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Universal scaling of nonlocal and local resistance fluctuations in small wires
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Resistance fluctuations in small metal samples result from coherent transport of the carriers. The
wave functions of the carriers extend into regions which are not accessible classically. We have
directly measured the length dependence of the nonlocal magnetoresistance fluctuations in Sb and
Au wires by studying regions of our samples separated from the classical current path by a distance
L which varied from 3L down to 0.2L~ (where L~ is the phase coherence length for the carriers in
the metal). These fluctuations decay exponentially with L/L~. Measurements along the classical
current paths scale more slowly with L/L~ than predicted by the analytical theory but are in agree-
ment with numerical simulations. We have also studied the length dependence of the magnetic field
correlation scale B&, and we find that it is in qualitative agreement with a recent model calculation
that accounts for the voltage probes.

Since the first experiments by Sharvin and Sharvin'
which experimentally demonstrated the existence of
Aharonov-Bohm oscillation s in disordered metal
cylinders, the study of Aharonov-Bohm effects has
brought to light many features of electrical transport
which contradict the classical models. Foremost among
them is that the difFusive propagation of the carriers does
not cause the wave-function phase to be destroyed. '

Most of the observations of periodic and aperiodic
quantum interference fluctuations hR of the magne-
toresistance R (H) in small metal loops and lone wires
have been at length scales L =L; i.e., most of the car-
riers traverse the distance between voltage probes
without randomization of the wave-function phase. In
this coherent regime, ' the rms amplitude of the fluctua-
tions in conductance is b, G =Ce /h, where C is a prefac-
tor (of order 1) which depends upon the geometry of the
sample. When L &&L, however, ' '" the resistance flu-
ctuation become independent of length while the naive es-
timate of the conductance fiuctuations diverges as 1/L
Moreover, it has been shown that the fluctuations can be
observed in a device geometry for which classical physics
would predict a null measurement. ' ' Indirect evidence
for nonlocal behavior has also been seen in the correla-
tion scales for random conductance fluctuations. ' In
this work direct observations of nonlocal fluctuations are
presented in detail. We demonstrate that the same L
which describes the length dependence for the local resis-
tance fluctuations accurately predicts the length depen-
dence of nonlocal resistance fluctuations. In addition, we
compare our results to the predictions of recent theories
and find significant discrepancies with the ana1ytical ap-
proaches" but good agreement with numerical simula-
tions.

Our measurements of resistance rely on the usual four-
probe methods. Two contacts j and k are used to source
and sink current, and two others m and n are attached to
a high-impedance meter that measures the voltage drop:
R „,.„—:( V —V„)/I, „Themagnetic . field depen-

dence of the resistance in any such measurement can be
decomposed into two parts, one symmetric and the other
antisymmetric with respect to the reversal of the magnet-
ic field. ' Upon decomposing the fluctuations hR=R
—(R ), Benoit et ol. ' observed that the fiuctuations in
Rs=[(R „,k(H)+R „,k( —H)]/2, the symmetric
component of b,R, and in R„=[R„zk(H)—R „Jk(—H)]/2, the antisymmetric component, scale
very differently with length. A nearly universal method
of characterizing the length dependence of the resistance
fluctuations for any one-dimensional wire (which should
eliminate all sample dependent parameters except the
geometrical prefactors C) is as follows. The measured
rms values of the magnetoresistance fluctuation ampli-
tudes, Rz and R„,are normalized to the amplitude
hR =R Ce /h (which is approximately the total fiuc-
tuation amplitude expected for a wire segment of length
L and classical resistance R ), and the distance between
voltage probes is scaled by L . For L /L ~0,
hR /R =0.37 and is nearly independent of L, while for
L/L )&1, b,R/R grows in proportion to (L/L )'

This behavior has been observed in several samples, each
with a different L, with the results that all the normal-
ized resistance fiuctuations b,R(L/L )/b, R~ fall on the
same curve. '

