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Generalized embedded-atom format for semiconductors
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A ne~ type of totalwnergy functional for semiconductors is proposed, using a form based on an

approximate quantum-mechanical analysis. T~o neer types of terms are included: pair terms giv-

ing a matrix description of an atom's local environment, and cluster terms describing the ring to-

pology. The scheme reproduces both the covalent and metallic behavior of semiconductor materi-

als in the appropriate limits. A parametrized form of the scheme is applied to Si.
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Atomistic simulations of the materials properties of
semiconductors are usually based on interatomic poten-
tials which include angular forces. Several new types of
interatomic potentials have been developed recently, par-
ticularly for Si. '2 However, the angular dependence of
the forces has not been based on systematic quantum-
mechanical analyses, but rather on physically motivated
guesses. This has led to enormous variations in the depth
and shape of the potentials, and to poor results for some
physical properties. 3 In this Rapid Communication, we
present a format for total energies in semiconductors in
which the angular dependence of the forces is derived
quantum mechanically. This scheme is sufficiently gen-
eral to treat both covalent bonding at low coordination
numbers, and metallic bonding at high coordination num-
bers. It generalizes the "embedded-atom" format for met-
als 5 by including two new types of energy terms: (i) an
energy associated with the nonspherical components of the
local atomic environment, and (ii) cluster terms which in-
clude information about the ring topology. As in some
other recent methods, the total energy is not precisely
given as a sum of interatomic potentials. We believe that
ours is the most complete quantum-mechanical treatment
suitable for atomistic simulations.

The derivation of our energy functional utilizes a treat-
ment of the electronic band energy
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based on low-order moments of the electronic density of
states p(E) in a oneeiectron tight-binding model with in-
teratomic couplings htj, where i,j denote atomic posi-
tions, a,P are sp orbital indices, and p;(E) is the site-
projected density of states (DQS). The h~'~ are assumed
to have a two-center form with angular dependences given
by the Slater-Koster relations. ' The central quantity of
the local environment correction is the second-moment
matrix" P2(i), given, for a particular site i, as a sum of
pair terms:

"Embedded-atom" type schemes for metals have been de-
rived from the scalar second moment p2(i) TrP2(i).
Significantly more information is contained in P2(i). For
example, p.2' '~0 only if the environment of atom i lacks
x-inversion symmetry, as at a (100) surface. The vector

(p2' ',p2' ",p2' *) is analogous to the "dangling-
bond vector" defined in Ref. 8.

Qur method for obtaining the pair contribution E,1 (i)
to E,~(i) from Pi(i) is a matrix generalization of the sca-
lar second-moment treatments. The scalar treatments
obtain E,~(i) cs: —[P2(i)]'1. In our treatment this is re-
placed '2 by

E~Y' QE.p'(i) -—QTr[p2(i)] ' ' (3)

for materials with half-filled valence-band complexes.
Justification for this functional form is obtained from an

approximate electronic density of states generated by the
recursion method. In the matrix version of this method, '

the one-electron Green's-function matrix for the site i
takes the form G;(E) [E-1"i(it)/E] ', where we have

truncated the continued fraction at the first level. The
corresponding density of states has b-function peaks at
~e„, where the e„are the eigenvalues of [P2(i)]'
Equation (3) then follows from Eq. (I), if the valence
band is half-filled.

The form (3) for E,~P can result in either covalent or
metallic behavior in the appropriate limits:

(i) Covalent limit. In the diamond structure, if only
nearest-neighbor sp3 hybrids interact, j2(i) has four de-
generate eigenvalues equal to the bulk bond strength.
When bonds are broken by, for example, creating a vacan-

cy, each broken bond results in a zero eigenvalue on a
neighboring atom. Thus the bond strengths are additive
in this limit.

(ii) Metallic limit If the numbe. r of neighbors is large,
then the fractional change in the eigenvalues of P2(i) re-
sulting from breaking a single bond is small. One can
show that ,E(12i) is roughly proportional to the square
root of the coordination number, in agreement with the
scalar second moment treatments for metals.

We have found that the fit to known values of defect en-
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ergies in Si is improved by including an additional local
environment term in the total energy. This term contains
the self-energy of the electrostatic dipole that is created
when an atom is placed in an environment lacking inver-
sion symmetry. This dipole is roughly proportional to the
asymmetry of the potential resulting from the local envi-
ronment. This asymmetry, in turn, is measured by the s-p
part of p2(i) Fo.r example, if an atom in the +x direction
is displaced a small distance toward atom i and one in the
—x direction moves the same distance away from atom i,
the vector p f'p points in the x direction and is linear in the
displacement. Thus, since the dipole self-energy is pro-
portional to the square of the dipole strength, we take this
energy to have the form Ed;p BJ; ( pf'p(i) ), where 8 is
an adjustable constant.

