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Edge dislocations in fcc metals: Microscopic calculations of core structure
and positron states in Al and Cu
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Structures of edge dislocations (dislocation line direction [112], Burgers vector (a/2)[110]) in
aluminum and copper are studied with the molecular-dynamics simulation method which incorpo-
rates the effective-medium theory extended to include atomic interactions beyond the nearest neigh-
bors. The observed equilibrium distance between the Shockley partial dislocations in both metals
agrees well with the estimate evaluated from elasticity theory by using known values for the
stacking-fault energy and the bulk modulus. Effective-medium theory leads to a dislocation core
which is narrower than the previous results of the pair-potential calculations for simple metals. The
vacancy formation energy in copper is higher at the center of the stacking-fault region than in the
bulk, which suggests that pipe diffusion can take place only in the narrow partial dislocation core.
In the second part of the work, the role of the dislocation line and of the associated point defects as
positron traps are studied in both metals. The pure dislocation line forms only a shallow trap but it
can be a precursor state for deeper traps, like vacancies and single jogs on the dislocation line. The
calculated lifetimes for these defects are in good @greement with the experimentally observed life-
time components coming from dislocations.

I. INTRODUCTION

Dislocations have their well-known effects on the plas-
tic behavior and crystal growth of materials. ' Moreover,
their role as fast diffusion channels and in the theory of
melting transition have been a subject of active debate.
The first theoretical models for dislocations were based
on the elastic continuum theory, which can well describe
the long-range stress fields formed in the lattice by the
presence of dislocations. However, the elasticity theory
breaks up in the dislocation core, where the inelastic
atom-atom interactions become dominant. Because of
the lack of experimental tools in the atomic scale, the
available information about the atomic arrangements in
the core region has been mainly resulted from computer
simulations. The atomic interactions have usually been
described in these simulations by pair potentials, which
have been either empirical or derived from the pseudopo-
tential theory. However, pair potentials have many seri-
ous shortcomings in description of the metallic cohesion
and of defect structures in metals. This is true also in the
case of dislocation cores containing pointlike defects,
such as vacancies, jogs and kinks. In real samples dislo-
cations act as sinks for these defects.

During the 1980s there has been a significant develop-
ment in the derivation of interatomic potentials suitable
for computer simulations of metals. The main idea has
been to extend the "effective-medium" or "quasiatom"
scheme of cohesion, originally used in the description of
an impurity in a metallic environment, and apply it to
the whole lattice by considering each metal atom as an
"impurity" with the respect to all other metal atoms.
This extension leads to the total cohesive energy

where F, is the embedding energy of atom i, n; is the lo-
cal electron density at the atomic site i (provided by the
neighboring atoms), V is a pair potential, and N is the
number of metal atoms. n; depends on the distances r, .

between neighboring atoms, and in this way F, is struc-
ture dependent and implicitly includes many-atom in-
teractions. Various models ' now use this scheme of
cohesion, each of which gives a slightly different deriva-
tion of and interpretation to the components in Eq. (1).
The many-atom interactions can explain many properties
inherent in metals, like the usual inward relaxation of the
surface layer, the low vacancy formation energy with
respect to the cohesive energy, and the relations between
the elastic constants. Many-atom models can then be ex-
pected to give a more reliable picture also of the structure
of dislocations and grain boundaries. '

The atomic positions around the dislocation core
can be studied experimentally by, e.g. , transmission- or
high-resolution electron microscopes' ' and positron-
annihilation techniques. ' ' First evidences of positron
trapping in deformed metals appeared about twenty
years ago, ' ' and since then several experiments have
been done with samples containing dislocations.
Different kinds of theories have been suggested to explain
the results of these experiments. In the early 1970s Mar-
tin and Paetsch used elasticity theory to calculate the
atomic positions on the dislocation line, and pair poten-
tial to describe the interaction between the positron and
the Al ions. They concluded that the dislocation line in
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Al is only a very shallow trap for positrons with a bind-
ing energy of less than 100 meV. Also Doyama and Cot-
terill and Smedskjaer et al. suggested that the pure
dislocation line is a weak positron trap, and explained the
long lifetimes seen in experiments by pointlike defects
(vacancies, jogs) associated with the dislocation. On the
other hand, Bergensen and McMullen, and Arponen et
al. assumed that the pure dislocation line is a strong
positron trap and could find reasonable agreement with
the experimental data, too.

In this paper we give the results of a microscopic cal-
culation of edge dislocation structures in aluminum and
copper. We have studied the structure of an extended
(a/2)[110] edge dislocation (both the pure dislocation
line and the point defects associated with it) using the
molecular-dynamics and the efFective-medium theory
(EMT). The EMT includes many-atom interactions and
is based on ab initio calculations of the atom in a homo-
geneous electron gas. We start by studying the equilibri-
um separation of the two partial dislocations and the core
structure of the extended dislocation. The equilibrium
separation we find is in agreement with the estimate from
the elasticity theory. The present many-atom interac-
tions result in a core region which is narrower thorn those
found in the earlier pair-potential simulations. In the
second part of the paper we shall study the interaction of
positrons with the defect structures obtained form
molecular-dynamics simulations. The method used in the
positron-state calculations have previously been proved
to give a reliable description of the positron-annihilation
characteristics in a wide variety of crystal defects, both in
metals and in semiconductors. ' ' The comparison of the
calculated lifetimes with the experimentally measured
lifetimes in plastically deformed metal samples clearly in-
dicates that the pure dislocation line is only a shallow
trap, whereas the observed long lifetimes come from posi-
trons trapped at vacancies or jogs in the dislocation core.

In Sec. II we shall briefly describe the atomic interac-
tion model which is used in the molecular-dynamics
simulations. The model and method of calculating the
positron states are described in Sec. III. The results of
the molecular-dynamics simulations for the core struc-
ture of the extended dislocation are discussed in Sec. IV,
and the results for the positron annihilation in disloca-
tions in Sec. V. Section VI contains our conclusions.