The physical explanation for the observation of the
length-independent behavior of the magnetoresistance
fluctuations when L )&L is that the carriers diffusing
through the sample make excursions outside of the classi-
cal conduction path. On average, the currents caused by
such excursions are zero (by definition of the classical
conduction path), but in the coherent case, where the
averages do not tell all of the story, such trajectories en-
close magnetic flux and contribute to Aharonov-Bohrn
fluctuations in the conductance. ' The principal concep-
tual point to be understood is that on average the wave
function for each carrier remains coherent for a time ~ .
During this time the carrier diffuses into an area
L =D~, where D is the classical diffusion coe%cient.
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FIG. 1. (a) An electron microscope photograph of the Sb
sample used in these experiments. The numbers labeling the
leads are referred to in the text. (b) A schematic illustration of a
four-probe sample. Typical regions (dotted lines) wherein the
carriers retain phase coherence include some distance into the
voltage probes, which contributes to nonlocal resistance fluctua-
tions.

(We make the argument for two dimensions because, in

these experiments, the resistance fluctuations result from
interference of random trajectories which haphazardly
enclose the fluxoids of the applied magnetic field and
therefore lead to random Aharonov-Bohm oscillations,
and one is concerned with areas in the discussion of
Aharonov-Bohm e8'ects. In the experiment, of course,
the wave function is never outside of the wires which
form the device. ) Since the voltage probes [say, for in-

stance, leads 8 and 3 of Fig. 1(a) in R3 s.46, the "local
resistance"] are not phase randomizing reservoirs, they
are generally of the same material and dimension as the
classical conducting path (from lead 4 to lead 6), the car-
riers propagate into or beyond the probes while still re-
taining memory of the wave-function phase [see Fig.
1(b)]. This pervasiveness of the wave function is responsi-
ble for the observation' that the nonlocal resistance as
measured between leads 8 and 6 also fluctuates randomly
when the current flows between leads 4 and 3. A typical
record of both the local and nonlocal resistance fluctua-
tions hR (0) as a function of magnetic field is displayed
in Figs. 2(a) and 2(b). The corresponding autocorrelation
functions are shown in Figs. 2(c}and 2(d). The sample in
this case is an Sb wire 0.12 pm wide and 0.08 pm thick,
and the probe spacing was L =0.66 pm. The fluctuation
amplitude is proportional to the current for small
currents. The amplitude and field scale (determined from
autocorrelation} of the resistance fiuctuations are similar
to that for the conventional measurement configuration
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FIG. 2. (a) An( ) An example of reproducible magnetoresistance fluctuations in the local measurement R8 3 ~ 6 4 on the 0.66 pm Sb wire.
e samp e temperature was T =0.048 K, and the drive current was 20 nA. (b) An example of the fluctuations in the nonlocal mea-

surement R8 6 4 3 under the same conditions. (c) and (d) are autocorrelation functions (over the magnetic field range —6 (H (6 I) for
the resistances in (a) and (b), respectively. The dashed and dotted lines illustrate, respectively, Gaussians and Lorentzian shapes with
the same half-widths as the data from the experiments.
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[e.g. , in Fig. 1(a), current from 4 to 6 and voltage drop
measured between 3 and 8] when L »L3 s. Classical
physics predict that, for homogeneous material, the volt-
age in the nonlocal measurement is zero [or rather
-exp( L—/w)]. We find in this transport measurement,
then, direct evidence for the nonlocal character of the
quantum-mechanical wave functions of the carriers. '

It is worth remarking that resistance fluctuations of
similar character are observed in any measurement
configuration where L ~L, regardless of whether the
classical current path spans any of the voltage probes or
not. ' This amplitude of the total fluctuation, when cast
in the form of conductance, is b.6=e /h, where one
must be careful to notice that the effective length of the
phase coherent sample is never less than L .' '" It is this
minimum size of the effective sample area which accounts
for the L independence of the amplitude of the observed
fluctuations when L &.L .