The cluster contributions E,i (i) to E,i(i) are based on
the fourth moment p4(i) of p;(E) Met.hods based on
p4(i) have previously been used for structural and defect
properties of transition metals. ' ' Our method differs
from these through the use of the matrix P2(i); in addi-
tion, we simplify the dependence of E,i

i on p4(i). We
have not included terms involving pi(i), because to first
order these do not affect the bonding energies in systems,
such as diamond structure semiconductors, which have
half-filled s-p complexes. ' Furthermore, the second-
order contributions obtained by calculations' with model
state densities are small. One has, rigorously, '

of an interatomic potential series. However, since the
various quantities entering the energy functional are sums

of cluster terms, it is possible to define effective potentia1s,
which describe the energy in a limited range of
configuration space and are useful interpretive tools. We
obtain these potentials via a straightforward matrix gen-
eralization of methods previously developed for the scalar
case. ' E is expanded in powers of the deviations of
P i(i) and p4(i) from their values in a uniform "reference
environment. " The three-body potential thus obtained, by
a second-order treatment, has a separable form similar to
that used by Stillinger and Weber (SW). i The radial
functions are given in terms of the interatomic couplings
and the angular dependence contains cos(g)t terms with
i» 2. However, the potential contains prefactors deter-
mined by the values of P2 and p4 in the reference environ-
ment, which make the potentials strongly environmentally
dependent.

We have used the functional form of Eq. (6) to gen-
erate a semiempirical angular force scheme for Si. By the
Slater-Koster relations, ' the couplings in H [cf. Eq. (2)]
are completely determined by four radial functions:
h„(r), hz, (r), hpp (r), and hpp (r). To reduce the number
of parameters we make the free-electron approximation '0

happ 4 happ and assume that hsp I Ass kppcr I ~ Then&/2

h„, and hpp, as well as V""(r), are assumed to have a ra-
dial dependence of the form

p4(i) -g g b;gbjPkrbgfbj, '
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Here C is a positive constant, and p4t (i) Tr[P2(i)] is
the contribution to p4 from paths in Eq. (4) with i k.
This part of p4(i) is subtracted off' because the energy
from it is already included in E,1 . [For example, in a
geometry such that a11 paths have i k, the density of
states p;(E) generated from Pi(i) already has the correct
value of p4, and additional p4 terms would be double
counted. ] The normalizing factor of p2(i) t is obtained
from a quantum-mechanical analysis. '

Since the electronic contribution to the bonding energy
is purely attractive, it is necessary to supplement the elec-
tronic terms by a repulsive term describing the Pauli
repulsion at high densities. This we approximate by a pair
potential V2', obtaining

E —' QV2'p(i,j )+E +Ed; +E(i
~ ~

(6)

As mentioned above, Eq. (6) is not precisely in the form

as a sum of two-, three-, and four-body paths. A small
value of p4(i)/p2(i) results from a DOS with two peaks
surrounding a gap at roughly the center of the band. For
larger values of p4(i), the gap fills in and the density of
states has a metallic form. 2 Our prescription for includ-
ing the effects of p4(i) is based on the idea that a gap in or
lowering of the DOS at the Fermi level enhances the sta-
bility of a semiconductor. '9 This corresponds to reduced
values of p4(i). We thus take

fo«& rm, „, and j (r) 0 for r & rm» Here a. and b are
chosen to eliminate discontinuities in h(r) and h'(r) atr,„. This form guarantees a monotonic and rapid radial
decay of the couplings as well as their first and second
derivatives. Because the E,ii term involves four-body
paths whose number grows very rapidly with r,„, we
have used a shorter value rm, of rm, „ for this term than
the value rm, „used in the E i and Ed'p terms. The radiir,„and r,„were chosen to be 6.0 and 4.4 A, respective-
ly, so that the rm, „ terms include only first and second
neighbors in the diamond structure. The values of the
remaining parameters were obtained by a weighted least-
squares fit to ab initio density functional (DF) values for
the cohesive energies, 2 lattice constants, 24 5 and bulk
moduli in the diamond, graphitic (ideal c/a ratio),
simple cubic, and fcc structures; the elastic constant C44
in the absence of internal strain; and the unrelaxed va-
cancy formation energy s„","c"'. The experimental
value ' for the zone-boundary phonon frequency coTA(X)
was used as well. The values of the resulting parameters
are A„2.7742 eV, A~~ 12.2794 eV, A„~ 168.013
eU; k, 0.3866 A ', kpp 0.3950 A. ', k„p 0.7894
A ', 8~1.6073 eU; and C 0.3197. The input data
base quantities are fitted to within 20% in most cases; the
worst discrepancies are +32Vo f'or C44~, +25% for the
graphite versus diamond energy difference, and —24Vo for