II. THE EFFECTIVE-MEDIUM THEORY

N

Eto g Ec, (n, )+DE&,, +bEAs . (3)

In this expression the main contribution to the cohesion
energy comes from the first term on the right-hand side.
The second and the third term are corrections, which will
be defined at the end of Sec. II. The density-dependent
energy function Ec; is defined as

Ec, (n; )=E;"' (n, )
—a(n,. )n, ,

where E;"' (n;) is the embedding energy of atom i in a
homogeneous electron gas of density n;, and a(n; ) is an
integral of the induced electrostatic potential b,P over a
neutral sphere of radius s;,

a(n, )= J bP(r)dr .

tended model describes well the thermal expansion and
melting. This section shortly reviews the physical pic-
ture in EMT. The parametrization of the potential,
which has been used in the molecular-dynamic simula-
tions, is given in Ref. 33.

The approach of Jacobsen et al. is based on the ansatz
that the total electron density of a metallic system (com-
posed of N atoms) can be written as a superposition of
free-atom-likes densities b n, (r),

n (r) = g hn;(r), (2)
i=1

where b,n;(r) is an electron density induced in a homo-
geneous electron gas by the presence of atom i. In the
calculation of the electron densities EMT makes the so-
called atomic-sphere approximation, where the system is
composed of atomic spheres centered at the fcc-lattice
sites. The radius of a sphere is determined by the re-
quirement that the sphere is electrically neutral. In the
lattice in equilibrium this definition is the same as that of
a spherical Wigner-Seitz cell associated with each atom.
The requirement of neutrality produces a unique relation-
ship between the radius of a given atomic sphere s,- and
the embedding electron density at the corresponding lat-
tice site n, . The embedding density at each lattice site
can be calculated from the positions of neighboring
atoms. For each element there is an optimum embedding
density no, which determines the equilibrium lattice con-
stant of its solid phase.

The total binding energy of a metallic system is now
written as

The nearest-neighbor formalism of the EMT has been
described in detail by Jacobsen et al. It has been
proved to be successful in describing many properties of
fcc metals, such as the structure of a pure metal surface
or an adsorbate-surface system, and the high-temperature
dynamics of a metal surface. ' However, it cannot be
applied directly to extended dislocations, because it does
not have any energy of formation for the stacking fault
between the two partial dislocations. We have followed
the outlines of Jacobsen et al. to extend the range of the
atomic interactions beyond the nearest neighbors. We
have tested the extended theory by simulating the
thermal behavior of bulk copper. We found that the ex-

The subscript i is written explicitly to indicate that the lo-
cal electron density depends on the atomic site. The
cohesive function Ec(n ) has been calculated by Puska et
al. for a large number of elements. These functions are
unique in the sense that the same function can be used for
a given element both in a pure metal or in an alloy. Qual-
itatively, the form of the cohesive function is related to
the chemical activity of the element: the inert gases have
a linear repulsive E&, but in other elements E& usually
has a single minimum. This minimum is a result of com-
petition between the kinetic repulsion, which dominates
in the embedding function E"', and the electrostatic at-
traction a(n )n In —the density r.egion usually found in
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metals, Ec functions are parametrized with third-order
polynomials, where the zeroth-order coelcient is (by
definition) the equilibrium cohesive energy per atom, and
the second-order coeScient is related to the bulk
modulus.

The second term in Eq. (3) is the correction to the
cohesion energy coming from one-electron energy levels.
This correction is important in transition metals, which
have partially filled d bands (and many of them have a
bcc structure). For nontransition metals like aluminum
and noble metals this one-electron energy correction is
assumed to be small.

The third term in Eq. (3) is the so-called atomic-sphere
correction. It arises from the fact that the neighboring
Wigner-Seitz spheres begin to overlap when atoms are
distorted away from their equilibrium positions. This
overlap energy is defined to be

Ezs= —
—,
' 0 rn r rdr, (6)

where n (r) and P(r) are the total electron density and the
electrostatic potential potential, respectively, and O(r) is
the overlap function, O(r) =m —l, where m is the num-
ber of overlapping spheres at point r. The atomic-sphere
correction for atom i consists approximately of the elec-
trostatic interaction an; and of a sum of pair interactions
V(r; ), as shown in Ref. 9.

If the one-electron energy correction is neglected
(which can be done, e.g. , in the case of simple metals and
noble metals), the binding energy expression in EMT (3)
can be written as a sum of a density-dependent many-
atom term and a pair term [Eq. (1)]. The basic difference
between EMT and other novel many-atom schemes'
is that nearly all parameters needed in EMT can be calcu-
lated in the framework of the density-functional theory.
The parametrization of the "embedded-atom method"
(EAM), ' the "Finnis-Sinclair (FS) model, "" and the
"glue model"' is based on empirical fitting, although the
functional forms used in EAM and FS models also have
theoretical background. The relationship between EAM,
FS, and EMT models has been studied in more detail by
Johnson.

III. CALCULATION OF POSITRON STATES

The potential seen by the positron, its wave function,
and annihilation characteristics in a given atomic ar-
rangement have been calculated using the method of Pus-
ka and Nieminen. This method is based on non-self-
consistent electron structures, which makes it much less
time consuming than the simultaneous self-consistent cal-
culation of the electron density and the positron state.
Model calculations, which have been made by the two-
component density-functional theory (DFT) (Refs. 36 and
37) for the positron localized in a metal vacancy, show
that the self-consistency of the electron structure changes

I

the positron annihilation rate only slightly. For a nonlo-
calized positron in a perfect metal host the difference in
positron lifetimes is even smaller because the non-self-
consistent superposition of free atoms used in the present
method reproduces rather well the electron density and
the open volume in the interstitial regions. In the case of
a perfect host these are indeed the most important as-
pects of the positron-state calculations, because, due to
the strong repulsion from the ion cores, the positron
wave function is mainly localized in the interstitial re-
gions between the ions.

Positron-state calculations are started by solving the
electrostatic potential and the electron density of a free
host atom. In calculating the electronic structure we use
the DFT with the Ceperley-Alder exchange-correlation
function as parametrized by Perdew and Zunger. The
fully three-dimensional Coulomb potential Vc,„~, b and
the electron density n seen by the positron in the host
are then obtained by placing these free atoms to the
points R; determined by the molecular-dynamics simula-

tion:

Vc,„), b(r)= g V„(~r—R;~),
(7)

Here V„(r) and n, , (r) are the spherically symmetric
electrostatic potential and the electron density of a free
atom at distance r, respectively.