We have studied the length dependence of the sym-
metric and antisymmetric parts of the nonlocal voltage
fluctuations in the Sb sample [Fig. 1(a) and in two Au
samples. L was determined from the weak localization
effects in the magnetoresistance near H=O of the Sb
sample, and from the half-width of the autocorrelation
function C(hH)=(R(H)R(H+bH)) (where ( ) is an
average over a magnetic field range containing many
correlation scales Bc) in segments of length L =L in

both the Au and Sb samples. The length L that we use
for analysis of the nonlocal measurements is defined to be
the distance from the nearest voltage probe to the classi-
cal current path, and the separation of the midpoints of
the voltage probes is used in the local measurements.
From nonlocal measurements at different L, we obtained
the dependence of b,R on the ratio L/L~, and local
measurements on the same wires yielded bR". The sym-
metric and antisymmetric parts of the fluctuations were
determined by lead switching experiments and by con-
struction of ARz and AR

„

from a single trace about zero
field. ' The magnetoresistance traces were filtered digi-
tally to remove signals outside of the range field scales ex-
pected for the conductance fluctuations, and the contri-
bution to the measured resistance fluctuations from
amplifier noise was removed by subtracting the noise
power spectrum (estimated from "dummy" magnetoresis-
tance traces at zero drive current) from the power spec-
trum of the fluctuations. From the resulting magne-
toresistance curves, average fluctuation amplitudes were
calculated. The results of these experiments for both the
local and nonlocal resistance fluctuations are displayed in
Figs. 3(a) and 3(b), respectively. In contrast to the
length-independent behavior of the antisymmetric and
symmetric (for L (L ) part of the local resistance fluc-
tuations, ' both the symmetric part of the antisymmetric
part of the nonlocal resistance fluctuations decay ex-
ponentially as L/L increases for all values of L/L
The dot-dashed curve in Fig. 3(b) depicts the function
0.37exp( aL/L ). The factor a =—1.2+0. 3 in the ex-
ponential is determined from a best fit to all of our data
from several experiments, and it is consistent with recent
theoretical calculations (a =1.1+0.1).' Since the data
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include results from three different samples with different
values of L, we conclude that the appropriate scale for
describing the decay of the nonlocal resistance fluctua-
tions is L/L and not simply L. This is in accord with

expectations. ' From classical diffusion, it is known that
the amount of time spent in a dangling lead (the voltage

FIG. 3. (a) The dependence of the rms resistance fluctuations
hR/hR on L/L~ averaged over the magnetic field range—6 & H & 6 T. b,R& from the Au wires (V) at T =0.048 K and
from the Sb sample (+) are both independent of length when
L~O, and they are ~ "1/'L when L &&L~. The solid line is the
result from the numerical simulations (Ref. 14), and the dashed
line is the analytical theory (Ref. 11). The dotted lines indicate
constant amplitude and the classical addition of fluctuations
( ~ 1/L ). In contrast, the antisymmetric components [O (Au)
and X (Sb)] are essentially independent of length for all L. (b)
The nonlocal fluctuations (both symmetric and antisymmetric
components) from the same Au (6 and ~) and Sb ( and Q}
wires. The solid line is the result from the numerical simula-
tions (Ref. 14), and the dash-dotted line is the fitted exponential
decay described in the text.
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probe is effectively dangling because it does not sink
current) is proportional to the length of the lead. ' Since
the electrons in the dangling lead lose phase coherence—J7J
on length scale L, only a fraction e ~ arrive at the
voltage probe retaining phase memory. This is the source
of the observed exponential decay.

There are theoretical results' which suggest that, in-
stead of being exponential, at zero temperature, the decay
of b,R should be power law-[(b,R) ~L '] with the
restriction that (of course) the nonlocal fluctuations can-
not be larger than those measured along the classical
current paths. While there may be such an algebraic de-
cay "beneath" the dominant exponential decay in Fig.
3(b), the data appear to exclude scaling exponents greater
than about 0.3 as L/L ~0 For. L!L &1, the data
track this power law as well as they track the exponen-
tial. Our data, however, are certainly not consistent with
a single power-law decay for L/L & l.

