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The effective-medium theory is applied to a study of the energetics of the hydrides of Ni, Pd, and

Pt, stressing the properties of PdH& for 0 ~ 0 ~ 1. The calculated heat of solution and the heat of hy-

dride formation for the three systems agree very well with experiment. We determine the favored
structure for PdH& by calculating the total energy and lattice expansion of different configurations.
Vibrational frequencies and diffusion barriers of H in Pd are also treated. A simple and transparent

physical picture of the hydrogen-metal interaction is developed. From the calculated energetics we

make a model calculation of the phase diagram of hydrogen in palladium in qualitative agreement
with experiment. On this basis we propose a new explanation of the peculiarities of the Pd-H sys-

tem.

I. INTRODUCTION

The large capacity of palladium to absorb hydrogen
has made this system. interesting from many points of
view: fundamentally (quantum diffusion, hydride forma-
tion) as well as technologically (membranes, hydrogen
storage, etc.). ' It is therefore an interesting task to inves-
tigate the details of this particular system in the frame-
work of numerical microscopic models.

In order to make comparative studies of configurations
at varying hydrogen occupations, one has to consider a
great deal of configurations and to include many atoms in
the unit cell for each calculation. This makes it very
hard to apply first-principles electronic-structure schemes
to this problem.

It is well known that it is not possible to describe all
total-energy properties of metals adequately by pair po-
tentials. The elastic properties, for instance, are poorly
described in such a model. In the present work, we want
to describe deformations of a metallic lattice due to inter-
stitial hydrogen. We therefore employ the effective-
medium theory (EMT). This model includes many-body
interactions in an approximate manner but is still simple
enough to permit calculations for a large number of
configurations.

The EMT was originally applied to the calculation of
the binding energies of small atoms like hydrogen in met-
als and on metal surfaces. ' Previously, hydrogen ab-
sorbed in metals, and in particular, its interaction with
lattice defects, has been investigated in a simplified ver-
sion of the EMT. The present work has applied an im-
proved model of Ref. 5 enabling a description of the
whole metal-impurity system instead of just the impurity.
EMT has been successfully applied to a whole range of
systems, including bulk properties of metals, surface en-
ergies, relaxations and reconstructions, ' chemisorption
properties, adsorption of molecular hydrogen on Ni and
Cu surfaces, and Monte Carlo and molecular-dynamics
simulations of thermal expansion and melting.

A similar model, the semiempirical embedded-atom
method, has been successfully applied for describing

hydrogen-metal systems. Recently, ' it has been used to
model experimentally measured atomic forces in palladi-
um hydride.

The quality of the application of EMT to the PdH& sys-
tem is illustrated by a comparison of calculated quantities
and trends to experiment. Heats of solution and of ad-
sorption, as well as lattice constants and binding energies
as functions of hydrogen occupation, have been calculat-
ed including the microscopic deformation of the perfect
Pd lattice.

We also study the vibrational frequency and the
diffusion barrier for hydrogen inside pure palladium.

The main purpose of this paper is to distill a very sim-
ple model for the interaction between hydrogen atoms in-
side a palladium crystal. From such a model we derive a
phase diagram which agrees semiquantiatively with the
experimentally measured one.

A preliminary account of some of these results has
been published elsewhere. "

The paper is organized as follows. The effective-
medium theory in the form applied here will be summa-
rized. In Sec. III a number of calculations and their re-
sults are presented. Section IV deals with a simple model
for the H-H interaction and the phase diagram derived
from this. Finally, the main results will be discussed and
the conclusions will be presented.

II. THE EFFECTIVE-MEDIUM THEORY

An atom embedded in a metallic system is to a large
extent screened from its surroundings by the electron gas
around it. Therefore, it is tempting to describe the sys-
tern by approximating the local surroundings by a homo-
geneous electron gas. Thus the embedding energy of an
atom is to a first approximation a function only of the
electron density n contributed by the surroundings and
independent of the composition of the host system. ' '
For each kind of atom the total-energy change bE&, (n)
associated with embedding the atom into a homogeneous
electron gas of density n may be calculated once and for
all within the local-density approximation.

