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The problem of a positron in jellium is solved in an approach involving self-consistent perturba-
tion of a Jastrow-type state. The merits of this approach are the following: (1) The one-electron
wave functions are allowed to be nonorthogonal, (2) the formalism is indifferent with regard to uti-

lizing the Pauli exclusion principle, and (3) numerical calculations are shorter by a factor of the or-
der of 100 in comparison with other theories. The first two points are of special importance in view

of the difficulties encountered both by the Kahana formalism and the approach of Lowy and Jack-
son. The screening cloud obtained in this work reproduces quite well the recent results of Rubaszek
and Stachowiak, as do the partial annihilation rates. A comparison with the results of other
theories and with experiment is also made.

I. INTRODUCTION

The problem of electron-positron interaction in jellium,
so important for investigations of metallic materials by
positron annihilation, is still an open one (for details, see
Ref. 1). While the electron density on the positron (mea-
sured experimentally as positron annihilation rate} is
quite well understood theoretically and the results of
theoretical calculations agree satisfactorily with each oth-
er and with experiment, ' the annihilation probability of
diferent electsonic states is different depending on the
theoretical approach, but none of the approaches seems
to agree with measurements, although the Kahana for-
malism leads to results closest to experiment at least for
alkalis. '

Of the theoretical approaches to the e+-e interaction
in jellium let us concentrate on the following three: (1)
the approach of Kahana " (referred to as K in the fol-
lowing}, (2) the approach of Lowy and Jacksons 6 (LJ),
and (3) the approach of Arponen and Pajanne (AP).
Each of these approaches leads to different partial annihi-
lation rates (total momentum distributions of annihilation
photon pairs}. In our opinion the reason for that is the
following: K and LJ use as an unperturbed state for the
electron system the free electron state described by a
Slater determinant of plane waves. The e+-e interac-
tion disturbs these plane waves. However, the way of
computing the electron density distribution around the
positron is different in both approaches. In K the in-
teraction throws electrons out of the fully occupied Fer-
mi sphere. In the LJ approach the Pauli exclusion princi-
ple in the usual form is neglected at least in part of the
calculations on the basis of the argument that different
electron eigenstates are orthogonal, so the Pauli exclusion
principle is satisfied automatically at least if the positron
recoil is neglected, with no additional constraints needed
to be imposed on the solutions of the Schrodinger equa-
tion. As shown in Ref. 1, neither K nor LJ use orthogo-

nal single-electron wave functions, so both approaches
are approximate from that point of view. (Strictly speak-
ing the LJ single-electron wave functions are orthogonal
only insofar as the positron recoil is neglected. )

The AP approach is similar to K as far as it applies the
Pauli exclusion principle in the usual form: no electron
scattering is possible to states inside the Fermi sphere.
The difference is that it uses as an unperturbed state of
the electron system the random-phase-approximation
(RPA) state instead of the free-electron state, taking into
account in this way explicit electron-electron correla-
tions. It has been shown by Boronskis that this is the
reason for the difference of partial annihilation rates fol-
lowing from the two approaches. If one believes the sug-
gestion of Carbotte and Kahana that explicit electron-
electron correlations of the Daniel-Vosko type have little
effect on e -e annihilation, which occurs as if the elec-
tron distribution in momentum space had a rectangular
shape, then the agreement of K (in the form of Ref. 1)
with experiment, at least for low electron densities, is un-

derstandable. Note that taking into account the effect of
the lattice could improve the agreement between experi-
ment and the results following from a Kahanatype
theory. '

In this work those assumptions of the K formalism
against which LJ objected are avoided. Following K and
LJ the wave function of the many-electrons —one-positron
system is assumed in the form of a Slater determinant of
single-electronic states scattering on the positron. Be-
cause of positron recoil the corresponding one-electron
wave functions are not orthogonal. However, the unper-
turbed state is chosen in a different way than in previous
approaches. Namely, we start from a Jastrow-type wave
function describing electrons scattering on the positron in
a state-independent approximation. A preliminary ac-
count of the basic assumptions has been given in Ref. 11.
The origin of the approach comes from the theory of
liquids in the form proposed for fermions by Zabol-
itzky. ' This formalism has been adapted by Kallio et al.
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(KPL) to the problem of charged impurities in jelli-
um. ' ' This last approach has been made much more
effective by replacing in the Euler-Lagrange equation of
KPL the electron-electron potential by the usual form
used in the theory of metals. The annihilation rates ob-
tained in this way were in quite good agreement with ex-
periment in the whole range of metallic densities. The
formalism, however, does not allow one —for fundamen-
tal reasons —to compute the partial annihilation rates
and hence the total momentum distribution of annihila-
tion photons. This makes the approach of limited
relevance for experimental applications.

Here the results of the computations of Gondzik and
Stachowiak2 yielding obviously a good first approxima-
tion to electron-positron correlation are used as an unper-
turbed state in a perturbative calculation of the eigenstate
of the electron-liquid-one-positron system. The weak-
ness of the nonorthogonality of the wave functions corre-
sponding to different electron momenta allows one to
compute the electron density distribution in spite of the
nonorthogonality. The computation of the partial an-
nihilation rates is now possible (Secs. VI and VII). These
rates reproduce the enhancement factors obtained in Ref.
1 within the Kahana formalism but di8'er from the results
of Lowy.

One could ask about the relevance of theoretical results
obtained for jellium as concerns applications to real met-
als. It is shown in Ref. 15 that the jellium annihilation
characteristics are indeed a necessary ingredient of a
theory of positron annihilation in real metals. So it is not
appropriate to argue that it is not worthwhile to perform
careful calculations for jellium, because the crystal lattice
will alter our results anyway. Besides, jellium is also a
material suited for experimental investigations if its be-
havior is simulated on the computer.

