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Ballistic transport in a novel one-dimensional superlattice
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We point out that fabrication and experimental study of a one-dimensional semiconductor
superlattice (1DSL) structured in a ballistic constriction is now feasible and present a theory of
its transport properties. We predict sharp switching between quantized conductance plateaus
as the Fermi level moves through the 1DSL miniband gaps and strong resonant conductance
oscillations. Surprisingly, these eR'ects are predicted to be observable even for 1DSL s with very
few periods and to be nearly independent of the geometry of the constriction openings.

Remarkable advances in microfabrication have oc-
curred in the last few years, making it possible to con-
fine the electrons of a two-dimensional electron gas (2D
EG) in a semiconductor heterostructure to regions with
a lateral extent of 100 nm or less, resulting in narrow
quantum ~ires, constrictions, and quantum dots. The
Fermi wavelength of the confined electrons is close to the
dimensions of these nanostructures, so the quantization
of the electron energy levels is very important. Also, the
new confinement techniques used, the small size of the
structures, and the very high mobility of the parent 2D
EG largely eliminate defect scattering, making the elec-
tron transport ballistic or quasiballistic at low tempera-
tures. Notable examples of the novel physical phenom-
ena recently discovered in these ballistic nanostructures
are the quantized conductance of short ballistic constric-
tions reported by van Wees et al. z and Wharam et al ,

s.
the disappearance of the Hall voltage across ultranarrow
conductors reported by Roukes et al. , the nonlocal co-
herent bend-resistance effects reported by Timp et al. ,

and conductance oscillations indicative of charge density
waves in quantum wires reported by Scott-Thomas et
al. The purpose of this article is to point out that the
experimental study of an important new class of semicon-
ductor nanostructures, the one-dimensional ballistic su-
perlattices (1DSL's), is now within reach and to present
detailed theoretical predictions of their transport prop-
erties. The physics of three-dimensional semiconductor
superlattices is a topic of great current interest, and
tunneling in two dimensions has recently yielded very
interesting results. 8 The still lower dimensionality and
very high degree of quantum coherence in the 1DSL's
are unique features which we believe will make the study
of these new systems very exciting.

Figure 1(a) shows schematically a possible realiza-
tion of the proposed 1DSL. The shaded areas repre-
sent a negatively biased metal gate placed on top of
a GaAs-Al Gay As heterostructure containing a 2D
EG, in an arrangement similar to the split-gate devices

used to observe the quantized conductance of ballistic
constrictions. As in those devices, the negative bias
depletes the 2D EG under the gate, leaving only a nar-
row ballistic channel joining the 2D EG regions at the top
and bottom of the figure. In the present case, however,
the gap in the split gate is bridged so that an electron
in the constriction experiences a periodically modulated
potential [Fig. 1(b)j. For strong gate biases, the constric-
tion becomes a string of quantum dots (the unshaded
rectangles). Experiments on conduction through a con-
striction containing a single quantum dot of this kind
have recently been reported by Smith et al. ~ At present,
quantized conductances characteristic of ballistic trans-
port are observed in constrictions up to 1 pm long,
and a spacing of at least 0.2 pm between the bridges
is needed to achieve a strong modulation of the electron

(s) 2D EG (b) y

a
ll

b
li

db

x=-W/2 x=W/2

2D EG
FIG. 1. Constriction extends along y axis, width W.

Shaded areas represent negatively biased gate.
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density along the constriction, implying that 1DSL s with

four to five periods can be readily produced today. Sur-

prisingly, our calculations reveal that for realistic model
parameters the superlattice minibands and gaps should
have striking and readily observable eHects on the con-
ductance even of 1DSL's having so few periods. We pre-
dict strong resonant eHects, as well as a novel switching
behavior of the conductance between quantized plateaus,
due to the turning on and off of conduction in the vari-
ous 1D subbands of the constriction, as the Fermi level
is swept through the superlattice minibands. These phe-
nomena should be fairly robust to finite temperatures,
and almost independent of the constriction orifice taper-
ing.