41 12 413 1990 The American Physical Society



12 414 CHRISTENSEN, STOLTZE, JACOBSEN, AND NQRSKOV 41

summing over all atoms i. Now we calculate the
density contributed by the surrounding n,- as
( QJ t ~;lb, n~ (

~ R; —RJ ~
) ), where the average is over a

neutral sphere around atom i. We choose a neutral
sphere because the effective medium is isotropic anyway
so that there is no hope of doing better than that and be-
cause the neutrality of the sphere excludes long-range
Madelung interactions between different spheres.

With this density ansatz the total energy may be writ-
ten as

E„,= gE, ;(n;)+AE~s+AE„, , (2)

where the so-called cohesive function E, is defined by

The success of this relatively crude model in calculat-
ing trends and even absolute energies stems from the fact
that errors in the electron density and in the one-electron
potential entering the Kohn-Sham equations only give er-
rors in the total energy to second order. '-'

Below we shall brieAy review the various expressions
and fundamental approximations used in EMT and in the
calculations presented here. Details of the calculational
method are deferred to Appendix A.

When an atom is embedded in a homogeneous electron
gas it wi11 induce a change in the electron density of some
amount attn ( ~r~ ). Aiming at describing every atom in the
system as embedded in a homogeneous gas consisting of
the electron tails from all the surrounding atoms, we
make the ansatz for the total electron density at every
point in space

n(r)= gb, n;(~r —R, )

is not complete. The details of how AE s is evaluated
can be found in Appendix A.

The second correction term AE i,l describes the
difference in Kohn-Sham one-electron energy between
the atom embedded in the real metal and the atom em-
bedded in a homogeneous electron gas. Denoting the
change in density of states by embedding atom i into the
two systems by b, n, "(E) and b, n, (E), respectively, we
have

met
EF

AE„l, = g f dc. Ebn, "(E)—f deed, n, (e), (6)
oo

where cz" and cF are the two Fermi energies.
This correction term is only significant in the case of

transition metals. In calculating the two densities of
states the same atomic potential should be used. It can
be calculated within the Newns-Anderson model. ' ' In
the present calculations we only include the interaction
between the Pd d band and the H s band. It turns out to
vary very little with the configuration.

The interaction between two hydrogen atoms deviates
from the term 2E, (b,n (~rHH~), where one hydrogen sees
the other as a jellium. We define the difference

g( & n background
) Eexact

( & n background
) 2E ( g& ( &) ) (7)

The first term is the total energy of two hydrogen atoms
separated by r in a jellium of density n """"" equal to
the density contributed by all other atoms in the system.
The function 5 has been calculated ' in the local density
approximation and turns out to be effectively indepen-
dent of the density.

E, ;(n ) =E„, ;(n )
—a, (n )n . (3) III. RESULTS

The first term in (3) is the energy of embedding atom i
into a homogeneous electron gas. The second term is the
electrostatic attraction inside the neutral sphere between
the electron tails from the neighbors and the atom itself.
Assuming a constant electron density n from the sur-
roundings, this energy will look like

, n(r)b, n(r')drdr'
neutral sphere

~
r r

=n f' dr b,4(r) =: an, (4)—
neutral sphere

where AN is the electrostatic potential induced by the
atom. This electrostatic attraction is not included in
AEh, because the electrostatic interaction between a
homogeneous system with a compensating positive back-
ground and a neutral atom is zero.

The most important contribution to the first correction
term in (2) is electrostatic. Let us define the overlap func-
tion 6(r) as n —1 at points in space inside n atomic
spheres. Then we have simply

bE~s= —fdry(r)n(r)e(r), (&)

4 being the total electrostatic potential. This term is
dominated by the repulsive interaction between different
nuclei when neutral spheres overlap so that the screening

All calculations below have been made in the following
way: The hydrogen is placed in the required site in the
perfect, unrelaxed metal lattice. Then the size of the unit
cell, as well as the position of each atom, is varied ac-
cording to the Direction Set Method' to find a relaxed
local minimum. We apply periodic boundary conditions
and measure energies relative to metallic Pd and free H2.
Superscripts on energy terms and EMT constants denote
the kinds of atoms on which they depend.

A. Heats of solution and hydride formation

The heat of solution of H in the three metals Ni, Pd,
and Pt was calculated by placing one H in a supercell
consisting of 3X3X3 primitive Pd cells (27 Pd atoms).
The results are shown in Fig. 1. The heat of absorption
at concentration 0=1 (hydrogen atoms per palladium
atom) comes from a calculation with one H and one Pd
atom in the cell (Fig. 2). Experimental results are from
Ref. 17.