unrel
@ac

Figure 1 shows the effective three-body potential V3
using the diamond structure as a reference environment,
along with the SW potential V3 for comparison. The
angular dependence of V3 is similar to that of V3, with
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FIG. 1. Effective three-body potential Vfs obtained from our

functional vs angle e. Stillinger-Weber potential also included

for comparison.

the minimum occurring at 118' vs 109' for the latter.
The energy scale is roughly 50% smaller than that of
V3s . However, even this agreement can be considered to
be fairly close; other types of empirical potentials that
have been used often dier from V3s by a factor of 5 or
more. The results to be presented below are obtained
with the full energy functional rather than the potentials.

We have found that the angular terms are crucial in ob-
taining the correct values of both defect and bulk input

properties. In the absence of these terms (using a scalar

pq treatment), we obtain s„",","' 1.5 eV, only a third of the
cohesive energy ) E,"(. The second-moment matrix
terms raise this value to 3.5 eV, versus the DF value
of 4.5 eV. For the structural energy difference A&

both the scalar and matrix second-moment treatments
give a negative value, but the cluster terms raise it to 0.57
eV (equal to the DF value). However, ) E,") is essential-

ly unaffected by the angular terms.
We have not yet applied our total energy format to

large-scale atomistic calculations. The results of some
representative calibration tests for a structural energy, an
elastic constant, and point defect properties are shown in
Table I, and compared with results from DF calcula-
tions, 42s 2 32 experiment, 33 the Stillinger-Weber poten-
tial, 3' ' the "Tersoff"' format, ' and the "Biswas-
Hamann" format. ' ' We choose the H-site interstitial
because it perturbs the lattice more strongly than the T-
site interstitial, and because the DF results for the relaxa-
tions are more consistent. For AF- " and the intersti-
tial properties, the present format gives agreement with
the DF results equal to or better than than that of the oth-
er formats. We note that even obtaining the correct sign
and rough magnitude of +E " and el H is not
guaranteed by the inclusion of plausible angular
terms. However, our value for C44 is more than 50%
too low. This probably results from too large a value of
the internal strain parameter g; we obtain g 0.98 versus
the experimental value of 0.73. Since one expects elas-
tic constants to be strongly influenced by long-range elec-
trostatic interactions, it is not surprising that short-ranged
schemes such as the present one have had difficulties ob-
taining them correctly.

In summary, we have found that even a crude quan-

TABLE I. Calculated bulk and defect properties for Si; hr/r denotes fractional nearest-neighbor re-

laxations around hexagonal-site interstitial. Values in parentheses for Tersoff and Biswas-Hamann for-
mats are obtained with initial versions of these.

Present
DF or expt.
Stillinger-Weber
Tersoff
Biswas-Hamann

~bccMia (eV)

0.65
0 53'
0.25'
063' ( —1.0")
0.32' (0 70m)

C4q (Mbar)

0.36
0.80b
0.56 I

0.10' (0.39s)
(0.92 s)

sjH (eV)

3.9
4-6 '
6.5"

4.s ' (-0")
S.l ' (1.3 ')

hr/r (%)

8
5 7 d, c

15h
(s ")

'Reference 24.
Reference 33.

'Reference 28. We have included a margin of error of up to —2 eV on the basis of the DF results for
the vacancy formation energy, which have dropped 1-2 eV since the publication of Ref. 28 [R, Car
(private communication)].
Reference 32.

'Reference 29.
Reference 7.

IReference 3.
"Reference 34.
'Reference 6.
'Reference 35.
"Reference 36.
'Reference 37.