The positron potential V+ entering the corresponding
Schrodinger equation consists of an electrostatic part,
Vc,„~, b of Eq. (7), and a correlation potential V„„,
which is caused by the interactions between the positron
and the host electrons. The correlation potential is es-
timated from the many-body calculations of Arponen and
Pajanne for a positron in homogeneous electron gas.
The local-density approximation is used in determining

V„„,and the total potential is

V+(r)= Vc,„], b(r)+ V„„(n (r)) .

Here n is the undisturbed electron density, which
means that V„„corresponds to the low positron density
limit of the effective positron potential which is used in
the two-component DFT. The present method is thus
correct in the low positron density limit of the two-
component formalism.

The potential of Eq. (8) is calculated at the nodes of a
three-dimensional mesh which forms an orthorhombic
Bravais lattice. The Schrodinger equation is discretized,
and the positron wave function and its energy eigenvalue
are solved iteratively at the mesh points by a numerical
relaxation method. ' In the nth iteration loop the ener-

gy eigenvalue c,
'"' is obtained from the corresponding

positron wave function and the potential as

~(n) (n)
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in atomic units. Here p;jk is the positron wave function at mesh point (i,j,k), h, (i =1,2, 3) is the separation between
two adjacent mesh points in the!th direction (perpendicular to each other), and V; k is the positron potential at point
(i,j,k) As the initial value of the positron wave function we use a cosinelike function which has its maximum value in
the middle of the three-dimensional calculation mesh. In the (n +1)th iteration loop the wave function is calculated
from the discretized Schrodinger equation as

.I.(n +1)
'Pij k

2
( Pi —1, j k + Pi + 1, j k ) 3 ( Pi j —1, k Pi j + 1, k ) + 3 ( 4i j k —1+0i j, k + 1 }

1 2 3

1 1 1 („)2+ 2+ 2+VIJk F
h, h3 h3

(10}

IV. MOLECULAR-DYNAMICS RESULTS
FOR THE EXTENDED EDGE DISLOCATION

Energetically, the most favored perfect (undissociated)
edge dislocation in fcc metals has dislocation line direc-
tion (112) and Burgers vector b=(a/2)(110) (in units
of the lattice parameter). However, this kind of perfect
dislocation does not occur in metals, because it can
reduce its elastic energy by dissociating into two Shock-
ley partial dislocations according to the scheme

b~b)+b2,
(a/2)(110) ~(a/6)(211) +(a/6)(121) .

(12}

The partial Burgers vectors b, and bz lie in the same (111)
plane, which means that the partial dislocations are likely
to glide in that plane, but they cannot climb. Here we
define the glide plane to be that (111) plane which con-
tains the partial dislocation lines. We use also the con-
cept of slip plane. This is a virtual (not atomic) plane be-
tween the glide plane and the adjacent (111) plane with
missing atoms. The dissociation of the perfect disloca-
tion changes the stacking sequence of the (111)planes be-
tween the partials. The equilibrium separation of the
partials is determined by the balance between the repul-
sive elastic force and the attractive force coming from the
stacking fault. In this section we present molecular-
dynamics results for the dissociation of the perfect dislo-
cation to Shockley partial dislocations and for the relaxed
structure of the partial dislocation pair, which is called

in atomic units. The calculation is finished when the en-
ergy eigenvalue does not change in two consecutive itera-
tion loops.

The positron-annihilation rate, the inverse of the life-
time, is given by

A,,=mroc J dr~/(r) [n„(r)y, (n, (r))

+nz(r)yd+n, (r)y, ], (11)

where ro is the classical radius of electron, c is the veloci-
ty of light, n„nd, and n, are the valence-electron, d-
electron, and core-electron densities, respectively. y, ( n )

is the Brandt-Reinheimer enhancement factor for the
valence electrons. yd and y, are the enhancement fac-
tors for the d electrons and core electrons, respectively.
For these we have used the values given by Puska and
Nieminen.

A. Calculation of the stacking-fault energy

The energy of the stacking fault is calculated with a
cell of eight close-packed (111) layers of 36 atoms con-
taining an intrinsic unrelaxed stacking fault with the se-
quence ABCBCABC. Periodic-boundary conditions are
imposed in all directions, so the sample is a portion of a
bulk crystal with an infinite stacking-fault plane. The
lattice parameter of the crystal is equal to its zero-
temperature value which is an outcome of the EMT: 7,68
a.u. for Al and 6.60 a.u. for Cu. The stacking-fault ener-
gy y is then determined by

E' —NE0
(13)

where E' is the total potential energy of the sample con-
taining the stacking fault, N is the number of atoms in
the cell (288), Eo is the cohesive energy per atom, and A

is the area of the (111}plane. The results for Al and Cu
calculated with various ranges of interactions are present-

the "extended dislocation. " This spontaneous dissocia-
tion and the relaxed structure can be reliably simulated
only if the atomic interaction model is capable of giving a
reasonable energy for the formation of the stacking fault.
The stacking-fault energies calculated from the extended
EMT for aluminum and copper are discussed in Sec.
IV A. The molecular-dynamics simulations of the disso-
ciation of the perfect dislocation and the resulting ex-
tended dislocation are discussed in Sec. IV B. The earlier
studies of the extended dislocations in fcc metals have not
usually been fully dynamical calculations, but based on
various relaxation methods and on a very careful adjust-
ment of the boundary conditions during the dissociation.
Here we show the power of the molecular dynamics to
spontaneously create the dynamical equilibrium between
the partials. We can exclude the effects of the boundary
conditions on our results by using large sample sizes and
two qualitatively different simulation geometries: the rod
geometry and the bulk geometry. Simulations with the
bulk geometry lead to an edge dislocation dipole and are
discussed in Sec. IV C. The real dislocations are always
accompanied with pointlike defects in the dislocation
core: vacancies, interstitials, jogs, and kinks. We have
studied the relaxation of a vacancy on the dislocation line
and in the stacking-fault region. The results of these
simulations are discussed in Sec. IVD with reference to
the renewed interest in the pipe diffusion in disloca-
tions. '
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TABLE I. The formation energy y for an unrelaxed stacking
fault in aluminum and copper calculated from the effective-

medium theory. The cutoff radius is given with numbers
—', —, . . . , to show whether the range of the interactions has been

in the middle of third and fourth, fourth and fifth, etc. neigh-
bors in the fcc lattice. The stacking-fault energies are in units of
ergs/cm . The last line shows the range of the experimentally
estimated values (Refs. 44 and 47) for y.

quence inside the fcc crystal were found to increase by
0.3%, 0.8%, and 0.3%, respectively. This result is in
agreement with the results of Cotterill and Doyama,
who found similar increase of the lattice spacing in the
stacking fault region.