In the EMT picture, the decisive property expected to
cause the trend in the heat of solution is the value of the
electron density in the interstitial site determining the
value of the cohesive function E, . This function has a
single minimum. In all cases considered here, the hydro-
gen atom is embedded in a much higher electron density
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FIG. 1. Heat of solution. Total electronic energy of 3X3X3

metal unit ce11s and one hydrogen in an octahedral site mea-
sured relative to pure metal and free H2. 0, calculated results;
6, experiment (Ref. 17). In the case of Pd thermal energy
should reduce the calculated energy by 77 meV.

E,„„~„(freeH2)= —', kii T+kii T+ 2ficoH H, — (8)

where the three terms represent translational thermal en-
ergy, rotational therma1 energy, and vibrational zero-
point energy of the H2 molecule, respectively. For the
palladium hydride system we get

E,h„,&
( H in Pd ) =3kii T + ,' Acoo+ ,' kii T,——(9)

where the first term is the thermal and the second is the
zero-point energy of the hydrogen vibration, the last has
to do with the work of compressing the hydrogen into the
bulk metal.

than the optimal one. Thus, the lower the interstitial
electron density of the metal, the lower the value of the
cohesive function E, . For all systems considered, the
hydrogen atoms prefer the octahedral to the tetrahedral
sites in accordance with this picture. The energy
difference between nickel and palladium is driven by the
difference in interstitial electron density as the lattice
constant of Ni is much smaller than that of Pd. As far as
Pt is concerned, the matter is a bit more complex: the in-
terstitial density before relaxation gives rise to a
difference in E, of only 160 meV. The main difference
between Pd and Pt is that the latter is much harder. This
is reAected in the fact that the EMT parameters g and a
are larger in the case of Pt. Therefore the presence of H
does not reduce the neutral radii as much, thus not mak-
ing AE~'s ' as negative as in the case of Pd.

In the results of Figs. 1 and 2 some of the contributions
to the total energy have not been included. Our calcula-
tions do not include the thermal energies or the zero-
point energies of vibration of either the PdH system or
of the H2 molecule to which it is compared, whereas
these terms are part of the experimental energies plotted.
These terms may be estimated as follows:

FIG. 2. Heat of absorption. Total energy of metal monohy-
dride primitive cell relative to pure metal and free H2. 0, calcu-
lated results; 6, experiment (Ref. 17).

At T =300 K, ficoH H
=540 meV (from our calculation),

ficoo= 68.5 meV (from Ref. 1) we get

—,'E,„„~,i(free H2) —E,„„~„(Hin Pd)

=180 meV —103 rneV=77 meV . (10)

This term is expected to be of the same order of magni-
tude for the other two metals considered. The neglect of
these correction terms is thus well justified, when the ap-
proximate nature of the calculation is taken into account.

The numerical agreement apparent from the figures is
probably fortuitous, but the trends are accurately de-
scribed, thus giving reason to believe that we have a real-
istic picture of the essential physics of the hydrogen-
metal system.

B. Expansion and stability of palladium hydride

In a 3 X 3 X 3 supercell we have placed hydrogen atoms
randomly in octahedral sites. The binding energy per H
atom relative to molecular H2 is shown in Fig. 3. In Fig.
4 calculations with more than one hydrogen in a primi-
tive Pd unit cell is included. One contribution to the
large jump at 0=1 is that the Pd d band becomes filled,
thus stopping the bond formation between Pd d and H s
orbitals. The main reason is, however, that the hydrogen
atoms are now forced to occupy tetrahedral sites instead
of octahedral. At 0=4 the octahedral and the two
tetrahedral sites per Pd atom fill, and the last H atom is
found around the octahedral site forming a quasimolecule
with a H-H distance of 1.89 bohr; large compared to the
value of 1.4 bohr for free H2.

A systematic calculation was performed in a 2 X 2 X 2
supercell, where all possible distributions of hydrogen in
octahedral sites were investigated. Figure 5 shows the
minimum-energy states for each possible occupation of H
in this cell —the result for one H among 27 Pd atoms
is plotted as well, as it is also a minimum-energy
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configuration. The lattice constants are shown in Fig. 6
and compared with experimental results' for the P
phase. The values agree at 0=0 because of the fit of so .
The fact that the expansion of the lattice with increasing
hydrogen occupation is slightly overestimated suggests
that the H-Pd repulsion term hE As is too hard. This is
not unexpected since the calculation includes repulsive
contributions to this quantity but neglects attractive
ones. This fact will be important for the treatment of
diffusion below.