II. BASIC ASSUMPTIONS

+ V„,[w ( r)po] —V„,[po] . (2.5)

The last term on the right-hand side of (2.5) follows from
the requirement that the W(r) potential in Refs. 13 and
14 (cf. also Gondzik and Stachowiak ) vanishes if the
screening cloud around the positron disappears. The
boundary condition

lim w(r) = 1 (2.6)

is imposed while pa= 3/4n r, is the density of the electron
liquid. V„,[p] is the exchange-correlation correction in
the local density approximation. It was chosen in the
form proposed by Hedin and Lundqvist. ' Note that the
function w (r) defined by formula (2.2) no longer has the
interpretation of the square root of the electron density.

Introducing (2.2) into (2.1) one gets, neglecting terms
of higher order of smallness, the equation

2fq2 lq2
P 2

ikr,
e '+ vz(r„r~ )0

=(P', lnw)ik e ' —u(~r, —rz~) e
1 ikr, 1 ikr,
n ' ' n

(2.7)

The terms in (2.7) belonging to the perturbative part of
the new Hamiltonian

H'= —(V, lnw )V, —(V~lnw )Vz+ v(r),

where

(2.&)

tation of square root of the electron density and satisfies
the Euler-Lagrange equation (2.3) if one defines Vo(r) ac-
cording to the formula

Vo(r) = ——+pof, dr'1 w (r') —1

r '
/r —r'f

The wave function of the jellium-one-positron system
is assumed as a Slater determinant built of functions
g& (r„rz). Here r, and rz are electron and positron
coordinates, respectively. The electron spin index o will
be omitted unless necessary. The functions g& describe
the scattering of the electron plane wave on the screened
positron and obey the equation (in Hartree atomic units)

u(r) = V(r) Vo(r)—
are considered to be small. From (2.7) one gets

w' r ik ~&~, 1—e ' — ure
w r v'0 v'0

(2.9)

(2.10)

Ic
[—

—,
' V, —

—,
' V + V(

~ r, —r
~ ) ]f„=

They are assumed as

gz(r„r~)=w(~r, —r ~)Pz(r„r ),

(2.1)

(2.2)

This last equation can be written in the form

where the function w (r) satisfies the equation (cf. Ref. 2) 1 ikr,=[iW(r}k cos8 —v(r}] —e (2.11}

[—V + Vo(r)]w(r) =0 .

We set

ikr,Pz(r„r )= —e '+uz(r„r ),0

(2.3)

(2.4)

where

1 dw
W(r) =-

N dr
(2.12)

where vk is a small perturbation and Q is the volume of
the sample. In Ref. 2 the function w (r) has the interpre-

and 8 is the angle between k and r=r, —r . vk is as-
sumed in the form
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vk(r„r~ ) = g Ak(k„k )e ' 'e
k, , k

(2.13) 1
Pk(s) =,

2
e'"'+v„(s)—v„'(s),

g 1/2 (2.23)

1 i(k+ q).r —iq-r
uk(r„r~)= 3&2 g Ak(q)e 'e (2.14}

Solving Eq. (2.11}in the Born approximation (cf. Ref. 17),
one gets

where

)k+qt( kF

A„(q)e'"+q" (2.24)

where

4)(q)k cos0+42(q)
Ak(q)=

(k+q) /2+q /2 —k /2

4)(q)=
2 f "dr W(r)[sin(qr) —qr cos(qr)],

q 0

(2.15)

(2.16a)

(cf. Ref. 1). Note that the present way of applying the
Pauli exclusion principle [formula (2.23)], because of the
smallness of Uk, is free of the deficiencies of the Kahana
approach pointed at by LJ (cf. also Ref. 1).

III. FORMULAS FOR THE ELECTRON DENSITY

4m+2(q)= — f dr ru(r)sin(qr) .
0

(2.16b)

%(r;r), . . . , rN )

8 is the angle between k and q.
The wave function of the whole system can be written

in the form

The electron density around the positron can be com-
puted from the formula

f fef'dr,
p(s, ) =N (3.1)

Iel'dr
'

where

(t'k((r) rp)

Pk (r), r~) .
Pk (rN, rp)

N

dr=+ dS;, der)=
ds,

(3.2)

w r; —r We will use the full form gk of the electron wave func-
tion remembering that

4k+i}lk —=o (3.3)

Setting

(2.17)
for any value of k and k'. The spatial part of pk is
defined of course as

s=r —re p~ (2.18) 1(tk(s) =w(s)((}k(s) . (3.4)

one can write

ikr
(I}k(r„r ) =e '(()k(s),

where

(s)— e1k s+ g A (q)e&(k+q). s1
k ~1/'P g 3/2 k

(2.19)

(2.20)

The first factor on the right-hand side of (2.19) will give
in (2.17) a factor

f gks. (S)gk (s)ds=5kk. .

can be written formally as

(3.5)

N

+0k,.(r'2),.(1"z)(s )&k, (1")) (&'))(s }
P' i=1

(3.6)

We will assume first that the gk functions are orthogo-
nal, i.e.,

exp[i(Xk, ) r ]=1 (2.21)

and can be omitted. "" The wave function of the sys-
tem can thus be written as

where P' is the total permutation characterizing a partic-
ular element of the sum in (3.6). After integration over
dr only those elements of the sum in (3.6) will remain, for
which the equalities

N

'p(s), . . . , sN ) = Q w(s; )

k)(S1) fk (SN)

k, (S)) '
$k (SN)

k, (P'2) =k, (P'1), o;(P'2) =o, (P'1 } (3.7)

are simultaneously satisfied for all i' s. The same will be
true for integration over dr) This leads in . (3.1) to the
usual formula

fkN(S) ) ' '
( kN(SN ) p(s))=2 g gk(s))fk(s)) .