In order to study quantitatively the conductance of
such structures, we perform exact numerical integrations
of the system Hamiltonian. Our model consists of a finite
narrow constriction defined by lt/I ( t/ii and lzl ( W/2,
and connecting two semi-infinite 2D electron-gas regions
which act as electron reservoirs (Fig. 1). The Hamilto-
nian of the system is written in the effective-mass ap-
proximation with a confining potential V(z, y) defining
the constriction (U = 0 in the 2D semi-infinite regions).
Self-consistent calculations i of typical electrostatic con-
fining potentials in these systems yield a rather broad
quarticlike function, very similar to a square-well con-
finement in the case of wide constrictions. We will as-
sume the latter for simplicity, an approximation which
is widely used in the literature. In addition, we intro-
duce a y-periodic part in U as in a square Kronig-Penney
arrangement with well (barrier) dimension a (6) and su-

perlattice potential height Vi. Our conclusions do not
depend on the detailed choice of U(z, t/). '

The conductance of the system is evaluated by consid-
ering an electron impinging on the constriction with a

I

given wave vector kp ——(Ii, k) such that its wave func-
tion in the injecting 2D region (bottom in Fig. 1) is given
by a superposition of plane waves with complex coefFi-

k' = (2m'//t —I4'2)i/2. The basis set also includes
evanescent waves in the y direction (k imaginary) to ac-
count for the loss of translational symmetry introduced
by the constriction walls. Similarly, the wave function in
the top 2D region is given by a sum of outgoing terms
with coefficients (aT&&). In the constriction, we use well-

known infinite square-well eigenfunctions b„) as the ba-
sis set for the transverse z direction. Taking into account
the periodicity of the superlattice modulation, the wave

function in the jth well of the channel is given by

~C(r) = ) (c+„.e~s"~v-jl) + c„„e ' "(s-jl))& (z)

where l = a+ b is the period of the superlattice, q„=
[2m(E~ —E„)/h j /2, and E„=h n2n2/2mW2. From
the usual wave-function-matching conditions, a set of
coupled equations linking (a ), (a },and the superlat-
tice coefficients at t,he ends of the constriction is obtained.
The connection between the two ends of the superlattice
is achieved by a transfer-matrix technique which can also
be used in other superlattice geometries (such as a peri-
odic modulation of the constriction width). The result-

ing set of equations can be solved in terms of only the
constriction coefficients, in a procedure similar to that re-
ported previously. The infinite set of equations is cast
into a matrix form and inverted numerically in a trun-
cated mode scheme which yields very good convergence
(( 0.1%) with relatively small matrices. Details will be
presented elsewhere.

The total probability current through the constriction
for each incoming A mode is obtained as

«~ libel@~ & = —): e (lc,+„,I' —lc,„,l') —2). Iv. l&m(c„+„,c„„',)

where the superscripts R and I in the suiiirnations indi-
cate that q„ is real or imaginary, respectively. The con-
ductance of the system in linear response (and at T = 0)
is then given by the contributions from all incoming A

modes at the Fermi energy,
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In what follows we use normalized quantities. The
length and energy scales are given by the constriction
width W and the first transverse-motion level Ei (=
ft s'2/2mW2). Figure 2 shows the conductance versus

K~ for a system with five barriers, a = b = 0.5, V,&
——1,

and equally offset at both ends (dt ——di, = 0.25) within
a constriction of total length 2yo ——5. In this plot, the
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FIG. 2. Conductance for 1DSL with five periods vs Fermi
wave number (so1id line). Dashed line, conductance steps in
ideal unmodulated constriction. Notice strong resonances and
subband onsets moved upwards by superlattice erat'ects.
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steps near integer values of It~ W/x arise from the succes-
sive occupation of transverse subbands as EF increases.
The dashed staircaselike curve represents the conduc-
tance of an ideal constriction without any superlattice
modulation and adiabatically matched to the 2D electron
reservoirs. In the case of a superlattice with a small
number of periods, G exhibits strong transmission res-
onances which drastically aR'ect the quantized plateaus.
This structure can be understood qualitatively in a tight-
binding scheme as arising from the quasibound states in
the wells of the superlattice, for each of the transverse
subbands. Because of interwell tunneling, these quasi-
bound states overlap and produce weakly split groups of
transmission resonances (with one less peak per group
than the number of barriers in the system). Each group
of resonances evolves into a continuous miniband in the
limit of a many-period superlattice.

