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Biexciton binding in quantum boxes
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In ultrasmall quantum nanostructures the interparticle Coulomb energy is a small perturbation
to single-particle confinement and kinetic energies. Third-order perturbation theory has been
used to calculate energies of excitons and biexcitons confined in quantum box nanostructures.
The confined biexciton is more stable than two independent excitons in ultrasmall structures. The
confinement-induced enhancement in biexciton binding should be negligible for boxes larger than
several exciton diameters. Results are presented as a function of electron-hole mass ratio to de-
velop a qualitative model of exciton-exciton interactions in zero-dimensional systems.

The near-band-edge nonlinear optical response of a
semiconductor structure is determined by multiexciton
states. In a semiconductor structure with at least one de-
gree of unconfined motion, i.e., in bulk, in a quantum well
or in a quantum well wire, the two-exciton states are biex-
citons, spatially localized by the exciton-exciton effective
attraction. In a zero-dimensional quantum nanostructure,
the confining potential localizes the two excitons to the
same region. However, the exciton-exciton effective in-
teraction still determines the energy of the confined biex-
citon (two interacting, confined excitons) relative to the
energy of two independent confined excitons. The exciton
and biexciton energies must be modeled accurately be-
cause the energy ordering of these states influences the
line shape of the nonlinear optical response. '

A theoretical model for the energies and optical
response of excitons confined in spherical microcrystal-
lites ' and in flat quantum boxes fabricated by nano-
lithography from narrow quantum wells " has been
developed. The development of a theoretical model of
biexcitons confined in zero-dimensional structures was
just recently begun. "' Banyai et al. ' modeled biexci-
tons confined in microcrystallites for the intermediate size
regime where the two electrons occupy the lowest-energy
confinement state but the holes, assumed to have a heavier
mass, are weakly perturbed by the confinement and move

I

in the static potential of the two electrons. Banyai et al. '

calculated the confined-biexciton energy to be greater
than twice the energy of a confined exciton. The destabili-
zation of the confined biexciton was attributed to the
hole-hole repulsion which displaced the holes from the
center of the structure thereby increasing the hole
confinement energy. This destabilization of the biexciton
when confined in all three dimensions is a surprising result
because increasing confinement normally increases bind-
ing energies. "'

The stability of the confined biexciton can be investigat-
ed by low-order perturbation theory. In a zero-
dimensional structure the single-particle kinetic and
confinement energy scales as 1/A and the Coulomb in-
teraction scales as I/A, where A is the size of the struc-
ture. The Coulomb interaction is a small perturbation to
the kinetic and confinement energy in very small struc-
tures. The zeroth- (kinetic and confinement energy) and
first-order (Coulomb energy of the unperturbed ground
state) contributions to the biexciton energy are exactly
twice the zeroth- and first-order exciton energies. The
stability of the biexciton relative to two independent exci-
tons, when confined in a small structure, is determined by
the size-independent second-order energies E2' and EP
for the biexciton and exciton. A straightforward evalua-
tion of second-order perturbation theory' ' shows that
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where V„(11
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U~nm) is the two-particle interaction

which scatters two particles from the ground state ( 11) to
an excited state ~nm) for two confined, noninteracting
particles; E„',E„"~,and E„'" are the confinement energies
for two independent electrons, holes, and an electron and
hole, respectively, and n is the quantum number for the
discrete single-particle states. Ez' —2Ez" is negative, in-
dependent of the form of the interaction U or confinement
energy. Banyai' calculated upper and lower bounds for
Ez' —2Ez" and found enhancement of the biexciton bind-
ing in zero-dimensional structures in contrast to previous
predictions of destablization. '

We have used third-order perturbation theory to devel-
op a more complete model of biexciton binding in small

l

structures. We evaluate the second-order energies (nu-
merically) exactly to determine the enhancement of biex-
citon binding expected in very small structures. %'e cal-
culate the third-order energies to estimate the range of
structure sizes which provide enhanced biexciton binding.
Takagahara' estimated the size dependence of biexciton
binding by use of a variational approach. He predicted
enhanced biexciton binding in large structures. However,
in small structures the biexciton had a higher energy than
two independent excitons, contrary to perturbation theory.
The third-order results presented here should provide the
best estimate to date of biexciton binding in very small
structures.