The "local"' measurements [displayed in Fig. 3(a)] in
which the voltage probes touch the classical current path
were performed on the very same wires used for the non-
local measurements. These measurements were decom-
posed into ARz and AR„. Within the scatter, hR„
(0, X ) is independent of the separation of the probes as
expected from analogy with classical Hall effects. The
slight length dependence predicted in the theoretical cal-
culations" is within the scatter of the data, and so, can
neither be confirmed nor refuted. The symmetric part of
the resistance fluctuation ERs (V, + ) is essentially in-

dependent of L as L/L ~0; the small predicted" varia-
tion is within the scatter. As L/L increases well
beyond 1, MRS grows approximately as (L/Lt)1/2. Both
observations are in agreement with previous work. '

Both the local and the nonlocal resistance fluctuations ex-
trapolate to b,R /R =0.37+0. 1 when L =0. For a given
sample, the same value of L describes the local and non-
local data. Moreover, these values of L are in agree-
ment with L from weak localization (from the one Sb
wire which exhibits it) and the characteristic field scale
Bc obtained for large L /L

The results of numerical simulations' of the fluctua-
tions in multiple-probe samples are also displayed in Fig.
3(a) (solid lines). The simulation calculated the total fluc-
tuation amplitude at zero magnetic field. To compare the
simulations with the data in Fig. 3(a), we have divided the
calculated b,R/R by V2 to remove the Cooperon con-
tribution9 (since in our experiments H»h/2L2t, the
Cooperon contribution is negligible) and multiplied it by
2 in order to account for spin degeneracy. Using

=0.49h /e, we have the normalization
bR =(e /h)R =0.24h/e . This obtains excellent
quantitative agreement with the data over the entire
range of L/L with no adjustable parameters. This
quantitative agreement between experiment and numeri-
cal simulations constitutes strong evidence in support of
the universal scaling of the length dependence of the volt-
age fluctuations in any phase coherent wire.

In the simulations, L is set by the placement of fixed
reservoirs at various points on the sample (specifically
they are at the ends of the voltage probes). The

correspondence between this model and samples used in
the experiments is unclear, because we expect phase de-
struction to occur randomly throughout the samples.
The analytical theory includes the phase destruction as
an ad hoc lifetime r for the propagators in the theory,
which seems more compatible with this expectation. The
prediction from the analytical theory by Kane, Lee, and
DiVincenzo" [their Eq. (C8)] which is valid for
LT=(hD/k~T)'~ ~~ is displayed in Fig. 3(a) as a
dashed line. Although LT~~ does not describe the
conditions under which the data were recorded (for Fig.
3, L =LT), allowing finite LT cannot repair the
discrepancy. ' Data from lower temperature (T =0.010
K) and lower drive current (I = 10 nA), where LT is even
longer, have the same scaling as a function of L/L as
those in Fig. 3. To fix the discrepancy LT must be sub-
stantially less than L (one needs Lr &0.5L ). From
analysis of Bc we find that, for most of the data, L & LT,
and this agrees with estimates made from the resistivity
and with direct measurements of the correlation energy
(which governs LT) via the I-V curves from the wires. ~o

In principle, the presence of dangling leads (e.g., leads 2
and 8 in the resistance R35.46} between the voltage
probes offers more phase space for the carriers, and so
these extra probes can effectively lengthen the sample.
From the experiment, we do not find a significant
difference between the measurements with and without
the dangling probes, and all data are plotted on the same
graph. The difference in the theoretical model caused by
the dangling probes is around 20%%uo, which is about the
scatter in our data.