/k/ (kF
(3.8)

(2.22)

Because of the smallness of the perturbative term in
(2.20) the wave function (P in (2.22) is invariant with re-
gard to switching from the set of functions (t k to the set

In case of weak nonorthogonality of the wave functions
teak, additional terms appearing in the denominator of
(3.1) will be at least quadratic with regard to the parame-
ter characterizing the nonorthogonality and will be omit-
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p(s)=2 g fk(s)t}'jk(s) —2 g A„k|1k(s)gk(s}, (3.9}

ted, since in this paper we will limit ourselves conse-
quently to terms linear with regard to small parameters.

In the numerator of (3.1) additional terms will appear
corresponding to permutations with regard to the order
defined by Eqs. (3.7). These permutations consist of ex-
changing k&(P'2) in (3.6) with one of the (X/2) —1 other
possible values of the k vector. It is easy to see that each
of the additional terms will be preceded by a minus sign.
This leads to the following expression for the electron
density:

P(s)=p(s) . (3.18)

Thus application of the Pauli exclusion principle in the
form of (2.23) and (2.24) has no influence on the comput-
ed electron density distribution provided nonorthogonal
terms are included according to Eq. (3.9).

In actual computations of p(s) it is convenient to re-
mark at the beginning that the electron density in s space
is isotropic with regard to the origin of the coordinate
system. So p(s) is invariant with regard to averaging
over all directions of s. Such a preliminary operation
greatly simplifies subsequent calculations. One gets

where

k occ krak'
w (s)kF

5p'(s)=
3 f ds's'[w (s') —1][f(k~(s —s'))

4~ s

Ak'k f ds 1 k(s )1 k'(s } (3.10)
f ( k~—(s +s') )],

(3.19)
While performing actual computations using Eq. (3.9) we
will consider as small the factor w (s)—1, because it is
limited in space and the term vk arising from perturba-
tion. Neglecting consequently terms of higher order of
smallness we can write p(s) in the form

where

1 sin(2x ) 1 —cos(2x )

x x 2x
(3.20)

p(s)=w (s)po+5p (s) —5p'(s) —5p (s),
where

5p'(s)=2 g Ak.kt/ik(s)pk(s),
krak'

(3.11)

(3.12a)

5p (s)—5p (s)=
~ f dq[4, (q)K, (q)

2m s

+e~(q)K~(q) ]sin(qs ),
(3.21)

5p (s)=2 g Akkgk(s)pk(s),
k&k'

(3.12b) kF
~

q
2 kF

for & 2q

F

5p'(s) =, , g [u„(s)e '"'+
uk (s)e'"'],2w (s)

k occ

~ k'k ~ k'k + ~ k'k
1 2

(3.12c)

(3.13}

Kz(q)= '
2kF q qfor (2,

2 F F

(3.22)

ds'[w (s') —I]e'~"1
k'k (3.14a)

A '„„=,, ds'[u„(s')e '"' +u „' (s')e'" ' ] . (3.14b)
1

p(s)=w (s)po+5p (s)—5P'(s) —5p (s), (3.15)

If the form (2.23) of the wave function is used in (3.9) and
(3.10), p(s) [or rather p(s)] can be written in the form

K, (q)= '—k3F q
~

q q 1 q
2 kF kF kF 12 kF

'3

for &2,q

F

kF3 ——,for q&2
2 kF kF 3

'
kF

(3.23)

where 5p', 5p, and 5p are given by formulas (3.12)
where, however, the Pauli exclusion principle in the form
of (2.23) and (2.24) has been applied to the wave functions

k'

One obtains

P(x)=(1—x )ln
1+ 1/x +2x
1 —1/x

(3.24a)

hp '(s) =hp'(s),

5p (s)=0,
5p (s)=5p (s) —5p'(s) .

One can show that

5p'(s)=5p (s) .

So we have

(3.16)

(3.17)

2 Xg(x}=ln(1+x)—x ln 2+ —+x+
X 2

(3.24b)

Note that the total electron density around the posi-
tron is expressed partly in terms of the unknown function
42(q) defined by Eq. (2.16). This function in real space
corresponds to the unknown correction u (s) to the
electron-positron potential. The computation of u (s) will

be the subject of the following section.
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IV. COMPUTATION OF THE CORRECTED
ELECTRON-POSITRON POTENTIAL

Let us write the Poisson-like equation (cf. Refs. 1 and
19)

V I V(s) —V„,[p(s}])=4m I5(s)—[p(s}—po]I . (4.1)

V„,(s) is the exchange-correlation correction which in

Refs. 1 and 2 was taken in the local-density approxima-
tion

F(s)= f 4z(q)Kz(q)sin(qs)dq

Kz(q)—4' f ds' s'u(s') f dq sin(qs)sin(qs')
0 0 q

= —4a ds' E s,s' s'U s' (4.7)

where

Kz(kFx )
K(s,s'}=f dx sin(skFx )sin(s'kFx )

0 X

V„,(s) = V„,[p(s}]

and chosen in the form proposed by Hedin and
Lundqvist. '

The "unperturbed" potential Vo(s) from Ref. 2 satisfies
the equation

Kz(kFx )
=-,' f "dx [cos( is —s'ikFx )

0 X

—cos[(s +s')kzx )] I

kF
[M( is s'ikF —

)
—M((s +s')kF )] . (4.&)

V„,[p(s)]= V„,(s) . (4.3)

V' [ Vo(s) —V„,(s)]=4m.
I 5(s)—[w (s) —1]po) . (4.2)

Let us assume that the electron density distribution in
our approach differs little from the one computed in Ref.
2, so the correlation correction does not depend on the
small change of the electron density following from per-
turbing the hypernetted-chain (HNC) state of Ref. 2. In
other words we assume

M(a) =M, (a)+Mz(a),

where

(4.9)

2
M&(a)= dx m, (x)cos(ax),

0

Mz(a)= f dx mz(x)cos(ax),

(4.10a)

(4.10b)

So the kernel is expressed in terms of a universal function

(Calculations without this assumption are performed in
the Appendix). This leads for u (s) to the equation

1 2 x
m, (x) = —ln(1+x) —x ln 2+ —+1+—,

X X 2
' (4.11a)

V' u(s)= —4n[p(s) —w (s)po] (4 4)
1 1+1/x

mz(x) = ——x ln +2 .
x 1 —1/x

(4.11b)

obtained from (4.1) and (4.2). Introducing in (4.4) p(s) in
the form (3.11) and taking account of (3.19) and (3.21),
one obtains the equation

m3sV' v(s)+2w (s)f dq 4z(q)Kz(q)sin(qs)=L(s),
0

(4.5)

The function M (a) is shown in Fig. 1. Its main feature is
a sharp peak at a =0 which extends up to about a =2.