We model biexcitons which are confined in zero-
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dimensional structures fabricated from narrow quantum
wells by use of nanolithography to confine the lateral
motion. The well width w is assumed to be much nar-
rower than the lateral dimension A of the box (a square
cross section is used for simplicity). The same model has
been used to study confined excitons. " The electrons and
holes are treated in the isotropic effective-mass approxi-
mation. The confining potential is assumed to be infinite.
The dielectric mismatch between the well and the barrier
is ignored so the interparticle interaction is the statically
screened Coulomb interaction. The effects of the shape of
the structure and of nonisotropic hole masses, as occurs in

quantum wells, are considered in another publication. '

The stability of the biexciton is determined by the ener-

gy difference
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E2" and E2' are calculated using expressions similar to
Eq. (l). E3" and E3' are determined by a straightforward
evaluation' of the third-order energy term. Typically,
ten single-particle basis states for the lateral confinement
in each direction were included to evaluate the energy
sums accurately. ' To reduce the number of transitions
included in the sums we used an empirically accurate
"conservation of momentum" approximation. In a
confined system the basis states are standing waves, one
component of the standing wave with wave vector k and
the other with wave vector —k. In the conservation of
momentum approximation we include only those transi-
tions which couple two-particle initial and final states
which have at least one standing-wave component with
the same wave vector.

The exciton and biexciton energies depend on the ma-
terial parameters for the well region —the electron and
hole masses (m, and ml, ) and the dielectric constant s.
%'e present results for mp ~ m, 0.067 and e 13.1. A
fixed (independent of m, /ml, ) energy scale (the electron
effective Rydberg R, Rm, /s, where R is the atomic
Rydberg) and length scale (ao, the atomic Bohr radius)
are used. If the lengths were scaled by the electron
effective Rydberg a, (a, san/m, ) then the scaled ener-
gies as a function of scaled lengths would be independent
of s and m, . The results presented here were calculated
ignoring the effect of well width (w 0). The effect of
finite well width is considered elsewhere. '

Third-order perturbation theory provides an accurate
model for confined-exciton energies in small structures
(8 55d„where d„ is the diameter of a two-dimensional
unconfined exciton with reduced mass p, d„v3/2a„

43/28ao/p). Confined-exciton energies for m, /mI,
0.75 calculated by use of zeroth-, first-, second-, and

third-order perturbation theory are compared with the en-
ergy obtained by use of a variational approach" in Fig. 1

( the band-gap energy has been ignored). The kinetic plus
confinement energy Eo is a good model for the exciton en-
ergy only if A «d„. However, adding the direct Coulomb
energy accounts for most of the binding when A ~ d„. For
d„SA ~Sd„ the second-order (size independent) energy
E2" accounts for about half of the energy difference be-
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FIG. 1. Exciton energies calculated in zeroth-, first-, second-,
and third-order perturbation theory. The energy obtained with

a variational wave function is shown for comparison. The exci-
ton is confined in a box with side A and narrow well width w 0;
m, /mq 0.75. The two-dimensional electron and exciton diame-
ters are indicated (m, 0.067).

tween Eo+I and E„„,and E3" accounts for most of the
remaining energy difference. Third-order theory becomes
less accurate as m, /ml, decreases. However, the energies
are still accurate for A 55d„. For 8 ~ Sd„ the exciton is
weakly perturbed by confinement and E„,approaches the
asymptotic energy expected for an unconfined exciton.
The third-order perturbation theory is a good model for
exciton energies for sizes up to the size regime when
confinement effects are small.

The lowest-order energy difference between the biexci-
ton and two independent excitons occurs in second order.
The mass dependences of E2', E2", and h, 2 are shown in
Fig. 2. The second-order energy shifts are negative, mak-
ing the exciton and biexciton more stable. E2' is 5-10
times larger in magnitude than E2" indicating that the
biexciton is more sensitive to the Coulomb interaction.
The biexciton is stable relative to two independent exci-
tons (52(0) when confined in very small structures
where the size independent term h2 is the dominant con-
tribution to the energy difference. The mass dependence
of E2', E2", and h2 are similar. An increase in magnitude
proportional to (m, /mi, ) ' occurs as m, /ms 0 because
hole excited states make the dominant contribution in this
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m, /ms (0.1 but d.z+3 (4 if A (2d„ for m, /ms 1. For
m, /ms 0 the biexciton acts as two excitons, each tightly
bound so exciton-exciton interactions are weak until
confinement forces the two excitons to overlap (A (d„).
However, for m, /ms 0 Coulomb energies are large so
enhanced binding occurs when the excitons are forced to
overlap by confinement. For m, /ms 1, the excitons are
less tightly bound so enhancements in binding energy as

0 are smaller but the exciton-exciton interaction has
a longer range and enhancement occurs for A ~ 2d„.

In conclusion, a third-order perturbation theory has
been used to develop a qualitative model for confined biex-

citons. Biexcitons are stable in small structures. Higher-
order perturbation theory would have to be used to deter-
mine exactly how 6 approaches 6 as A increases and
whether 5)0 for any m, /ms and A. If the biexciton is
destabilized at some Ag then the biexciton must undergo a
complicated transition from stability at small A to insta-
bility near Ap and back to stability for large A.

This research was conducted under the McDonnell
Douglas Independent Research and Development pro-
gram.
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