In the rest of the paper the atomic interactions are ex-
tended only to the third neighbors in order to guarantee a
reliable energy for the stacking fault.

Cutoff y(Al)
(ergs/cm )

y(Cu)
(ergs/cm ) B. Structure of the extended dislocation

3
4
4
5
5
6
6
7

expt.

55
—9
7

—14

140-200

79
—13

7
—17

30-80

ed in Table I together with experimentally observed
values. ' In the present scheme of cohesion, the
stacking-fault energy is determined by the atomic sphere
correction [the last term in Eq. (3)], because the one-
electron energy correction is neglected, and the cohesive
function Ec is not sensitive to small structural changes.

The stacking-fault energy we find for Cu agrees very
well with the experimental results, provided the interac-
tions are extended to the third nearest neighbors in the
fcc lattice. The oscillating behavior of stacking-fault en-

ergy as a function of the interaction range is, in fact, no
surprise. A similar sensitivity to the range of the interac-
tions has been found also for empirical pair potentials
and pseudopotentials In the case of EMT, one can ar-
gue that the exponential approximation of the density
tails is not a good description for the true induced densi-
ties far from the atom, where the Friedel oscillations may
play a role. The calculated stacking-fault energy for Al is
about one-third of the experimental value. It is worth
noticing that the fcc metals with high stacking-fault ener-
gies, such as Al and Ni, appear to be problematic as well
in the other novel many-atom models' as in many empir-
ical pair potentials. Some success has been achieved in
calculating the stacking-fault energy of aluminum using
pseudopotentials. It can be expected that the main con-
tribution to the stacking-fault energy comes from the
redistribution of the valence-electron density and the re-
lated modification of the Fermi surface near the zone
boundaries. In aluminum these modifications are much
more significant than in a monovalent metal like copper,
which has a nearly free-electron Fermi sphere. Nickel,
on the other hand, has an incomplete d band, which may
indicate the importance of directional effects in the stack-
ing fault region. The simple spherical averaging made in
the calculation of electron densities in EMT cannot ac-
count for the effects coming from the modified Fermi sur-
face or from directional bonding.

In addition to the static calculations of the unrelaxed
stacking fault, the effects of relaxations were determined
for aluminum with a molecular dynamics run of 6 ps.
The three layer-by-layer distancies within the BCBC se-

The preparation of the sample which contains a perfect
edge dislocation is started with an ideal fcc crystal
defined in the real space by the lattice vectors 8a [111],
(3a/2)[112], and 28a [110],which form the x, y, and z
edges of the simulation cell, respectively. The numbers of
primitive cells in the x, y, and z directions are then 8, 3,
and 56. This means that the number of (111), (112), and
(110) planes are 24, 18, and 112, respectively, and the to-
tal number of atoms is 8064. The density of the sample is
set equal to the zero-temperature lattice which is deter-
mined by the effective medium theory. After that, two
adja- cent (110) half-planes are removed in the middle of
the sample resulting in the stacking sequence
. . . AB ABClQ AB AB. . . (0 stands for the missing
plane). One half-plane is further moved by
one lattice spacing resulting in the structure
. . . ABABOA OBAB. . . . All atoms are then displaced
according to the linear elasticity theory, and the result-
ing configuration is the starting point for the molecular-
dynamics simulations. Simulations are made with a
modified rod geometry, the only periodic direction being
the dislocation line direction [112]. The two (111) sur-
faces of the sample are free, but three atomic layers on
the two (110) surfaces are fixed at the positions calculated
from the linear elasticity theory, resulting in an asymp-
totically constant elastic stress imposed on the partials.
The resulted configuration of 7992 atoms (from which
7560 dynamical) is the starting point for the constant-
volume (microcanonical) molecular dynamics. The
Newtonian equations for the atoms are solved by a third-
order predictor-corrector algorithm with a time step of
3 fs for both Al and Cu. The lengths of the runs have
been 4000 time steps which corresponds to 12 ps in real
time.

The dissociation of the perfect dislocation was found to
take place immediately after the dynamical calculation
was started. The kinetic energy of the atoms was re-
moved after each 10 time steps (0.03 ps) to allow the sys-
tem to relax to the equilibrium structure. Dissociation
was completed in about 4 ps in both simulations, and the
separation distance of the partial dislocations remained
constant thereafter. We have determined the average
system structure during the time interval of 2000—4000
time steps (6—12 ps), when the temperature has been of
the order of 10 K, which means that the contribution
of the kinetic energy to the total energy is vanishingly
small, and the average positions of the atoms coincide
with their zero-temperature positions.

We illustrate the structure of the extended dislocation
in copper in Fig. 1(a), which shows the average atomic
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d(b, u)pz
dz

(14)

positions in the (111) planes above and below the slip
plane. The different stacking in the middle of the partials
is clearly seen. The positions of the partials were deter-
mined by calculating the density distribution of the
Burgers vector, defined as

-50 0
z (a.u. )

50

{a)QQQQQ0000000000QQQQQQ
e e o o e e o ~p000000000000Qpppp~ ~ 0 ~ ~ ~ ~ ~ y ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

p ppp p 00000000000 p 0 p p~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~pp000000000000Qpppp~ ~ ~ 0 ~ ~ ~ ~ ~ ~ y ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ppp 0 0 0000000000 0 p~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ppp00000000000pppppp~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

where b,u(z)=~u„—us~ is the displacement difference
(also called disregistry or misfit) between the atoms in the
adjacent (111)planes above and below the slip plane. We
have plotted b, u (z) for copper in Fig. 1(b), and the corre-
sponding p(z) in Fig. 1(c). The width of the dislocation
core w can be defined as the range of the z coordinate
around the partial where the magnitude of the disregistry
is less than b/8. The magnitude of the equilibrium sepa-
ration between the partials can be easily estimated using
the linear elasticity theory. By taking into account that
the dissociated partials have both edge and screw corn-
ponents, the elastic estimate for the equilibrium separa-
tion is

lQ

o
V)