Now Eq. (4.5) takes the form

n'sV'v(s) 2nkFw'(s—)f ds'R(s, s')s'v(s')=L(s) .
0

(4.12)

where

~kF4
L(s)=2w (s) f ds's'[w (s') —1]

2 0

-3--0
x

X [f(kF(s —s')) —f(kF(s +s'))]

q+& q&, qsinqs (4.6)

L(s) can be easily computed numerically using the solu-
tion of Eq. (2.3) which was obtained in Ref. 2.

Equation (4.5) is an integrodifferential equation for
u(s). However, the unknown function appears both in
coordinate space and in Fourier representation. It could
seem that switching to Fourier representation would sim-
plify the solution, reducing (4.5) to a Fredholm integral
equation of the first kind. It is not so, however, probably
because of the rapid oscillations of the kernel. In this sit-
uation we have to proceed the other way. %'e get, mak-
ing use of (2.16},

oI
0

FIG. 1. The M{a) function.
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Switching to the function

Z(s) =su(s) (4.13)

and capitalizing on the spherical symmetry of the prob-
lem, we get finally the equation

n Z"(s)—2nkFw (s}f ds'%'(s, s')Z(s'} =L(s), (4.14)
0

where

o (016)'

007'

(0.12).

0.05

(GD6)

R(s,s') =M( is —s'ikF )
—M((s +s')kF ) . (4.15)

Since Eq. (4.14) contains a derivative, the problem of
boundary conditions arises.

At s =0, Eq. (4.14) takes the form 2 3 4 5 6 7 S 9 10 11 g (O.u )

Z"(s)=As, (4.16)

R(0,s') =0

following from (4.15). So for small s we have

(4.17)

where A, is a constant. This is due in part to the relation FIG. 2. The U(s) function as obtained from Eq. (4.14)
(dashed-dotted line for r, =2, dashed line for r, =4, solid line for
r, =6). Note that the vertical scale is different for different
values of r, . The scale for r, =2 is indicated in parentheses.

Z(s)= —,'As +C,s+Cz . (4.18}

m Z "(s) 2n kF ( M—)Z(s) =0,
where

(M &
= f M(is —s'ik )ds' .

The solution is

(4.19)

(4.20)

Z(s)= Ae '+Be

The constant of integration Cz vanishes, since owing to
(4.13) it would correspond to a point charge at s =0
different from the charge of the positron. And this is the
first boundary condition.

For large s the function L(s) on the right-hand side
vanishes. The main part in the integral in (4.14) comes
from the first term in (4.15). If Z(s) is a slowly varying
function in this interval, (4.14) takes the form

+2mk w (0)f d ' ' Z(s')

(4.23)

The function Z(s) obtained in this way is quite stable
with regard to different choices of the set of points
s~, . . . , s&, unlike other approaches we tried. The func-
tion u (s) following from these calculations is shown in
Fig. 2 for different electron densities. It is visible that the
approach used in this work is a low density approxima-
tion as is usual in the theory of liquids. This conclusion
follows from the fact that for r, =6 the correction to the
electron-positron potential introduced by the perturba-
tion is smaller than for r, =2 and r, =4.

If one resigns from the assumption (4.3) (cf. the Appen-
dix) one obtains the functions u (s) shown in Fig. 3. Com-
parison between Figs. 2 and 3 shows that the differences

where

a=kF&2m(M) .

(4.21)

If one assumes that Z(s) vanishes for s &s~, this corre-
sponds to choosing A =0 in (4.21). In this way a con-
sistent boundary condition is imposed at infinity.

Equation (4.14) is solved using algebra. A set of points
s„.. . , sz is chosen (s, =0) and the integral (as well as
the derivative) in (4.14) expressed in terms of the N —1

unknown quantities Z(sz), . . . , Z(sz). In this way one
obtained X —2 equations for s =s3, s4, . . . , sz. Addi-
tional equations are obtained from (4.18):

o f016)'

~I

007

t012)

aos

gee)-

Z(sz )= —,'A,s&+ C,sz,

Z(s3)= —,'As3+C, s3 .

(4.22a}

(4.22b)
T T

0 1 2 g 4 S 6 7 8 9 10 11 12 s(ou '

This makes N equations for %+1 unknown quantities.
Finally we complete the set with the equation

FIG. 3. The same as in Fig. 2, but the curves have been ob-
tained from solving Eq. (A13}.
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between the two cases are negligible. The values of U(s)
are small, thus confirming that the approach used in Ref.
2 gives a good first approximation to the solution of the
problem.

V. SCREENING CLOUD DISTRIBUTION
AND POSITRON LIFETIME

The density correction 5p(s) [cf. Eqs. (Al) and (A2)]
can be written with the help of (3.19), (3.21), and (4.6) in
the form

1 00

5p(s) = —
&

L (s)+2mkFw (s)J ds'A'(s, s')
4m4s . 0

XZ(s') . (5.l)

So the electron density p(s) can be computed from the
solutions of Eqs. (4.14) or (A13).

