(1+u, )

2 2

1+ u + 1+ u
4

(A16)

f "»(a2+u2)'/2[1+(u/p)']-'.b&2 1 +

(A9)
II„(q,)I'= II(q, )I' 6 2+~2k2+

II 4 z

This intermediate form will be of some interest. To cal-
culate it in the present we use the complex variable v

defined by tanv = u /p; one can check that v does not
meet the poles of the tan function. The integral reduces
to

The bilinear expression between the braces of the first ex-
pression above is shown in Fig. 7 (dashed line) as a
function of the reduced quantities u

~~

=4k
~~

/b and
u, =q, /6; it is compared to the corresponding analyti-
cal result (lIk(q, )l /lI(q, )l )Xn. /2b (solid line). The
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N
U

N

0 2
Z

FIG. 7. Bilinear approximation (dashed lines) and exact
computation (solid lines) of the reduced ratio
~Ik(q, )/I(q, ) ~

X rr /2b as a function of the reduced parameter
g~ =4k2/b2

II II

agreement is good in the region of interest 0 (q, /b ( l.
This approximation avoids the numerical integration of
~Ik(q, )~, the last step to obtain the 2D matrix element.
This is further justi6ed in Fig. 8 by comparing the in-
tegration of the bilinear approximation (dashed line) to
the result of the numerical integration, which is almost
an aSne function of kII in this region. The equation of
such an aSne approximation reads

APPENDIX B: FIRST-ORDER OPTICAL-PHONON
SCATTERING IN TWO DIMENSIONS

We start from the inelastic version of Eq. (83), substi-

tuting back 2k
l by k,

~

+ ( k
i~

):
A )bmDE

&k
= Aob'+ +- (81)

l
—2D, g(E)

D2

I ut k I J),( n + —,
'+

—,
'

)
27Tpcoq

1 fo(E—')
X 6(E' E+Acoq—) .

1 — E0

(82)

The tilde is used to distinguish Eq. (82) from Eq. (17) of
Sec. III. The term in (k

i~
) of Eq. (Bl) is integrated using:

f1 kil (kil) 5(E E+Acu —
)

4'(mD )
(E+fuu )B(E+fico ) (83)

g4

The terms containing A &E are then gathered to yield Eq.
(37), the Heaviside function being omitted:

We now have to compute the scattering rate from Eq.
(15), using the Fermi golden rule to relate P(it, ir'} to the
2D matrix element (absorption or emission}:

Jk =I ~Ik(q, ) ~'=b( Aob'+ A, k
l ) . (A17) mDb A )mD

D, Aob +
g

(2E+Aco )

In order to 6t better the exact result at k =0, we have
chosen the Ao and A

&
coefBcients slightly dift'erent from

those given by the bilinear approximation: AO=0. 0784
and A, =0.426, instead of Ao= I/(2m. i)+ —,', =0.0819
and A, =—', =0.375 from the bilinear approximation.

1 —fo(E+iricoq)X(n + —,
'+

—,') (84)

Let us compare to Eq. (17); using J =3b/16, we find the
ratio:

[-2D,g(E)]
—1

[+D,g( E)]
—1

Ab
Ao +A)

mD (2E+iricoq)
(85)

Using the bilinear

Ao =( I/2m. )+ —,'„wehave
approximation —3

[-2D, g(E) ]
—1

[+D,g(E)]
—1

4 Ab /mD=l+, + —,',
3ir~ " (2E+ficoq)

=1+0 22
2E+Am

(86)

0
2

FIG. S. Plot of the factor J„=I ~Ik(q, )~'dq, /2' entering

the scattering rate from the bilinear approximation [Eq. (A17),
dashed line] and from the exact computation (solid line).

This ratio is therefore comparable to l for most values of
the energy. %'hen the denominator vanishes, both
scattering rates vanish as well. The case of a predom-
inant erst-order mechanism seems necessary to check the
validity of Eq. (84) compared to the Ferry-like expression
Eq. (17). In our computations, the effect of this mecha-
nism is so small that a change is barely seen on any of the
mobility curves. We have therefore used Eq. (17) in our
mobility computations for simplicity and ease of compar-
ison.
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APPENDIX C: CROSSED INTERFERENCE TERM

If we want to take into account the hypothesis that
both the usual deformation potential and our "linear-in-
k" mechanisms are in phase, we must calculate the
squared modulus of an expression containing [DI (q, )] for
the former and [DkIk(q, )] for the latter. The squared
modulus yields an interference term:

QADI(q, )+ DkIk(q, ) I'=D'iI(q, ) I'+Dk IIt, (q, ) I'

+2DDkRe[I(q, )Ik(q, )] . (Cl)

This term may be evaluated from Eq. (A12) and integrat-

ed numerically. Plotting this integral as a function of u ii,
one readily sees that an excellent approximation is given
by

+cod z 2R I, I„q, =b B b +B,k~ 'i~,

(C2)

with B0=0.0496 and B& =0.33, which recalls us the ex-
pression of the integral of iIk(q, )i in the text.

In the numerical evaluation of the scattering rate, we
assume that DDk is positive, i.e., that both effects inter-
fere constructively.
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