The energy curve of Fig. 5 is very interesting. Until an
occupation of about one-half, it seems to agree with the
linear prediction of a simple picture with an effective
concentration-independent pairwise attraction between
hydrogen atoms (E„,—a8 138 —E; —a —P8). '

Above t9=0.5, however, the calculated energy per atom
is almost constant. As a consequence, until an occupa-
tion of one-half, hydrogen atoms will attract each other.
But when 0=0.5 has been reached this is no longer the
case and the entropy will prevent the occupation from in-
creasing further. This effect may explain the experimen-
tally observed maximum hydrogen occupation of about
0.6. It is investigated in the following section.

To determine the reason for the shape of the energy
curve, in Fig. 7 we show the different EMT energy contri-
butions per hydrogen atom relative to the value at
0=0.125 with one hydrogen atom in the cell. The driv-
ing attractive force between hydrogen atoms is obviously
E, . As the hydrogen atoms expand the palladium lat-
tice, their embedding density and thus E, decreases.
The repulsive behavior of EE~s' is explained as follows.
When the hydrogen expands the lattice the mutual over-
lap between Pd atoms decreases making AE s' nega-
tive. The absolute value increases with 8, but not propor-
tionally, so that the value per hydrogen atom decreases.
In other words, when the hydrogen atoms screen the
different palladium nuclei effectively no more electrostat-
ic energy is gained by adding even more H. This explains
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FIG. 4. Binding energy of H. For 0(1 calculated in a
3X3X3 Pd unit cell, for 0~1 in one Pd unit cell.

the kink in E at 0=0.5.
In order to determine the energy cost of getting two

hydrogen atoms close together a 28th H atom was put in-
side a 3 X 3 X 3 PdH lattice and moved between a
tetrahedral site and one already occupied octahedral site.
Both an unrelaxed calculation and a fully relaxed were
made, see Fig. 8. In the latter, the only fixed coordinate
was the distance between two of the hydrogen atoms.

Recent first-principles calculations at 8= 4, —,', 1,2,
and 3 confirm most of our conclusions as regards proper-
ties at physical values of 0. The authors find the same
minimum-energy configurations for different values of 8
except in the case of PdH2, where they find that the hy-
drogen atoms occupy two tetrahedral sites instead of one
octahedral and two tetrahedral sites. The shape of the
energy-occupation curve is similar to the one calculated
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FIG. 5. Energy minimized over configurations of H in a
2 X 2 X 2 unit cell with 0 H atoms per Pd. Also the value for one
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FIG. 7. EMT contributions to the total energy of Fig. 5 mea-
sured relative to 0= —,'.

by us. The calculated lattice constant as a function of 8
is in somewhat better agreement with experiment than
ours. A calculation of energy as a function of the
hydrogen-hydrogen distance in a PdH2 cell with an octa-
hedrally centered Hz quasimolecule along the (111)direc-
tion gives qualitative but not quantitative agreement with
a similar calculation by us. The apparent failure for our
model to adequately describe 0& 1 is probably due to the
very crude description of bonding between palladium d
and hydrogen s orbitals.

C. Di8'usion

only shows up as a small error in the expansion) but be-
comes more serious when the hydrogen atom is moved
closer to the palladium atoms. A further description of
the fitting procedure can be found in Appendix B.

With the fitted b,EAs the fully relaxed (nearest-
neighbors and next-nearest-neighbors) energy curve looks
as in Fig. 10. As the hybridization at the top of the bar-
rier turns out be different from the values at the local
minima, we have included a calculation of hE&,&

at each
point.

The fitting procedure that only referred to local

Hydrogen diffusion in palladium between two octahe-
dral sites must go via a tetrahedral site. In Fig. 9 results
are shown where one hydrogen atom is moved in a
3 X 3 X 3 unit cell from an octahedral to a tetrahedral site.
In the unrelaxed calculation all Pd atoms are kept fixed.
In the next one the six-nearest neighbors are allowed to
move and in the final one the eight next-nearest neighbors
may relax also —of course we have to keep some Pd fixed
to avoid just translating the whole lattice along with the
hydrogen atom when minimizing.