First we compute the electron density on the positron

p(0) =w (0)po+5p(0) (5.2)

which yields the positron annihilation rate A, (r, )—a
measurable quantity. It is known that all the existing
theories lead at high metallic electron densities to annihi-
lation rates slightly higher than the ones observed experi-
mentally (cf. Refs. 1, 2, and 10). That is, the theoretical
annihilation rate obtained by different authors for r, =2

I
I
i
i
I
I
'I

i
i
I

7

5 ~

I (o.u. )

FIG. 4. Annihilation rates k for dift'erent values of r, . The
upper curve was obtained from Ref. 2, the middle one from Ref.
1, and the lower curve from the present work. The straight
dashed line corresponds to spin-averaged positronium. The
solid circles show the experimental results as collected in Ref.
22.

oscillates between 6.8X10 s ' (Ref. 7) and 7.6X10 s

(Ref. 20), while the experimental value measured for Al

(r, =2.07) by Schaefer and Banhart ' amounts to
6.13X10 s

In this work the annihilation rate at r, =2 has been
found equal to 6.48X10 s ' (if one uses Eq. (A13), Eq.
(4.14) yields 6.58 X 10 s '). In general our annihilation
rates, as can be seen from Fig. 4 are appreciably lower
than the ones following from HNC (Ref. 2) and the ones
obtained on the ground of the Kahana approach. ' This
follows probably from the fact that the nonorthogonality
of the wave functions is taken into account [Eq. (3.9)], so
their contribution to the total density is smaller than
would follow from the usual formula (3.8). The theoreti-
cal results for the annihilation rates obtained in this pa-
per (as well as those calculated in Refs. 1 and 2) are com-
pared to the experimental values for real metals listed by
Seeger et al. Only simple metals are included since
only those could be hoped to exhibit a jelliumlike behav-
ior. It is visible that the lower curve in Fig. 4 shows the
best agreement with experiment. It should be kept in
mind that while determining r, for real metals only con-
duction electrons were taken into account. The electrons
from inner levels will contribute to increase the annihila-
tion rates. Splitting the contribution into core and con-
duction electrons is, however, difficult and impossible
without taking account of the electronic structure. In
principle, adding inner electrons will increase the annihi-
lation rate, so the values for jellium must lie below the ex-
perimental points. In Fig. 4 this is particularly visible for
metals of the second group having completely filled shal-
low d shells contributing appreciably to the annihilation
rate (Zn, Cd, Hg). The experimental rates for these metals
lie high above the simplistic theoretical predictions. For
the other metals the agreement between the results of this
work and experiment is very good.

The positron annihilation rates for jellium have been
the subject of many calculations (cf. Ref. 23). Most of
them yield too high values of the annihilation rate. Low
values can be obtained easily as demonstrated in Refs. 1

and 2 if one neglects electron-electron correlations (e.g. ,
Kahana ) or take them into account incorrectly (Kallio
et al. ' ' ). This work seems to be the first which leads to
correct values of the annihilation rate (especially for
r, (4) while treating correctly electron-electron correla-
tions.

Note that simple approaches such as HNC or cusp
condition and rule of charge conservation ' ' are likely
to lead to a roughly correct estimation of the annihilation
rate, but yield screening charge distributions markedly
different from the ones obtained using more elaborate
theories.

The screening cloud distribution is shown in Fig. 5 for
different electron densities and compared as well with the
original results of Gondzik and Stachowiak as with the
distributions of Rubaszek and Stachowiak. ' The curves
obtained in this work reproduce quite we11 the general be-
havior of the curves of Ref. 1. The accumulation of
screening charge in the immediate neighborhood of the
positron is, however, a little smaller, corresponding to a
somewhat lower annihilation rate.
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VI. DERIVATION OF THE FORMULA
FOR THE PARTIAL ANNIHILATION RATE

EI,(p)=, /, «+I', (r2, . . . , r/)g1/2
—ip r&Xe '%(r, ;r, , . . . , r~), (6.1)

The amplitude of annihilation of an electron of
momentum k with creation of a pair of photons with to-
tal momentum p is given as the matrix element connect-
ing the initial state and the final state in the following
way:

where

N

d~=g dr, , (6.2)

0'(rz, r&, . . . , rz ) is the wave function of N electrons and
one positron in their ground state, VI,(rz, . . . , r~) is the
wave function of X —1 electrons filling the Fermi sphere
with a hole in the occupation number for momentum k.
Ip is a Slater determinant consisting of gz functions (2.2)
while 4k is also a Slater determinant but constructed out
of plane waves.

Formally we can write Ez(p) as a sum:

EI,(p)=A fdr+( —1)

—ipr 1
—ik (P'2) r

1/2 0 k&(P 1)(T&(P 1) 1 1 1/2 (r;(P'2)PI, (p t)~ (p i)(r;, r&) . (6.3)
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We set of course (:(k;,k; )= (+ f dr r [er(r) —1] (6.9)

u]0 = ]J(0) e CT+CT+ =CT (T = 1, CT+CT (6 4} Setting

P' is the total permutation characterizing a particular
element of the sum in (6.3). k, (P'1), for example, is the
value of the momentum associated with the r,- coordi-
nates in the P], factor in the product occurring in (6.3).

Let us introduce the function C(k, ,kj ):

N

I ]v= g 1+
N

Por
N

y=4mf dr r [u](r) —1], N=poQ

we have

0p r

(6.10)

(6.1 1)

—i k.r
l

C(k, , k, )=fdr, , P], (r, , r, )

i(k —k, ) r1 i(k —k, ) r
=5e e +—e ' ' ' f dr[er(r) —1]e

From (2.4) and (2.14) we have

1 1 ik r1
P],(r„r])=, 1+—g A], (q) e

Introducing (6.11) and (6.12) into (6.8) we get

(6.12)

+A], (k, —k)} . (6.5)
J

They impose the condition

k](P'1)=k .