CVo
N
C
Q)

-50 0
z (a.u )

50

Br02
80 = 2—"-

16 r
3v

1 —v
(15)

where 8 is the bulk modulus, r0 the nearest-neighbor dis-
tance, y the stacking-fault energy, and v the Poisson's ra-
tio, which is known to be about 0.3 for metals. Using the
values evaluated from EMT for Al (B =86 Gpa, ro =5.43
a.u. , and y=55 ergs/cm ), do'=49 a.u. (9b in terms of
Burgers vector). For Cu the corresponding values are
B =185 GPa, r0=4. 67 a.u. , and y=79 ergs/cm which
gives do =53 a.u. (11.4b). The equilibrium separation do
and the width of the dislocation core w for both Al and
Cu are given in Table II together with some previous re-
sults calculated with empirical pair potentials or pseudo-
potentials. The equilibrium separations determined from
the molecular-dynamics results are 46+2 and 49+2 a.u.
for Al and Cu, respectively, in agreement with the elasti-
city theory. The error is estimated by comparing the
values of d0 obtained from two calculations for Al which
use different cell sizes (see below), and is less than one

0
00~o
V)
l
Q)
U)

~o&o
0

-50 0
z (a.u. )

50

FIG. 1. The structure of the extended dislocation in Cu. (a)
shows the atomic positions on the (111) layers below (open cir-
cles) and above (solid circles) the slip plane. The atoms denoted
with solid circles belong to the glide plane. (b) shows the misfit
(disregistry) between the atomic planes shown in (a). The densi-

ty distribution of the Burgers vector is plotted in (c). The posi-
tion of the partials can be determined with the aid of (b) and (c),
which are plotted in the same coordinate scale as (a). The
difference in the stacking between and outside the partials as
well as the lattice distortion in the [112] direction due to the
stacking fault can be clearly seen in (a).

TABLE II. The comparison of the effective-medium results for Al and Cu with the previous pair-
potential calculations for Cu. y is the stacking-fault energy produced by the potential model, dp is the
observed equilibrium separation between the partial dislocations, dp is the elastic estimate for the par-
tial separation, m is the core width (see text for the definition), and N is the number of dynamical atoms
in the sample. b is the magnitude of the Burgers vector.

Al
CU

Potential

EMT (this work)
EMT (this work)
Morse
Englert et al.
Englert et al. '
Dagens"

r
(erg s/em')

55
79
31
70
70
73

8p
(b)

8.5 (46+2 a.u. )

10.5 (49+2 a.u. )

8

9.2
13
=9

gaelp

(b)

9 (49 a.u. )

11.4 (53 a.u. )

7.2

7560
7560

=4200
504

1120
7776

'Reference 47.
Reference 50.

'Reference 51.
Reference 45.
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FIG. 2. The density distribution of the Burgers vector for Al
calculated with the samples of 3528 (dotted line) and 7560 (solid
line) dynamical atoms. The separation of the partials is the
same within the accuracy of about 2 a.u. , which is less than one
(110)plane separation.

(110) plane separation. Previous calculations for copper
have also shown that the equilibrium distance between
the partial dislocations is mainly determined by their
elastic interaction ' ' ' provided the sample has been
large enough in the glide direction. However, the EMT
seems to produce a somewhat narrower dislocation core
for partial dislocations in copper than the previous pair-
potential calculations. The atomic displacements in the
core region are sensitive to the potential, and our results
may show effects from many-atom interactions which
have been neglected in the previous calculations.

We find that the rigid surface layers perpendicular to
the direction in which the partial dislocations are gliding
do not give a noticeable effect on the observed equilibri-
um distance between the partial dislocations. We use the
rigid surface layers according to our previous experience
of test simulations of one partial dislocation. In these
simulations the partial dislocation always escaped from
the sample, if the surface perpendicular to its glide direc-
tion was free. This long-range attraction between the free
surface and the partial dislocation is caused by an image
force. On the other hand, a dislocation is not likely to
move in a vicinity of a rigid surface, because it cannot ad-
just itself to the large atomic displacements associated
with the core region. To ensure that the rigid (110) sur-
faces do not stop the partial dislocations the sample was
made extensive in the [110] direction. Moreover, we
made an identical simulation for an Al sample with only
half of the previous width of the cell in the [110] direc-
tion (the number of dynamical atoms was 3528). The
density distribution of the Burgers vector obtained from
this calculation is shown in Fig. 2, together with the cor-
responding density profile obtained from the simulation

for the larger sample. As can been seen, the density
profiles are almost identical, and the equilibrium distance
between the partials is the same up to 2 a.u. , which is less
than one (110) plane separation. This ensures that the
observed structure of the extended dislocation is deter-
mined by EMT, and not by the boundary conditions.

In addition to the rod geometry, we have also used the
bulk geometry for aluminum. This leads to an edge dislo-
cation dipole, which further dissociates into four Shock-
ley partial dislocations as discussed in Sec. IVC. This
calculation confirms our results for one isolated partial
pair.