The relaxation is extremely important for the size of
the diffusion barrier, but it is found to be considerably
higher than the experimental value of 230 meV (Ref. 21)
even in the most relaxed case, where it is 743 meV. This
is in accordance with the previously mentioned fact that
the hydrogen-metal interaction term AE s is too repul-
sive. The same is seen in a calculation of the vibrational
frequency of H at the octahedral site, which is calculated
fo Np = 126 rneV, whereas the experimentally measured
one is cop=68. 5 meV. To get a more realistic description
of the system at the diffusion barrier we make a one-
parameter fit of AEAs reproducing the experimental vi-
brational frequency at the octahedral site keeping the to-
tal energy in this configuration the same as before the
fitting. The error in the way we calculate hE s is least
serious at the interstitial sites when hE~~ is small (it
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features of the ground state gives rise to a much im-

proved diffusion barrier. The barrier height is 313 meV,
which is only 83 meV away from the experimental value.
Note that zero-point energies and thermal energies
kzT-30 meV have been ignored in the comparison to
experiment.

When comparing the different energy contributions we
look at the unrelaxed case first. From Fig. 11 it is seen
that the important term is E, . The energy simply fol-

lows the contour of embedding electron density. The
more effective screening of Pd atoms in the vicinity of H

is mirrored by the shape of EE~s' . This term reduces
the effect of E, but does not cancel it completely. In the
relaxed case (Fig. 12) the energy distribution among the
different terms does not vary qualitatively. It turns out
that all magnitudes are reduced by about the same
amount. At the high-symmetry tetrahedral site there is a
difference because of an efficient relaxation of several Pd
atoms, decreasing the embedding density of H but not
pushing any two Pd atoms very close together.
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IV. THERMODYNAMIC MODEL

In the present section we will illustrate the results of
the previous sections in an approximate calculation of the
phase diagram for the PdH& system. The thermodynamic
model to be developed in the following is based on plac-

ing a number of hydrogen atoms on an fcc lattice, the hy-

drogen atoms vibrate around their perfect lattice sites in

an uncorrelated fashion and an effective field mediates a
hydrogen-hydrogen interaction.

For the hydrogen atoms we will write the grand canon-
ical partition function

:-(Tp)= g g exp z",pn —8'
n conf B

'Lo
P 2k, T

Ado
1 —exp

kBT

. exp

pu = —ks Tln(z)

for the unstable part of the curve.
We treat the gas phase as ideal

2mmkB T kB T
z

H2 p 2B

2

kBT

(16)

3AN
p

AN
1 —exp

3 exp
Fo

kBT
(12)

We adopt a mean-field approximation similar to the
Bragg-Williams approximation in writing

8' N~ nw
(13)

where we allow the interaction energy w to depend on the
overall occupation, 8= n /N. Using Fig. 5 we find
c.0=0.075 meV,

w =c., (1 —8) (14)

with c., =0.075 eV and a =3.67 to be an adequate
description.

We derive an expression for the chemical potential by
retaining the dominating term in (11),

0 dw
p~ =go+ kg T ln + w ( 8) + 8

go= —k~T ln(z) .
(15)

We note that this procedure corresponds to the suppres-
sion of the fluctuations for 0. In the thermodynamic lim-
it, this procedure is exact for the thermodynamic data
considered in the following.

The quantity p(8) may display (Bp/B8) &0 for suitable
choices of 0 and temperature. This indicates a thermo-
dynamic instability and is a reflection of a first-order
phase transition in the mean-field treatment. The correct
behavior is found by substituting a discontinuity in 8(p, )

where n is the number of H atoms distributed on X sites.
In this equation the second summation extends over all
configurations of the atoms, &is the total interaction en-

ergy for the configuration. The summation over collec-
tive degrees of freedom is thus performed by the sumrna-

tion over configurations using the interaction energy 8'
in the calculation of the statistical weight. The partition
function for an atom in the absence of interactions is z.
For this we use an Einstein model with vibration quan-
tum Aco=68. 5 rneV:

where m is the mass of the molecule, p is pressure, B is
the rotational quantum, Ace is the vibrational quantum
for H-H stretch and c.H is the electronic ground-state en-

2

ergy for Hz. The calculations in Fig. 5 show the electron-
ic energy of H inside Pd relative to Hz(g). The conven-
tion adopted in the calculations of electronic energies
corresponds to defining eu =0 for Hz(g) at T =0.