We get from (6.3)

(6.7)

N e
—ip r

E„(p)=A(N —1)!g C(k;, k;)fdr, , u]0((!}]1(r],r]) .
I =2 g1/2

We will consider as small the quantity w(r) —1 because it
is limited in space and the quantity Uk which is a pertur-
bation, and neglect consequently terms of second order
and higher in these quantities. So the dominant term in

E],(p), which will be called E],(p), comes from the per-
mutations fulfilling the relations

k, (P'1)=k, (P'2), 0; (P'1 ) =o;(P'2)

for every i ) 1 . (6.6)

por

E],(p)= A(N —1)! wo 1+—g Ap(q) 5]p.
1

Pox q

k;(P]1)=kj(P[]1), kj(P, 1)=k;(P[]1), (6.14)

give in (6.3}a contribution quadratic in the small parame-
ter. So a substantial contribution will arise only from
permutations P2 differing from Po uniquely through the
relations

k, (P21)=k;(P[]1), k;(P21) =k](P[]1), (6.15)

(6.13)

Let us find now other permutations giving a substantial
contribution to Ek(p).

From (6.5) it is visible that if k, Ak, C(k;, k ) is small.
Let us call Po the permutations satisfying the relations
(6.6). The perrnutations P, , which are equivalent to Po
except that for some particular values of i and j & 1 we
have

From (6.5) we have

(6.8)
where i lies in the interval from 2 to N/2.

These permutations give in E],(p) the contribution

E], (p) = —A (N —1)!
1

pair

Po'Y

N

' fdr,—e 'wp 1+ QAg(q) e ' 'C(k;, k, ).
k,.Wk q

(6.16)

Neglecting terms of higher order of smallness we get with the help of (6.5)

bE], (p)= —A(N —1)!
1

pore
r

u]0 f dr []L)(r)—1]e ' + A])(k( —p) 5])„
k Wp

(6.17)

So in this approximation (unlike in AP) the total momentum of annihilation photons is equal to the momentum of the
annihilating electron. Owing to (6.3), (6.13), and (6.17) we can write the amplitude of annihilation with emission of a
pair of photons with momentum p in the form

E(p)=C[E (p) —&E(p)],
where

E (p) =1+—g A (q),1

n
q

(6.18)

(6.19)
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bE(p)= —g fdr[w(r) —1]e'& ""+— g A (q) .0 ~~ 0
~,+t k,

(6.20)

If we assume w(r)=1 and the e+-e interaction is weak, (6.18) becomes identical to the corresponding formula of
Kahana. Switching from summation to integration we get from (6.19) and (6.20)

E'(p)= —g fdr[w(r) —1]e'0 ~

00 sin(kF r )
—kF r cos(kF r )

dr[w (r) —1]
Kp 0 r

b2f(p) =— g A p(q)
1

~p+qI& kr

sin(pr ), (6.21)

(kF+Jp (p +q) kF q2 kF+q p
dq '4, (q) + ln

4~' k~ '
2p p 2q(p+q)

kF+q p——42(q) lnp, 2p p+q

+ q 4, qq 2 — ln
k„+p

+C,(q)&ln q+P
p q p

(6.22)

E(p) is now equal:

E(p) =1+62'(p) E'(p) —. (6.23)

E( )
e(p) =

E (0)
(6.24)

VII. RESULTS FOR PARTIAL ANNIHILATION
RATES AND DISCUSSION

The function e(p) obtained from formula (6.24) de-
pends of course on the electron density. We can write it

The relative enhancement factor is obtained from the for-
mula

as e( r„p ) and present it in the form

e(r„p)=1+A(r, )y
F

(7.1)

The values of A(r, ) and y(p/kF) are given in Table I
and compared to the analogical results obtained in Ref. 1

(cf. also Rubaszek ) within the Kahana formalism. The
curves e(r„p) obtained in the present work are a little
more steep, although the agreement between them and
that of Refs. 1 and 24 is generally very good. The curves
y(p /kF ) depend very little on the electron density, as an-
ticipated by formula (7.1), however there is a slight
difference between them and those of the above-

TABLE I. Annihilation characteristics for jellium: comparison of the results of Rubaszek and Sta-
chowiak (Refs. 1 and 24) and of the present work. The values of y(p/kF) are given on top. The index
R refers to Refs. 1 and 24 and the index S refers to the present work [as follows from solving Eq. (A13)].
A,(r, ) is the annihilation rate divided by 10 s

2R 4R 2. 4s 6s

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95
0.99
1.00
A(r, )

p(0)
eo(r, )

A.(r, )

0.0036
0.0179
0.0430
0.0789
0.1272
0.1918
0.2796
0.3996
0.5842
0.7258
0.9140
1.00
0.558
0.1392
3.791
6.99

0.0032
0.0159
0.0383
0.0702
0.1164
0.1786
0.2648
0.3876
0.5805
0.7305
0.9218
1.00
0.627
0.0575

12.31
2.89

0.0032
0.0144
0.0335
0.0638
0.1069
0.1675
0.2536
0.3812
0.5821
0.7321
0.9266
1.00
0.627
0.0435

31.55
2.19

0.0035
0.0203
0.0488
0.0901
0.1462
0.2200
0.3164
0.4454
0.6312
0.7665
0.9297
1.00
0.6900
0.1290
3.2750
6.48

0.0022
0.0181
0.0453
0.0854
0.1403
0.2136
0.3106
0.4419
0.6320
0.7697
0.9323
1.00
0.7725
0.0530

10.4694
2.66

0.0017
0.0171
0.0435
0.0825
0.1364
0.2088
0.3055
0.4378
0.6303
0.7695
0.9326
1.00
0.7198
0.0425

28.8931
2.14
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mentioned papers.
Referring to what was mentioned already in the Intro-

duction, the situation can be summarized as follows.
We dispose of four independent calculations of the par-

tial annihilation rates for jellium (cf. also Maldague ).
Three of them neglect explicit three-particle correlations
(E3PC): Refs. 1, 6, and the present work. One approach
takes them into account (AP).