C. The edge dislocation dipole in Al

In order to test further the validity of our results for
isolated partial pair we have also used completely
different boundary conditions and sample preparation
than that discussed above. This test was made for Al and
it shows the ability of EMT and molecular dynamics to
relax the sample, originally very far from equilibrium, to
a physically reasonable state. We started with an ideal Al
crystal (at the zero-temperature density) defined by the
lattice vectors 8a [111],(3a/2)[112], and 14a [110] in
the x, y, and z directions of the real space, respectively.
Two adjacent (110) half planes were then removed from
the sample after which the total number of atoms was
3960. This remaining crystal was then the starting
configuration for a constant-pressure molecular-dynamics
simulation. The periodic-boundary conditions were im-
posed in all directions, so the initial bulk crystal bulk
crystal had a semi-infinite rectangular vacancy tube in
the [112] direction. The velocities of the atoms were
scaled such as to correspond to the temperature of 100 K,
and the system was allowed to evolve dynamically under
Parrinello-Rahman-type equations of motion. The va-
cancy tube was observed to immediately collapse into a
pair of perfect (a /2)[110] edge dislocations separated by
12 atomic planes in the [111]direction. Both of these
edge dislocations further dissociated to Shockley partial
dislocations, which then started to glide. All this hap-
pened during the first 2000 time steps (6 ps) of the simula-
tion, during which the temperature was scaled to 100 K
after every 15 time steps (0.045 ps). The sample was then
cooled down during the next 6000 time steps (18 ps), and
the system was allowed to evolve freely during the final
8000 time steps (24 ps). The total length of this three-
stage simulation was thus 16000 time steps correspond-
ing to 48 ps in real time. The relaxation procedure is il-
lustrated in Fig. 3, which shows the behavior of the po-
tential energy, temperature, and volume during the simu-
lation. At 100 K the determination of the partial separa-
tions is difficult, because the whole unit of the four par-
tials is moving in the glide direction. The movement
stopped during the cooling stage, and a well-defined equi-
1ibriurn structure, thereby, resulted. The partial separa-
tions were determined from the density distribution of
the Burgers vector as before. The relaxed positions of the
four partials are shown in Fig. 4, where the simulation
cell has been shifted in the [111] direction for clarity.
The separations between the partials are slightly different
from each other being about 38 and 41 a.u. The shorter
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FIG. 4. The equilibrium structure of the extended edge dislo-
cation dipole in Al. The slight distortion from 45' of the rela-
tive angle between the dipoles is due to the mutual interactions
of the four partials. The computational cell is shifted in the
[111]direction to aid the visualization.
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FIG. 3. The evolution of (a) the potential energy per atom E,
(b) the temperature T, and (c) the atomic volume V during the
three-stage simulation of the edge dislocation dipole in Al.

striking property is their fast diffusivity, which can have
nearly liquidlike values close to the melting point. The
(vacancy-type} point defects play an essential role also in
the positron studies of dislocations, where the origin of
the "medium-time" components (longer than the lifetime
in the bulk but clearly shorter than the lifetime in a
monovacancy) in the positron-lifetime spectra and the
trapping mechanism have been subjects of controver-

equilibrium distance than that found in Sec. IV B for one
isolated partial pair in Al (46 a.u. ) is clearly a result of the
mutual interactions of the four partial dislocations. Fig-
ure 4 also shows that a general result of the linear elasti-
city theory holds: two edge dislocations with opposite
Burgers vectors and different glide planes tend to form a
relative angle of 4S'. The equilibrium structure we And
for the extended dislocation pair for aluminum agrees
very well with the results of Tichy and Essman. ' They
used an iterative relaxation method and a semiempirical
many-atom potential' to investigate the dislocation di-
poles (of interstitial and vacancy type) in copper. They
determined the total energy of various dislocation di-
poles, and usually found many metastable configurations.
The structure, which they found to give the lowest energy
for the dislocation dipole separated by 12 (111)planes, is
very close to the one obtained in this work.

&110&

D. Vacancy in the dislocation core

Dislocations in real metals always have point defects
on the dislocation line. Point defects can diffuse into the
core region from the undistorted parts of the crystal or
they can be formed by collisions of moving dislocations.
The behavior of the points defects in the dislocation core
is drastically different from that in the bulk. The most

FIG. 5. Vacancy (a) on the partial dislocation line and (b) at
the center of the stacking-fault region (in the glide plane) in Cu.
The large asymmetric relaxation seen in (a) is caused by the un-
isotropic stresses originating'in the stacking-fault region and in
the ideal part of the lattice.
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Ev=E(7991 atoms) —,",,",E(7992 atoms) . (16)

sy. We shall return to this question in more detail in

Sec. V. In this section we shall discuss the structural
properties of a vacancy in the dislocation core in Cu with
respect to a recently proposed model for the defect
diffusion in the dislocation core.

The relaxation of the vacancy is studied in this work
with constant-volume molecular dynamics which start
with the equilibrium configuration for an extended dislo-
cation in a sample of 7992 atoms (Sec. IV B). In order to
study the dependence of the relaxation on the position of
the vacancy in the dislocation core we have considered
two cases: a vacancy on the dislocation line of one of the
partials, and a vacancy in the middle of the stacking-fault
region in the glide plane. In both cases we have made a
run of 4000 time steps (12 ps) and determined the average
structure of the lattice during the last 2000 time steps (6
ps). The results are illustrated in Fig. 5, which shows the
relaxation around the vacancy in the (111) glide plane.
As can be seen in Fig. 5(a), the vacancy is significantly
and asymmetrically relaxed on the dislocation line. This
asymmetric relaxation is caused by the difference in the
lattice stresses originating in the undistorted part of the
crystal and in the stacking-fault region. On the other
hand, the relaxation of the vacancy is symmetric in the
rniddle of the stacking-fault region. This difference in the
relaxation is seen also in the positron-lifetime calculations
(Sec. V).

We have also estimated the vacancy formation energy
by comparing the total energies of samples with and
without the vacancy:

fault area than in the bulk. This means that there is con-
siderable vacancy diffusion at the center of the stacking-
fault area. They could also see this phenomena by the
molecular-dynamics simulations. Our results would indi-
cate that there is a large diffusion barrier between the
partial dislocations, and fast diffusion could take place
only in the narrow dislocation cores of the partial dislo-
cations. In the EMT the vacancy formation energy is re-
lated to the embedding density. Figure 6 shows the
embedding density as a function of the z coordinate in the
(111) planes just above and below the slip plane. The
maxima of the embedding density are located on the par-
tial dislocation lines resulting in a clear minimum at the
center of the stacking fault in the glide plane. Our results
show that the vacancy diffusion is highly sensitive to the
detailed core structure produced by the model potential.
Huang et al. observed a significant overlap of the partial
dislocation cores [Fig. 1(c) in Ref. 45], which leads to a
very narrow area where the stacking fault is ideal. In
contrast with this, in our results the misfit is not so wide-

ly spread and, therefore, there is a well-defined area be-
tween the partial dislocations with an ideal stacking fault.