2

The chemical equilibrium condition is

~Pe, =PH2 (17)

where pH is the chemical potential of a hydrogen atom

inside the palladium lattice. We treat this equation nu-
merically, using the above expressions for the chemical
potential.

The calculated phase diagram based on our simple
model is compared to the experimental one in Fig. 13.
The agreement is surprisingly good, considering the sirn-

plicity of our thermodynamic model and the crudeness of
the energy calculation. In the calculated phase diagram a
miscibility gap arises between the a phase (low 8) and the
P phase (high 8). The existence of the a phase is purely
an entropy effect as this phase does not exist at T=O.
The p phase extends over a rather large composition in-
terval from 0-0.5 to 0=1 at low temperature. The cur-
vature of the interaction energy co(8) causes an asym-
metry in the position of the miscibility gap. If w (8) had
been linear, the miscibility gap would have been placed
symmetrically around 8= —,

' in the phase diagram. The
important experimental observation described by the
model is the fact that we find a miscibility gap at T =0 at
a hydrogen concentration less than 1. In our model a fur-
ther filling of the lattice is energetically possible, although
the equilibrium pressure rapidly increases for 0& —, for
entropy reasons. While the properties of PdH& change
discontinuously at the transition from the a to the p
phase, the properties change continuously during further
filling of the lattice in the P phase.

By fitting Eq. (14) to the experimental phase diagram,
we have found that the experimental miscibility gap is
well reproduced by the values c.

&
=0.103 eV and a =1.60.

The topology of the miscibility gap is independent of co.
Comparing the parameters found from the experimental
phase diagram to the calculated parameters (Fig. 14) we
find that the overall agreement is good, the major
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filled. It is this effect that shifts the position of the misci-
bility gap with respect to the line 0= —,

' and gives rise to
miscibility gap at T=O of about 0.5. Our model is in
contrast to earlier descriptions, " where the position of
the gap is attributed to a steep increase of the Fermi ener-

gy derivative dEF /d 0 at the concentration where the pal-
ladium d band has been filled with electrons contributed
by the hydrogen. Our calculation of AEi ] assumes a
fixed EF and thus does not include the mentioned mecha-
nism. It should be mentioned that recent band-structure
calculations predict that the Pd d band lacks about 1.4
electrons per Pd atom to be completely filled. This is in
contrast to earlier calculations, where the value was
closer to the -0.6 contributed by hydrogen at the lower
limit of stability for the P phase at room temperature.

0
0.0 0.2 0.4 0.6 0.8 1.0 V. SUMMARY

FIG. 13. Experimental phase diagram (dashed curve) com-
pared to a phase diagram (solid curve) calculated from the data
in Fig. 5, where the minimum interaction energy for each value

of His used for m.
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—0.25
0.0 0.2 0.4 0.6 0.8

FIG. 14. The energy from (14) calculated from the experi-
mental phase diagram (dashed curve) compared to the minimum

interaction energies from Fig. 5 (solid curve).

difference is that the parameters derived from experiment
show less curvature for e(8). The differences in curvature
is not unexpected from the small size of the system used
in the computations. The differences in curvature is
rejected in the differences in the width of the miscibility
gap-

To reiterate, the hydrogen atoms expand the Pd lattice.
The expansion at one site facilitates the expansion at
neighbor sites. This leads to an effective H-H attraction.
The cooperation levels off when about half of the sites are

The purpose of the present paper has been threefold.
First, we have devised a potential for the interaction of
hydrogen with palladium. The functional form of the po-
tential is derived from density-functional theory using
effective-medium theory. The parameters entering are
determined from independent calculations or by compar-
ing to experimentally determined properties of the bulk
metal. The potential gives a quantitative description of
heats of solution and heats of hydride formation of Pd
and of the neighboring systems of Ni and Pt. It also gives
a good description of the expansion of the Pd lattice due
to the hydrogen. If we allow one parameter to be fixed to
give a good vibrational frequency for interstitial hydro-
gen, we can also give a semiquantitative description of
the diffusion. All details of the potential are listed, and it
is to be expected that it can be useful for more detailed
studies of, for instance, the quantum diffusion of hydro-
gen in palladium.