Reference 38.
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turn-mechanical analysis yields a total-energy format
which contains many of the features intuitively expected
for angular forces in semiconductors, including a natural
transition from covalent to metallic bonding. In addition
to justifying some of the terms used in previous types of
energy functionals, the format developed here has been
shown to yield a total energy scheme for Si which is simi-

lar in accuracy to the best empirical energy functionals
presently available.

This work was supported by the U.S. Department of
Energy under Grant No. DE-FG02-84ER45130, and by
the National Science Foundation under Grant No. DMR
88-01260.

'For a discussion, see T. Haliocioglu, H. O. Pamuk, and S. Er-
koc, Phys. Status. Solidi 149, 81 (1989).

See also, A. E. Carlsson, in Advances in Research and Applica-
tions, edited by H. Ehrenreich and D. Turnbull, Solid State
Physics Vol. 43 (Academic, New York, in press).

3E. R. Cowley, Phys. Rev. Lett. 60, 2379 (1988).
4M. W. Finnis and J. M. Sinclair, Philos. Mag. A 50, 45 (1984);

53, 161 (1986).
sM. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983);

Phys. Rev. B 29, 6443 (1984).
sJ. Tersoff, Phys. Rev. B 37, 6991 (1988).
7M. I. Baskes, Phys. Rev. Lett. 59, 2666 (1978).
J. R. Chelikowksy and J. C. Phillips, Phys. Rev. Lett. 62, 292

(1989).
90ther quantum-mechanical energy functionals for covalent

systems are being developed. See W. A. Harrison, Phys. Rev.
B (to be published).

' See, W. A. Harrison, Electronic Structure and the Properties

ofSolids (Freeman, New York, 1980).
"J.Inoue and Y. Ohta, J. Phys. C 20, 1947 (1987).
'2Tr[p2(i)] '~2 is simply the sum of the square roots of the eigen-

values of p2.
'3R. Jones and M. Lewis, Philos. Mag. B 49, 95 (1984).
'4F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem. Solids

32, 285 (1970).
' K. Masuda, R. Yamamoto, and M. Doyama, J. Phys. F 13,

1407 (1983), and references therein.
'6This follows from the electron-hole symmetry which holds for

even, half-filled bands.
' R. H. Brown and A. E. Carlsson, Phys. Rev. B 32, 6125

(1985);Solid State Commun. 61, 743 (1987).
'sF. Cyrot-Lackmann, J. Phys. Chem. Solids 29, 1235 (1968).
'sJ. A. Van Vechten, Phys. Rev. 170, 773 (1968}.

oA. E. Carlsson and N. W. Ashcroft, Phys. Rev. 8 27, 2101
(1983).

2'S. M. Foiles, Phys. Rev. B 32, 3409 (1985).
s2A. E. Carlsson, Phys. Rev. B 32, 4866 (19&5).

F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262
(1985).

24M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).
2sM. T. Yin and M. L. Cohen, Phys. Rev. B 29, 6996 (1984).

O. N. Nielsen and R. M. Martin, Phys. Rev. B 32, 3792
(1985).

27Simple cubic bulk modulus obtained by A. E. Carlsson (un-

published); fcc bulk modulus not included.

R. Car, P. J. Kelly, A. Oshiyama, and S. T. Pantelides, Phys.
Rev. Lett. 52, 1814 (1984).

2sG. Baraff and M. Schliiter, Phys. Rev. B 30, 3460 (1984).
We take 8,",", ' 4.5 eV as a rough average of the values in

Refs. 28 and 29, and more recent values [R. Car (private
communication)).

3'B.W. Brockhouse, Phys. Rev. Lett. 2, 257 (1959).
Y. Bar-Yam and J. D. Joannopoulos, Phys. Rev. B 30, 1844
(1984}.
H. J. McSkimin and P. Andreatch, J. Appl. Phys. 35, 3312
(1964).

34I. P. Batra, F. F. Abraham, and S. Ciraci, Phys. Rev. B 35,
9552 (1987).

3sB. W. Dodson, Phys. Rev. B 35, 2795 (1987).
3sJ.Tersoff, Phys. Rev. Lett. 56, 632 (1986).
3~R. Biswas and D. R. Hamann, Phys. Rev. B 36, 6434 (1987).

R. Biswas and D. R. Hamann, Phys. Rev. Lett. 55, 2001
(1985).
H. d'Amour, W. Denner, H. Schulz, and M. Cardona, J. Appl.
Crystallogr. 15, 148 (1982); B. Selsmark and B. J. Sheldon,
ibid 15, 154 (198.2}.