Considering that the results in Fig. 2 are for a very
short (five period) superlattice, the extremely strong
signatures produced by the first miniband gap in each
transverse subband are quite remarkable. As the Fermi
level is swept through the gap (I&FW/n 1.5, 2.3, and
3.2), where the current carried by that subband is de-

pressed almost to zero, the conductance drops rapidly

by a quantum. This severe modulation of the conduc-
tance can be seen as a generalization of the strong co-
herent multiple-scattering efFects explored recently, both
theoretically and experimentally, in a constriction with
obstacles

The structure in the conductance is also modulated
by the longitudinal resonances arising from the multiple
reflections at the ends of the constriction. This mod-
ulation is more important for smaller values of Vs~, as
expected, and evolves in that limiting case into the pat-
tern of longitudinal resonances described previously.
For comparison, let us now consider a multichannel ver-

sion of the Imry-Biittiker formulai generalized to the
case of a superlattice, GiB = (2e /h) P„T„,where T„
is the transmission coefficient for subband n GiB as-.
sumes that multiple subbands in the system conduct in

parallel without interfering, and describes the behavior
of the conductance in a constriction if one were to ig-

nore the details of the injection process which occurs at
the openings and mixes the different subbands. 's i7 This
expression then applies approximately to constrictions
with adiabatically tapered orifices. Figure 3 shows the
region of the third plateau for the system of Fig. 2, both
for G and for Gin. The overall trend is for GiB to fol-

low G fairly closely, except that Gin has slightly shifted
and broader resonances. The differences become progres-
sively more important with increasing EF within a given
plateau since the superlattice potential has decreasing
influence on the overall transmission matrix. This differ-

ence has a cumulative effect in higher plateaus. However,
the two curves are generally similar, strongly suggesting
that the complex structure in G should be quite robust to
geometrical variations in the constriction openings. This
is an important point since it is well known that ori-
fice tapering normally suppresses the sharp longitudinal
resonance features in the conductance of unmodulated
constrictions. ~~

Figure 4 shows results for a stronger superlattice mod-
ulation to illustrate the effects that larger minigaps can
have on the conductance of the system. In Fig. 4(a)
V,~

——3, keeping all other parameters the same as those of
Fig. 2. Here, the second miniband gap for the first trans-
verse subband is well developed and it produces a strong
depression in G for It'~W/x 2.5, where it overlaps the
first minigap of the second subband. The drastic changes
in the conductance curve appearing at still higher ener-

gies occur whenever the Fermi energy falls in miniband
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FIG. 3. Conductance Gin (solid line) and t (dotted) for
third plateau in system of Fig. 2. Sharper superlattice fea-
tures in G are due to longitudinal resonance effects.
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FIG. 4. Conductance for five-period superlattices with (a)
= 3, and (h) V~ ——5. Temperature effects are shown to

smooth out only the sharpest features. T = 0.018 120 mIZ

in typical system (see text).
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gaps for each of the diR'erent transmitting channels. It
is clear that by controlling the values of the different pa-
rameters it is possible to achieve a rather complicated
conductance showing on and off "switchings"of the dif-

ferent quantization values. Figure 4(b) shows results for

V, ~
——5, where we see the first miniband of the second

subband appear at I&~ 2.3, before the second mini-

band of the first subband. The larger minigaps cause Q
to nearly vanish at I&F 2.8.

Figure 4(b) also shows the eff'ect of finite temper-
atures on the conductance curves. This is calcu-
lated by thermally averaging the zero-temperature re-

sults with the appropriate Fermi factors, G(p, T)
J G(E, 0)( Bf/B—E) dE, where f((E —p)/kT) is the
Fermi function. Results are given for two diR'erent tem-
peratures: kT = 0.018 and kT = 0.18 (in units of
Ei), which correspond to 0.12 and 1.2 K, respectively,
if one assumes W=100 nm and m=0. 067 (that of GaAs).
We see that for 120 mK (a typical temperature used in
these experiments to quench possible universal conduc-
tance fiuctuationsis), the main resonance features wre

still clearly developed, although their strength is some-

what diminished, especially for the first miniband in each
channel. When the temperature is of the order of the
separation between resonances, these are smoothed out
and only the larger gaps remain. Since the particular

resonance features are dependent on structural parame-
ters, it should be possible to find a relatively large range
of temperatures where the switching phenomenon exhib-
ited at T = 0 is still present, especially if the potential
modulation is strong.

A large number of remarkable physical phenomena
have been observed in the study of three-dimensional
superlattices. We anticipate that the increased carrier
coherence obtained by operating in the ballistic regime,
and t,he reduced dimensionality of the structures pro-
posed here, should make them particularly attractive as
a topic of exciting future research. The novel features
of parallel conducting subbands should also result in in-

teresting new physics. Nonlinear effects arising from the
application of strong fields should, in particular, be of
great interest.

Note added. We are pleased to note that since this arti-
cle was submitted for publication, the first experimental
study of a one-dimensional semiconductor superlattice
has been reported by Kouwenhoven et sl. is
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