In plotting the data, we have assumed the geometrical
prefactor is C=0.73. At L =0, however, Kane, Lee,
and DiVincenzo have the symmetric part of the normal-
ized voltage fluctuation equal to 1 with C =1 in hR,
which is too high by a factor of =2.7, and we have divid-
ed by this factor in Fig. 3(a}. Blindly normalizing the
theoretical curve at L =L, we find that it gives the same
L ~0 asymptote as the experiment, but inserting the pre-
factor C =0.73 into the theory makes the disparity even
worse than a factor of 2.7. More importantly, the quanti-
tative agreement between the length scaling in analytical
theory with that in the experiment and numerical simula-
tions is very poor, although the trends are similar. In or-
der for the theory to be placed in quantitative agreement
with the experimental data, the experimental values of
L must be increased by a factor =2.5. This forces the
lowering of the L~O asymptote because it increases
hR by the square of the factor, so that this procedure
results in b,R/b, R =0.06 for the data —nearly an order
of magnitude lower than the value 0.4 known from
numerous experiments in our laboratory. ' Arbitrarily
increasing the theoretical L/L by a factor of about 2.5,
without changing the L =0 asymptote, produces excellent

agreement with the data. The choice to compare with
the calculations by Kane, Lee, and DiVincenzo is one of
convenience, and comparisons with other versions of the
analytical theory" arrive at the same difficulties, but the
other versions do obtain a prefactor that is closer to the
observed value.
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The crucial parameter in the test of scaling of the resis-
tance fluctuation amplitude is L . One way to determine
L is to study the correlation field Bc=zh /eL !J, where
z is a numerical constant. In the two-probe theory, ' z is
between 0.42 (when L «LT) and 0.95 (when L ))LT)
that can be evaluated theoretically for a given sample and
a given ratio of L to the thermal diffusion length LT). '

This argument has been worked out only for the case of
two-probe measurements, and the corresponding argu-
ments for four-probe measurements are only now being
formulated. Our data clearly indicate that the shape of22

the correlation function and the inferred Bc depend on
the particular probe configuration. From Fig. 2(c) one
sees that, in the local measurement, the correlation func-
tion is wider, and that it is more nearly approximated by
a Lorentzian curve than by a Gaussian curve. From Fig.
2(d), we see that the opposite is true for the nonlocal mea-
surement. [We do not suggest that a Gaussian or
Lorentzian is an accurate description of the functional
form of C ( b H ); we only use these as familiar examples of
short- and long-range correlations. ] These results are
representative of our analysis of more than 100 local and
nonlocal magneto resistance measurements. In some
cases the distinction in functional form is even more ex-
aggerated: for the very long wires the C(bH) has a
longer tail than a Lorentzian of the appropriate half-
width. When L &L, however, there is frequently an in-

termediate shape [for instance, in Fig. 2(c), the tail is not
as long as the Lorentzian's]. In Fig. 4(a), the Bc obtained
from the total fluctuation b,R(H) for a fraction of our
magnetoresistance data are displayed. For convenience,
the values from the nonlocal measurements are plotted at

L. The dat—a demonstrate that Bc and C(b,H) depend
on the measurement configuration in a rather dramatic
way. The B~ for a particular line segment is always
larger in the local (+L) measurement, than in the nonlo-
cal ( L) measurem—ent.

The physical reason for the difference between the local
autocorrelation function C (hH) and the nonlocal auto-
correlation function C (b,H) is that diff'erent sets of
paths contribute to the two difterent sets of resistance
fluctuations. In particular, short-range ( «L ) loops of
trajectories add together to generate a large fraction of

LbR [see the right-hand inset to Fig. 4(b)]. In contrast in
the nonlocal measurements (see the left-hand inset), only
long (=L) loops matter. The arbitrarily short paths in
the local measurements generate the long tail on C (b,H )

since for the kth individual loop, Bc—1/Lk (where Lk is
the diameter of the loop) can be arbitrarily large. The ab-
sence of paths shorter than L in the nonlocal measure-
ments provides a hard cutoff'for the range of C (hH).
This dichotomy is apparent in the experimental data. At
least for longer L, C (AH) is essentially Gaussian in
shape [similar to Fig. 2(d)]. On the other hand, the tails
on C"(hH) are better approximated by a Lorentzian
curve, or for L ) 1.6 pm by a function with an even
slower rolloff than I /(AH) .