Here we define explicit three-particle correlations in
the following way. Let us write the exact wave function
of the system as %,„(r~;r„.. . , r~ ) different from the
wave function jp(r~;r„. . . , r~) of Eq. (2.17), this last im-

posing some constraints on the wave function. Changing
the values of r; for i &1 we get the fluctuations in

%,„(r,; r, , . . . , r~ ) which do not occur in qI( r, ; r, , . . . ,

r~). These fluctuations will of course affect the annihila-
tion characteristics. In particular, since the wave func-
tion cannot be constructed anymore out of two-particle
functions, all the calculations of the previous section be-
come impossible.

The results of K (Ref. 1) and LJ (Ref. 6) for e(r„p) are
different. This could be attributed to some of the
deficiencies of the Kahana approach, namely to the
unjustified form of the Pauli exclusion principle and to
treating nonorthogonal functions as orthogonal. It
should be pointed out that the present approach is
diferent from the Kahana approach as formulated by us
in Ref. 1. Indeed, it avoids the assumptions which have
been criticized by Lowy and Jackson. And since it takes
care of the nonorthogonality of the wave functions, it is
still further from Kahana than the approach of these last
authors. In spite of that it leads to results for e(r„p)
which are quite close to those obtained within K, being at
that time quite distant from those proposed by Lowy. In
this situation the values of e(r„p) given in Ref. 6 should
be treated as unexpected. It should be concluded that
partial annihilation rates obtained while neglecting E3PC
are well under control, and this is the main result of this
work.

As concerns the work of Arponen and Pajanne, it
comes out quite unexpectedly that their partial annihila-
tion rates can be obtained from those of Ref. 1 by replac-
ing the rectangular momentum distribution of the elec-
trons by the RPA distribution. So from the point of view
of E3PC the work of AP in spite of its sophistication and
complexity is quite trivial: it just corresponds to replac-
ing the rectangular momentum distribution of free elec-
trons by the RPA distribution of pure jelliurn, i.e., expli-
cit three-particle correlations are approximated by the
appropriate two-particle electron-electron correlations.

As concerns experiment, if one interprets the results as
corresponding to jellium of the appropriate electron den-
sity, one comes to the conclusion that for low electron
densities (r, 4), e(r„p) is well described by theories
neglecting E3PC (cf. Refs. 1, 3, and 24) while AP gives
good predictions for high electron densities (r, =2). Fig-
ure 6 taken from Ref. 1 visualizes the situation. Usually
much importance is attached to alkalis because they are
believed to be the most similar to jellium among real met-
als. In this case, however, it seems that their agreement
with theories neglecting E3PC is due to the low-electron-
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FIG. 6. Relative enhancement factors from Ref. 1 on the
Fermi surface (solid line) compared with their biparabolic
analogue (b+c)/a. The dashed curve denoted (AP) corre-
sponds to the results of Ref. 7 for (b +c)/a and the one denoted
{1.) to the values extracted from Ref. 6. e{1)denotes here the
relative enhancement factor on the Fermi surface. For details
and references see Refs. 1 and 35.

density characteristic for them, especially if one observes
that the agreement is better for potassium and rubidium
and worse for lithium, sodium being intermediary. Such
a situation agrees with the point of view that theories
neglecting E3PC are a low density approximation. This
can be understood if one considers the wave function of
the system in the form (2.17): two-particle systems con-
sisting of one electron and the positron are separated out
of the whole sample and their wave function obeys Eq.
(2.1). Such an approximation becomes convincing if the
electrons are far from each other, i.e., their density is
small. The approach of AP on the other side is perturba-
tive, so it holds rather for high electron densities. In this
way we come to the preliminary conclusion that we still
do not dispose of a theory which would hold for inter-
mediate densities. Some additional light on this problem
is shed in the paper of Carbotte and Kahana, where the
authors found reasons why the many-body tail in the
RPA electron momentum distribution (states with
momentum higher than the Fermi momentum ) should
be deenhanced. This effect is visibly not accounted for in
the AP approach, while in the remaining theories the
electron momentum distribution is arbitrarily assumed to
be rectangular.

It is of course quite hypothetical to identify real metals
with jellium of the appropriate electron density. As con-
cerns this problem, we rather share the point of view
represented by Daniuk et al. ' who proposed to use a
local-density approximation based on the Thomas-Fermi
treatment of the electron gas in a real metal: the annihi-
lation characteristics are defined locally and correspond
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to the properties of jellium having a density equal to the
local density of the electrons in the absence of the posi-
tron. So the properties of the e -e interaction in jelli-
um are a necessary ingredient of the theory of positron
annihilation in real metals. %e believe, and this is
confirmed by experiment' ' (cf. also Kontrym-Sznajd
and Sob ), that the periodic character of the e+-e in-
teraction is the leading effect of the lattice on the annihi-
lation characteristics (the effect of the Bloch character of
the electrons ' also deserves of course careful studies).
As the result of this periodicity, we get an additional de-
crease of the contribution of inner electrons to the annihi-
lation. This follows from the formula proposed by
Daniuk et al. ' for the amplitude of annihilation of an
electron in state (k, n) with emission of quanta with total
momentum p:

A'„„(p)=I IE,„}[r,(r),X„„(r)]j''yk„(r)lf'J+(r)e ' 'dr .

(7.2)

care of the relative contribution of conduction electrons
on one side and core and 1 electrons on the other.

Formula (7.2) was first applied to zinc' (r, =2.30).
This first application showed that the values of e,„& ob-
tained within the Kahana formalism are more momen-
tum dependent than the experimental values. This was
confirmed by later works. Also, the theoretical annihi-
lation rate was too high.