V. DISLOCATIONS AS POSITRON TRAPS

We determine first the energy and lifetime of the posi-
tron for perfect Al and Cu crystals. The lattice constants
which we use in the calculations are given by the EMT
results for Al and Cu at zero temperature (7.68 a.u. for
Al and 6.60 a.u. for Cu). We use these lattice constants
instead of the experimental lattice constants in order to
make the results for the bulk and for the defected crystals

The results for a vacancy on the dislocation line, in the
rniddle of the stacking-fault region, and in the bulk are
given in Table III. As expected, the vacancy formation
energy on the dislocation line is smaller than that in the
bulk. However, in the middle of the partial dislocations,
Ev is larger than in the bulk. This is in qualitative
disagreement with the results of Huang et al. (also in-

cluded in Table III). They used for copper a pseudopo-
tential of Dagens and calculated the vacancy formation
energy at difFerent positions in the core region. They
concluded that the efFective energy of vacancy formation
is 0.3 ev lower in the core region and in the stacking-

Q O
~O

Q)

Bulk
Partial dislocation line
Center of the stacking fault
Core region

1.47
1.33
1.57

1.42

1.15

1.31

TABLE III. The vacancy formation energy in the extended
dislocation calculated from EMT for copper compared with the
results obtained with the Dagens pseudopotential by Huang
et al. (Ref. 45) and the experimental value in the bulk (Ref. 55).
The value for the vacancy in the dislocation core reported in
Ref. 45 is an effective formation energy calculated at several lat-
tice positions in the core region.

This work Huang et al. Expt.

-90 0
z (a.u.)

90

FIG. 6. The embedding density as a function of the z coordi-
nate on the (111)planes above (upper curves) and below (lower
curves) the slip plane in the regions of compressive and tensile
stresses, respectively. The solid lines are for the planes adjacent
to the slip plane, the dotted lines represent the second planes
from the slip plane, and the dashed lines represent the third
planes from the slip plane. The partial dislocation lines appear
as the maxima of the embedding density in the glide plane
(upper solid curve). The vacancies shown in Fig. 5 are in the
glide plane. Note that in the stacking-fault region, the atoms in
the second and in the third planes above the slip plane have a
greater embedding density than those in the glide plane.
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comparable. In the case of Al the calculated positron
lifetime in the perfect crystal is 173 ps, a little bit longer
than the experimental value of 163—166 ps. ' When
the slightly smaller experimental lattice constant (7.62
a.u. ) is used, the calculated positron lifetime decreases to
170 ps. For Cu the measured lattice constant is 6.82 a.u. ,
about 3%%uo longer than the EMT value. However, in the
latter case the calculated positron lifetime of 113 ps is al-
most the same as the experimental value of 110—112
ps. ' By using the experimental lattice constant the
calculated bulk lifetime for Cu is 125 ps.

In these calculations of the positron annihilation in
perfect lattices, the unit cell was chosen to be a quadran-
gle consisting of three atomic layers in the [111]direc-
tion, six layers in the [112] direction, and two layers in
the [110]direction. A mesh was formed in the unit cell
by dividing the distance between any two adjacent atomic
layers into 16 segments in the [111]direction and into 8
segments in the other two directions (N„= 16 and
N =N, =8). In this way the separation between the
nodes of the mesh [the h& values in Eq. (9)] was, e.g. for
Al, 0.14 A in the fill] direction, 0.10 A in the [112]
direction, and 0.18 A in the [110]direction. In determin-
ing the Coulomb potential and the electron density inside
the cell, the contribution of the atoms outside the cell was
also taken into account. In the calculation of the posi-
tron wave-function, periodic-boundary conditions were
imposed in all three directions.

In studying the trapping of the positron on the disloca-
tion line, the boundary conditions for the positron wave
function were changed to be periodic only in the direc-
tion of the line ([112]). In the other directions the wave
function was set equal to zero at the walls of the compu-
tational cell. The dimensions of the cell were, e.g., for Al,
10.6 A in the $111] direction, 4.97 A in the [112] direc-
tion, and 8.62 A in the [110]direction. Due to the large
integration volume compared with those of the perfect
lattices, the mesh was now slightly sparser: F =10, and

FIG. 7. The positron wave function on the partial dislocation
line in Al. No significant trapping center can be seen in the core
region.

Xy Nz 5 As can be seen in Fig. 7, the positron wave
function on the dislocation line in Al is delocalized in the
whole cell. No particular trapping center can be found in
the core region of the dislocation, and the positron is free
to move along the dislocation line. Note that localization
which is perpendicular to the dislocation line, seen in Fig.
7, is mainly due to the boundary conditions: the wave
function is zero at the (111)-cell boundaries.

In order to estimate the binding energy of the positron
on the dislocation line, the calculation was carried out
also for perfect crystals with the same boundary condi-
tions. The binding energy was now obtained by subtract-
ing the energy of the positron on the dislocation line from
that in the perfect crystal with the same boundary condi-
tions. The results are shown in Table IV, and they clear-

TABLE IV. The calculated positron lifetimes v;, ] compared to the experimental values ~,„p,. VA] and
Vc„correspond to the aluminum and copper vacancy, respectively. Eb is the calculated positron bind-
ing energy in the defect. Results for the Al(111) dislocation loop are from Ref. 61.

Al bulk

~A]
[112] dislocation line
[112] dislocation line+ V~,
[112] dislocation line+jog
(111) dislocation loop

+ca]

(ps)

173
252
174
225
224
191

~expt

(ps)

163 '166
245 251'

215 '230

Eq
(eV)

2.0
0.10
1.0
1.3
0.4

bulk

vc.
[112] dislocation line
[112] dislocation line+ Vc„
Vc„ in the stacking-fault region

'Reference 58.
Reference 57.

'Reference 24.
"Reference 21.

113
185
114
166
177

'Reference 59.
'Reference 60.
gReference 62.
"Reference 63.

»0,'112'
165,~179'

155"

1.6
0.06
0.8
1.2
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ly indicate that the pure dislocation line in both Al and
Cu is only a shallow trap for positrons. The positron life-
times are almost the same as in the bulk crystals: 174 ps
in Al, and 114 ps in Cu, with the positron binding ener-
gies of 100 and 60 meV, respectively. A finite integration
volume in this kind of calculation gives rise to an exces-
sive kinetic energy of the positron. This effect is expected
to be larger in the bulk than in a sample containing a
dislocation. The calculated positron binding energies are
then upper limits to the exact values.