We can compare our results to the theoretical predic-
tion for C(b,H ) from a four-probe resistor. The model is
a four-probe wire where the probes are the same width as

the current-carrying channel, and the corners between
the probe and the channels are square [i.e., Fig. 1(b)].
The analysis below therefore neglects the wide (two-
dimensional) regions that connect the narrow channels to
the wire-bonding pads. This neglect is probably a good
approximation for all probes except 2 and 8, because with
these exceptions, the two-dimensional regions are more
than 2L from the measured segment. For pads 2 and 8,
the distance is about L and carriers that emerge into the
wide regions have much more area to roam so that, for a
given L, there will be a contribution to B ~1/L (in-ln-
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FIG. 4. (a) Correlation Geld scales from various line seg-
ments. The results from local measurements are plotted with
positive L and the nonlocal results with negative L (L~—L).
Different symbols refer to different drive currents, and the
dashed lines illustrate the L dependence expected from the
four-probe model (Ref. 22) when z=0.42. The inset illustrates
the increase of 8& as current increases at 7 =0.01 K and the
dashed line depicts the form expected from voltage averaging.
(b) 8& as a function of L from the four-probe model (Ref. 22)
plotted in the same manner as the experimental data. Inset on
the left is an illustration of the kind of trajectories that contrib-
ute to fluctuations in the nonlocal measurements, and on the
right side a similar picture for the local measurement (Ref. 23).
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FIG. 5. The dependence of Bc on drive current from a series
of local measurements on the 0.66 pm Sb wire. Data obtained
at several different temperatures are displayed, and for each
temperature the zero current asymptote (dotted lines) agrees
with a scaling Bc(T,I =0)=&T.

stead of 1/L+w as in the one-dimensional channels) and

the total B& will be smaller. We estimate that, since the
fraction of carriers that make such excursions and return
is (1/e, the error caused by ignoring the pads is no
worse than 15%%uo for these two probes and a good deal
better for the others. From the theoretical model we
have calculated the variation of Bc with L /L~ [Fig. 4(b)]
for the case of LT~~. The trend found in the experi-
ment is reproduced here by the model. For a particular
L, the correlation field is smaller in the nonlocal mea-
surement than in the local measurement, and there is a
smooth crossover between the two regimes. The calcula-
tion was done for a particular width and L, whereas w

(and possibly even L ) in the experiments vary from seg-
ment to segment. It is therefore not too surprising that
we do not obtain precise quantitative agreement with the
experiment. We emphasize, however, that both the
theory and experiment demonstrate a significant length
dependence to the measured Bc, for a constant L, as the
nonlocal contributions to the Auctuations become more
important (L &L ).

The above model is strictly linear response, so there is
no parameter corresponding to current drive. Two
current drives were used for the data in Fig. 4(a), and in
the nonlocal (

—L} measurements, Bc is independent of
drive, but it depends rather strongly on it in the local
(+L) measurements. This difference between the nonlo-
cal and local data can be qualitatively understood by al-

lowing for the possibility of voltage averaging in the local
measurements. There is a finite electric field along the
measured segment in the local measurement, and the car-
riers therefore have an energy spread and a correspond-
ing "effective temperature" T,fr= eV/k~ which leads to
voltage averaging and hence to a decrease in LT.
Perhaps, at very high currents, this could eventually lead
to a decrease in L, but we doubt that this occurs in any
of the experiments here. The decrease in LT is apparent
from the inset to Fig. 4(a), which displays Bc from data
recorded at other temperatures. Plotting Bc versus v'I,

we find a linear dependence for I &100 nA, and then a
faster increase. The effective phase coherence length
determining the correlation scale is the lesser of L and