In this situation one is tempted to propose a phenome-

CL

gsO

C
w'~

Here, Xz„(r) is the local "momentum" of the electron at
r:

3 0

Xq„(r)= I2[E„„—V(r)]] '~

while the local "Fermi momentum" is equal:

pF(r ) = I 2[EF V(r)] [
'~—

(7.3}

(7.4)

2-

V(r} is the lattice potential, Ez is the Fermi energy, Ez„
is the energy of the state (k, n), and r, (r) is the local
value of r, :

r, (r) = [—4m.p, (r)] (7.5) 0.5 1

p/kF
where p, (r) is the local density of the electrons in the ab-
sence of the positron. Tunneling is neglected, i.e., cir-
cumstances when the kinetic energy is negative are treat-
ed as corresponding to zero kinetic energy. e,„s(r„p) is
the true partial annihilation rate determined by the
enhancement. Note that unlike in the case of jellium the
relative annihilation rates given by Eqs. (6.24) and (7.1)
are not sufficient to compute the amplitude of annihila-
tion according to formula (7.2). e,„„is expressed by the
relative annihilation rate e through the formula

CL

0 50-
LQ

40-

~. dr. p)=so(r. )e(r. p) (7.6) P

30-
where eo(r, ) is a normalization factor which can be com-
puted from the electron density on the positron given by
formula (5.2) if one keeps in mind that the e+-e attrac-
tion increases the density of the p-momentum state on the
positron by a factor e,„„(r„p).The values of ep are given
in Table I. The behavior of e,„& is shown in Fig. 7 for
r, =2 and r, =6. It is obvious that the enhancement de-
creases when the electron density increases, so the contri-
bution to the annihilation of electrons localized in regions
of high electron density is smaller than would follow
from the independent-particle model. This is the physical
reason why application of formula (7.2) improves the
agreement between theory and experiment, or in other
words allows one to reproduce the experimental data
without additional fitting parameters, which would take

20-
Ib)

10-

0.5

FIG. 7. e,„&(r„p}for (a) r, =2 and (b) r, =6. The upper
curves show the results of Refs. 1 and 24, the lower curves those
of the present work.
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nological formula for A(r, ) [cf. Eq. (7.1)]:

A (r, ) =a+br, , (7.7)

which would hold for metallic densities with a =0 and
b =0.13. Note, however, that magnesium (r, =2.65)
agrees surprisingly well with theories neglecting E3PC,
while zinc (r, =2.30) does not. So it is not definitely
clear whether the residual disagreement between theory
and experiment is due to neglecting E3PC or to an
oversimplified treatment of the inAuence of the lattice on
the e +-e interaction.

In order to check this problem, it would be useful to
perform a careful study of the experimental partial an-
nihilation rates in those among the simple metals which
have not yet been investigated in sufficient detail. The
disagreement between theory and experiment in this re-
gard is the most striking in zinc and cadmium, for which
the positron lifetime does not agree with jellium predic-
tions (unlike for magnesium). So the next step in eluci-
dating this problem should be 2D-ACAR studies (refer-
ring to Fig. 4) of Be, Al, Ga, Pb, In, and Tl.

Finally let us point out that according to the formalism
presented in this paper, solving the problem of a positron
in jellium for a particular electron density consists simply
of solving the nonlinear integrodifferential equation (2.3)
for w(r) and then the linear integrodifferential equation
(4.14) [or (A13}]for Z(s). So the computations need ap-
proximately one hundred times less computer time than
those of Ref. 1.
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where

dV„,
V„,[p]= V„,[pG]+ 5p .

p P=PG

According to Hedin and Lundqvist, '

' 1/3

V„,[p]= —3a p
3

(A3)

(A4)

where

2a= —1+Ar ln
3 S

A =0.036831, B=21 . (A5)

Replacing (4.3) by (A3) [of course we have V„,[pG]= V„,(s)] we get instead of (4.4) the equation

V' [u (s) —u„,(s)]= —4m [p(s) —w (s)po], (A6)

where

dV„,
u„,(s) = "'

5p(s) =f„,(s)5p(s) .
dp pG(s)

We have
1/3

(A7)

pG(s) w ($)po

5p(s)=5p (s) —5p'(s) —5p (s) .

Owing to the smallness of 5p(s) we can write V„,(s) [Eq.
(4.1)] as
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APPENDIX

2 2Kf (s)= ——
xc 3 3

where

r, (s)= 3
4n.

1/3

1 + AB
3( )

r, (s) r, (s)+B

[W2($) ]
—I/3

(A8)

(A9)

Let us write the density p(s) (3.11) in the form

p(s) =pG(s)+5p(s ), (Al)
I

Using formulas (3.19), (3.21), (4.6), and (A2) we can
write

d2
n. $V v„,(s)= — f„,( )L$( ) s+2m f„,(s)w (s)kF f ds'A'(s, s'}s'v(s')

4~ ds' . "'
0

From (A6) and (A10) we get the equation

(A 10)

where

Z "(s) .2mkFW —(s)f ds'%'($, $')Z(s')+ —,'kp~ f„,(s)w (s)f ds'R(s, s')Z(s') =A(s),
S

(A 1 1)

1 d
A(s) =L(s) [f„,(s)L(—s)]

4~ d 2 xc (A12)

and the notation (4.13) is adopted.
It is convenient to separate out in (Al 1) the term following from difFerentiating the discontinuity of the derivative of

A'(s, s') at s =s'. In this way one gets finally the equation

1 dn'Z"(s)+kpM'(0) f„,(s)w'(s)Z(s) 2nkF' f ds' w—( )%$'(s,s')—,[f„,(s)w'(s)%'(s, s')] Z(s')=A(s), (A13)
0 g
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where the bar over the derivative means that it does not include the discontinuity at s =s'.
While solving Eq. (A13) it is important to note that the asymptotic form of Z(s) for s 0 is equal:

Z(s)= —,'A, zs +C, s

thus differing from the form (4.22) which holds when the assumption (4.3) is accepted.

(A14)
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