Second, the model calculations have provided a simple
physical picture of the hydrogen-palladium interaction.
As proposed earlier, it is found that most of the interac-
tion can be understood by thinking of the hydrogen ener-

gy inside the metal as given by a function of the metal
electron density at the site of the hydrogen. Further de-
tails have been added to this picture having to do with
deformations of the palladium lattice due to the hydrogen
atoms.

Third, the calculations have given an effective H-H in-
teraction in Pd which depends crucially on the density of
hydrogen in the lattice. Up until the lattice is about
half-filled the interaction is attractive, the attraction be-
ing mediated by the distortions of the metal lattice as in
ordinary continuum theories of the H-H interactions in
metals. Beyond half-filling the interaction levels off, and
the attraction goes to zero as the degree of filling ap-
proaches 1. On this basis we make a model calculation of
the PdH& phase diagram, and show that such a behavior
of the effective H-H interaction can be responsible for the
observations that the hydride is stable from a filling 0 of
the H sites of about 0.6 and that beyond 0=0.6 the hy-
dride changes properties continuously as more hydrogen
is added. This description stands in contrast to earlier
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models, where concentrations above this value are ex-
cluded because of filling of the palladium d band.

APPENDIX A: CALCULATIONAL DETAILS

n
E, =E0+E2

n0
—1 +E3 —1

n

n0
(A 1)

The constants E0 E2 E3 and n0 are extracted from
local-density approximation (LDA) calculations of the
atom in jellium.

From the same calculations one finds to a good approx-
imation the relationship

—g(s —so )
n(s) =n()e (A2)

between the embedding density and the neutral radius s
of an atom. Also the average b, n (r, s) of b, n over a sphere
of radius s positioned at a distance r from the atom is as-
sumed exponential in s and r. Assuming that the embed-
ding density of one atom in a fcc lattice only comes from
the nearest neighbors we get

0 S)) (S Sp ) S)g( I' PSp )

(A3)

where P= (16m /3 )
'~ /&2 is the ratio between the

nearest-neighbor distance and the Wigner-Seitz radius in
an fcc lattice and where

(A4)

Let us now consider the atomic-sphere correction
AEAs . In the case of interaction between identical

I

Here the practical computational procedure of the
present calculations will be presented. See also Ref. 2.
Let us consider a system consisting of a slightly distorted
fcc lattice of palladium and some interstitial hydrogen
atoms. The expressions are also valid in the case of Ni or
pt.

The cohesive energy function E, is expanded to third
order around its minimum

3

i jwi
(A5)

If the atoms considered are different, we restrict our-
selves to the region of positive overlap and estimate '

EA+sM r sn r se r
overlap region

+bn "(r)b@ (r)], (A6)

where M and A means metal and adsorbate atom, respec-
tively, and 4 is the electrostatic potential originating
from the respective atom. The inclusion of the overlap
region and neglect of the "holes" normally results in an
overestimate of the repulsion.

The atomic sphere correction between two Pd atoms is
taken from (A5), while the correction between Pd and H
atoms i and k from (A6) is described in a form

H, Pd H, Pd H, Pd

gEH, Pd VH, Pdg ~M I ~A k R tk
AS k= ' ke

where the prefactor 0;k(s;,sk, r;~) is the overlap volume of
the two neutral spheres.

In most of our calculations the correction term EE&,l
has been put equal to the constant —0.27 eV per hydro-
gen atom until the Pd d band is filled when the number of
atoms of the two kinds become equal. At higher 0 we as-
sume a filled d band and thus no change in AE&,l since
8= 1, in other words b E„,= —0.27 eV per palladium
atom.