LT F. or the low-temperature data in Fig. 5 (0, T =0.01
K), L =0.66 pm and R =49 0 so that at I = 100 nA the
voltage bias is 5 pV, which exceeds the lattice tempera-
ture ( =1 pV). Making a modest extension of existing
analysis, ' we suppose that if the effective phase relaxa-
tion rate is the sum of the voltage averaging "rate" and
~, then Bc will grow as 1/Lr o-+T,fr~~I. We as-
sume that this accounts for the observed dependence of
Bc on I. In addition, the breakpoint where B& departs
from v I is near the voltage bias where Bc(L} grows
anomalously for the local measurements. We therefore
attribute the very large values of Bc in Fig. 4(a) at large L
to the crossover from the limit L «Lr (where z =0.42}
towards the opposite limit (where z =0.95). ' If the limit
were not exceeded, we suppose that Bc(L) would be
much Aatter at large L as suggested by the model and il-
lustrated by the dashed lines in Fig. 4(a). At successively
higher temperatures, Bc(I}saturates at higher values as
I~0. The saturation levels are consistent with
Bc(0)~&T as illustrated by the dotted lines. In this
sample L decreases with increasing temperature at
least as fast as Lr, so that for I~0 at any temperature,
we expect that LT always exceeds L, and z =0.42.

A similar difference in C ( b H) occurs between the sym-
metric (S} and antisymmetric (AS) components of a par-
ticular local measurement. The antisymmetric com-
ponents of the resistance are generated mainly in the
probes attached to the sample where the average voltage
is zero. In contrast, the symmetric component is accu-
mulated all along the current channel where the bulk of
the voltage is dropped. In this and other experiments,
we find that, quite generally, Bc is smaller than Bc.

Another potential source of error in Fig. 3 is the wire
width. It is known, from tunneling spectroscopy, that
thin layers of "metallic" atoms exhibit gaps at the Fermi
level; i.e., they do not conduct at T less than the gap ener-

gy. This is true up to ~20 layers for the semimetal Sb
when it is deposited commensurately onto a cleaved
GaAs surface. The size of the gap presumably depends
on the local environment, which leads us to suspect that
there is an uncertainty of ~ 10 nm in our estimates of the
effective conducting widths of the Sb wires. The interface
between the Sb and the vacuum is likely to be very
different from the interface with the Si3N4 substrate
which has its own (incommensurate) lattice constant and

gap, and we expect that the nonconducting regions along
the sides of the wire are considerably less than the thick-
ness observed for commensurate overlayers on the (110)
surface of cleaved GaAs. A similar (albeit much smaller)
uncertainty might be present in the Au samples. In prin-
ciple we have yet another method of obtaining the
effective widths of the wires. The classical magnetoresis-
tance is proportional to (cue~), and from the rather large
(10%) quadratic field dependences in the Sb samples, we
have extracted the "conductivities" o.

k for the individual
line segments from R (H), and these are listed in Table I.
There is scatter of about 25% among the various sam-
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TABLE I. Wire segment dimensions and classical conduc-
tivities (inferred from classical parabolic magnetoresistance) for
the various Sb wire segments.

Voltage taps
[see Fig. 1(a)]

2,8
2,5
8,3
5,1

73

Length
(pm)

0.25
0.45
0.66
0.89
1.79

Width
(pm)

0.164
0.125
0.125
0.102
0.098

[(pQ m) ']

0.96+0.02
0.75+0.02
0.88+0.01
0.83+0.01
0.71+0.01

ples. Attempts to use these to obtain the true electrical
widths of the samples have introduced so much scatter in
bR (L/L } that we could say nothing about the scaling
dependence using this method. In part, the reason for
this problem may be that the thickness of the wire seg-
ments is not uniform, and of course, there is the innate
fallacy of attempting to define a local conductivity on
length scales shorter than many L . As a result, we are
forced to use the widths measured from the electron rni-
croscope photographs of the samples, and resign our-
selves to the large error bars on the parameter w.