Positron-annihilation characteristics were calculated
also for dislocations containing a vacancy. In these cal-
culations the positron wave function was set equal to zero
at the walls of the calculation cell in all directions. In the
[111]and [110]directions, the dimensions of the cell were
the same as in the case of the pure dislocation line, but
the cell contained two unit cells in the [112] direction.
The resulting positron wave function was strongly local-
ized' in the vacancy, although the open volume seen by

FIG. 8. The positron wave function localized (a) in a Cu bulk

vacancy, (b) in a Cu vacancy one the [112]dislocation line, and

(c) in a Cu vacancy in the stacking-fault region (in the glide
plane) between the two partial dislocations.

the positron was smaller than in the case of the bulk va-
cancy (Fig. 8). The binding energy of the positron in this
dislocation vacancy was 1.0 eV for Al, and 0.8 eV for Cu,
clearly smaller than the values for the bulk vacancies
which are 2.0 eV for Al and 1.6 eV for Cu. The positron
lifetimes differed also significantly from those in the bulk
vacancies. In Al a vacancy on the dislocation line result-
ed in a positron lifetime of 225 ps, while the lifetime in a
bulk vacancy is 252 ps. For Cu the positron lifetime was
166 ps in a dislocation vacancy and 185 ps in a bulk va-
cancy.

In an earlier work calculations were also performed
for a row of six vacancies to mimic a jog on the disloca-
tion line in Al. More vacancies would have been needed
to get a separated jog structure. However, a tendency for
localization of the positron in the jog region was ob-
served. The positron lifetime was almost the same as that
in a vacancy on the dislocation line which means that
these two defects must be quite similar with respect to
the volume available for the positron. The results clearly
indicate that the long defect-related lifetimes seen in ex-
periments with metal samples which contain dislocations,
are those of positrons in vacancies or jogs on the disloca-
tion line.

At low temperatures the dislocation line can be a pre-
cursor state for positrons which are going to trap at the
point defects. The trapping rate can be estimated from
the model calculations of Smedskjaer et al. By es-
timating the width of the positron wave function to be 20
a.u. or more, and the binding energy to be about 0.1 eV,
the result of Smedskjaer et al. gives a specific trapping
rate of about 0.1 cm s ' for both Al and Cu. This is in
good agreement with the experimental estimate ' '
0.07—0.15 cm s ' for Al, and strongly suggests that the
dislocation line is a precursor state for the deeper traps
which are observed experimentally.

The lifetime and the binding energy of the positron
were also calculated for a Cu vacancy in the stacking-
fault region between the two partial dislocation lines (see
Sec. IV D). Although the atomic structure of the relaxed
vacancy was almost identical to that of the bulk vacancy
when looked from the [ill] direction there were small
differences in the structure when viewed from other
directions. The positron lifetime was 177 ps, 8 ps shorter
than the lifetime in a bulk vacancy, but still 11 ps longer
than that in a vacancy on the dislocation line. The posi-
tron binding energy in a vacancy in the stacking-fault re-
gion, 1.2 eV, is also between those of a bulk vacancy (1.6
eV) and of a vacancy on the dislocation line (0.8 eV). The
structural differences between the bulk vacancy and the
vacancy on the dislocation line or in the stacking-fault re-
gion are clearly seen, if one compares the contour plots of
the positron wave function localized in these defects (Fig.
8). The calculation of the positron wave function can
also be viewed as an elegant way of studying the open
volume structures of different kinds of defects.

In another simulation, ' a vacancy-type dislocation
loop in the (111) plane of Al was studied. The postiron
was weakly localized in a corner of the loop with a bind-
ing energy of 0.43 eV and a lifetime of 191 ps. By corn-
bining all these various results, one can conclude that
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dislocations in fcc metals provide a wide variety of
different trapping sites for positrons, ranging from very
shallow traps to strong vacancy-type traps. Therefore, a
large number of different lifetimes is expected to be ob-
served in deformed metals, varying from the lifetime in
the bulk to that in a bulk vacancy.

VI. CONCLUSIONS

We have studied the structures of extended edge dislo-
cations in fcc metals by using molecular-dynamics simu-
lations and a many-atom long-range potential derived
from the effective-medium theory. Our calculational
method is able to describe the spontaneous dissociation of
the perfect edge dislocation to Shockley partial disloca-
tions. The resulting configuration is a dynamical equilib-
rium, where the separation and the core widths of the
partial dislocations can be determined. The possible
effects of the boundary conditions in the rod geometry
have been eliminated by using large sample sizes in the
glide direction. A simulation using bulk geometry
confirms our results for the rod geometry. The observed
separations of the partial dislocations in Al and Cu are
consistent with the elasticity theory and with the theoret-
ical stacking-fault energies. The results for copper are
also consistent with those of the earlier pair-potential cal-
culations. However, the core widths we find for Al and
Cu are about 3b, whereas all the pair potential calcula-
tions typically give widths which are close to 5b. This
difference may be a result of the many-atom effects in the
core region.

We have also studied the collapse of the rectangular
vacancy tube, and the resulting edge dislocation dipole in
Al. The equilibrium structure is found to obey a general
rule of the elasticity theory: two line dislocations with
opposite Burgers vectors and different glide planes tend
to move such that their relative angle becomes 45 .

In addition to the structure of the pure dislocation line,

we have also studied the relaxation of a vacancy on the
dislocation line both in Al and Cu, and at the center of
the stacking-fault region in Cu. The relaxation is found
to be large and asymmetric on the partial disloca, tion line.
This is caused by unisotropic stresses originating in the
stacking-fault region and in the ideal part of the crystal.
In Cu, the large relaxation on the dislocation line results
in a lower vacancy formation energy than that in the
bulk. On the other hand, the vacancy formation energy
is higher in the middle of the stacking fault than in the
bulk. This implies that fast vacancy diffusion can take
place only in the narrow core region of the partial dislo-
cations. This is in contrast with a recent proposal for fast
diffusion also in the stacking-fault region, and indicates
the sensitivity of the defect behavior to the details of the
model potential.

Well-tested theoretical methods have been used to cal-
culate the positron-annihilation characteristics in the
pure dislocation core, and in the vacancy-type defects as-
sociated with it. The results show that the pure edge
dislocation line is only a shallow trap, but it can be a pre-
cursor state to deeper traps. These deeper traps are
pointlike vacancy-type defects. The positron lifetime
components resulting from these defects are distinguish-
able from the lifetime coming from monovacancies in the
bulk, and are in agreement with the experimentally ob-
served lifetimes in deformed metals.
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