As the density contribution from one hydrogen atom
to another is normally negligible compared to the contri-
bution from the metal, it is neglected in the calculation of
the neutral radius s of a hydrogen atom. Thus we have
the relations (indices i and j refer to Pd atoms, k and I to
H):

atoms we proceed as follows. Assuming the total electro-
static interaction to be a pair potential and requiring that
AEAs=0 in a perfect fcc lattice including only nearest
neighbors it is possible to write

n, =n() exp[ —g (s, —
s() )]

nPd

exp[re) (s; —s() ) —gz (r, —Ps() )]+g n() exp[n) (s, —s() ) riz(r; —ro )], —
Pd H

0
nH

nl, +exp[ —
gz (rk&

—Ps() )]=—n() exp[ —g (sl, —s() )] = g n() exp[71, "(sk —
s() ) 7b (rk, r()" )], ——

H Pd

EPd EPd +EPd
c,i 0 2

EH EH+EH
c, k 0 2

' —Pd

—1
Pdn0

' —H

—1
nH

0

2 —Pd

n0
'2 —H

k

H
0

3

3

(Ag)

g exp[ —g"(rj /P —s()')] + g 1'"'"&;,exp[ —
4M "s;—0'~'"s), —0~'"r k]Pd

Pd Pd H

E„,= gE, ;+ QE, k+bEAs+ gbE„)+ g 6(r„, ) .
Pd H H H pairs
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TABLE I. EMT parameters. The values in parentheses refer to diffusion barrier calculations; the
values correspond to a considerable softening of the potential from AE s and a reduction of the
strength of this term of 40%%uo in the ground state, see Sec. III C.

Atom

Ep

E3
np

Sp

7l

7f ]

np

~p

Fp

i/2

a
yH, M

yH, M

H, M
A

yH, M

H

—2.14
0.284
—0.11

0.007 76
1.71
4.1

3.2
0.001 19

2.8
3.5
1.33
2.26

Pd

—4.67
2.20

—0.59
0.012 28

2.873
1.965
0.164

0.007 86
1.8
3.5

0.78
1.96
2400

26 800 (9.945)
1.24(1.20)
1.83(1.10)
1.93(0.065)

Ni

—5.12
2.14

—1.04
0.0150
2.599
1.93
0.37

0.005 17
1.8
3.5

0.53
1.74
1440
1860
0.74
1.54
1.83

pt

—4.92
2.18

—0.60
0.0116
2.894
2.54
0.11

0.009 75
1.8
3.5

0.80
1.98
3170

23 900
1.21
1.73
1.87

From the first two equations the neutral radii are cal-
culated. In the case of Pd it has to be done iteratively.
Now the densities and then all the rest is calculated
straightforwardly.

The parameters g and g, are closely connected to the
bulk and shear moduli of the metal. From calculations of
Pd in a homogeneous electron gas a value of so is found
which is 6% lower than the experimental value. The
bulk modulus calculated is about two times the experi-
mental value. This is due to d—d bonding which is not
included in the calculations. To get an accurate descrip-
tion of the bulk metal we fit the parameters so and g to
these two measured quantities. The parameter q&" is
determined from the experimental shear modulus as is
usually necessary. All other parameters are derived from
LDA calculations of the metal in jellium. The same
fitting procedure has been applied to Ni and Pt. Values
of the parameters described above may be found in Table

APPENDIX B: FITTING PROCEDURE FOR 5E

The fitting of AE s has been done in the following
way. We want to optimally describe the situation on top
of the diffusion barrier, where a hydrogen atom is much
closer to the palladium atoms than in the interstitial sites.
Therefore, we first determine the four parameters enter-

ing (A7) by interpolating a number of H/Je calculations
corresponding to a new density regime including the
values at the energy maximum. This procedure changes
all parameters but does not involve any fitting.

The parameter determining the "softness" of AE~s is

obviously Pz. When we change this we also have to
change V ', which includes terms of the form

exp[PM so +P„' so +Pz' ro]. Unfortunately, it is

not so simple that we can just adjust the prefactor to give
the same magnitude of AE s in the ground state as be-
fore the fitting. This is due to the fact that lattice relaxa-
tions change with Pit, thus changing several different
contributions to the total energy.

Thus we now ftt the two parameters V and Pz to
reproduce the total energy of the ground state as calcu-
lated with the original AEAs and to give the experimen-
tal value of the ground-state vibrational frequency of H
at the octahedral site of Pd (Table I). The unit cell used
contains 3X3X3 primitive unit cells as usual. The re-
sulting softening changing Pz from 1.8 to 0.065 is

refiected in the change of coo from 126 to 67.5 meV,
within 2% of the experimental value. ' The change of
V ' from 4700 to 9.945 corresponds to an increase of
AEAs from 205 to 281 meV, which is compensated by
other terms in the total energy as the local distortion of
the lattice is less when hE s is softer.
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