From the foregoing analysis, especially the universal
scaling of both local and nonlocal resistance fluctuations
with a value of L corroborated by weak localization and
the magnetic correlation scale, we are confident that the
errors from estimating w and L are small enough to rule
out agreement with the analytic theory for scaling
hR (L/L ) which would require distending the abscissa
of Fig. 3(a) by more than a factor of 2. It would be very
surprising if the L that yields agreement with the ex-
ponential decay of the nonlocal fluctuations were not ap-
propriate to describe the "local" fluctuations. There ap-
pears then to be a flaw in the theory: it correctly predicts
the decay of the fiuctuations measured when the voltage
probes do not touch the classical current path, but it fails
to predict the scale on which the fluctuations accumulate
when the current flows past the voltage probes. In the
limit LT &&L, it is appropriate to scale ' the L inferred
from the field correlation scale by a factor 2.2, but this
limit is never achieved in the experiments displayed in
Figs. 3(a) and 3(b). The closest approach is Lr/L =0.8
for the data at 0.048 K; for the Au samples, LT &L, and
for the data at lower temperatures the ratio exceeds 1 in
all samples.

Even if we ignore all of the experimental evidence for
L and allow it to float as a free parameter, we still can-
not reconcile the analytical theory with the data. Adjust-
ing L means changing bR -L . Forcing ARs(L/L+)
to fit the theoretical curve, forces a corresponding adjust-
ment of AR which, in turn, reduces the asymptote for
bR, (L~0)/bR to about an order of magnitude below
that predicted asymptote.

Having (by an admittedly stony path) concluded that
the analytical calculations are a poor description of the
scaling of the local resistance fluctuations while the nu-
merical calculations are much better, we must ask why.
Prima facie, the data in Fig. 3(a} imply that the fixed
phase reservoirs used in the numerical calculation are a
better model for the real samples than the (ad hoc}
homogeneous inelastic scattering invoked in the analyti-
cal theory. This is plausible because we study a particu-
lar sample with a particular impurity potential and not
the ensemble which underlies the analytical theory. Each
sample contains fixed grain boundaries and impurities,
and these provide for strong local potentials, and the
electron-electron or electron-phonon scattering may be
stronger in the vicinity of such potentials. (This is in the
spirit of the interaction effects in weak localization,
where the potential fluctuations force the electrons to
spend more time in close proximity than free carriers do.}
While this is certainly not the only explanation for the
discrepancy between our data and the analytical theory,
we have not seen a better one to date.

In summary, we recall that experiments have provided
strong evidence in support of the universal scaling of the
length dependence of the nonlocal and local resistance
fluctuations in small phase coherent wires. The length in-
dependence of the local voltage fiuctuations (for L &L)
results from the extension of the carrier wave functions
into all regions of the sample where the classical current
would be exactly zero. Using the phase coherence length
determined from weak localization and the autocorrela-
tion function of the resistance fluctuations in long seg-
ments (L & L },we find excellent agreement with numer-
ical simulations for the scaling of the local fluctuations
with probe separation, as well as agreement with recent
analytic calculations for the exponential decay of the
nonlocal fluctuations. The analytic theory for the length
dependence of the local fluctuations appears to have a
length scale which differs from the experiment by a factor
of =2.5. We suggest that this difference between the an-
alytic and numerical theories may be due to the precise
details of how inelastic scattering is incorporated, and we
note that in real samples the destruction of phase coher-
ence appears to occur at spatially fixed points. The mea-
sured correlation field scales Bc also exhibit a length
dependence and significant modifications to the standard
relationship between L and 8c must be made when non-
local effects contribute significantly to the measurement.
In addition, the observed voltage dependence of Bc is
consistent with the results from a four-probe model if the
"heating" of the electrons by the drive current is ac-
counted for in a simple way.
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