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Role of tip electronic structure in scanning tunneling microscope images
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Tunneling to a spherical metal tip is analyzed, going beyond the s-wave approximation for the

tip wave functions. For metal surfaces, the scanning tunneling microscope image is found to cor-
respond to a contour of constant surface local density of states, under rather general assumptions.

However, for semimetallic or semiconducting surfaces, the image may deviate in a simple but cru-
cial way from the local density of states, as illustrated by the case of graphite.

A major obstacle to the quantitative understanding of
scanning tunneling microscopy' (STM) is the uncertainty
regarding the structure of the tip, and the resulting arbi-
trariness in the treatment of the tip in all theoretical stud-
ies. One theory, the "s-wave tip" model of Tersoff and
Hamann, is of particular interest despite its extreme sim-

plicity, because it leads to a direct interpretation of the
STM image as a contour of constant surface local density
of states (LDOS).

By considering a more general picture of the tip, this
paper both extends that interpretation, by showing that in
most cases it remains valid under more general assump-
tions than those made in Ref. 2; and modifies the interpre-
tation, by identifying the cases where it breaks down.
These results represent the most precise statement to date
of the connection between the STM image and the surface
LDOS.

Specifically, the tip electronic structure is treated in two
simple limits, which correspond roughly to small and large
Fermi wave vector kF. In the case of a spherical tip, the
STM image can be calculated for both limits. By compar-
ing these, we see to what extent the STM image depends
on the tip electronic structure.

One finds that for metal surfaces, these different limits
lead to images essentially identical to each other and to
the surface LDQS. It is therefore reasonable to conclude
that any realistic tip electronic structure, with an inter-
mediate kF, will also lead to an image which corresponds
directly to the LDOS.

However, for some semimetallic or semiconducting sur-
faces, the lowest Fourier component of the image may de-
viate drastically from the LDOS, depending sensitively on
the tip electronic structure. Nevertheless, the higher
Fourier components, which generally carry the useful in-
formation, still closely follow the LDOS. Thus we con-
clude that the correspondence between the STM image
and the surface LDOS is quite general, except in certain
cases for the lowest Fourier component of the image.
These cases are defined below.

The derivation of these results proceeds as follows. In
perturbation theory, the tunneling current is simply

where M„„is the tunneling matrix element between states
y» and y„of the surface and tip. Here f„„is a shorthand

for the terms representing Fermi occupancies and energy
conservation, and implicitly depends on voltage, i.e.,

where y„ is a particular tip wave function with energy E„,
and p;(r) exp( —x ( r —r; ( )lr is an s-wave function cen-
tered at the position r; of atom i, with a. h. '[2m(V
—E„)j '~ . (Throughout this discussion, normalization
and other constant prefactors are omitted for simplicity
wherever possible. )

Using the result of Ref. 2 for tunneling to an s-wave
function, the tunneling matrix element is then

(4)

and the current (1) becomes

J ce g f» g y~( )ry» (eJ )cl&pclJ» (5)

At this point, one could modeI a specific tip geometry
and electronic structure by appropriate choice of i; and

a;„. By including sites separated by arbitrarily small dis-
tances, one could, moreover, model non-s-wave atoms.
Specific choices can lead to interesting effects, such as
enhanced resolution or distorted images.

However, the primary concern here is in developing
generic models. Very specific tip models seem more ap-
propriate in discussing particular experiments, where the
tip has been characterized either directly or by infer-
ence, than in a general theoretical treatment.

The role of the atom positions i~ in defining the
geometric structure of the tip is quite transparent. How-
ever, the role of the coefFicients a;„ in modeling the tip
electronic structure is more problematic. Here we consid-
er two different assumptions for a;„. If the Fermi wave
vector kF of the tip is sma11, so that for a relevant tip

x 8(E»+ V —E„),
where f(E) is the Fermi function, V is the applied voltage
(in units of energy, i.e., eV), and E„ is the energy of y»
relative to the Fermi level of that electrode.

Numerous specific models of the tip have been used in

theoretical treatments of STM. Here the tip wave
function is expanded in the form

W» Zni»k
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length scale' d, kFd&&1, it is reasonable to consider a
model where all atoms contribute coherently for a given

tip wave function y„, i.e., a;„a„A;. In that case the
current (5) becomes

J incoherent ~ gD ~ ( ) ~2 (7)
l%v

whe«D;„g„f„„)a;„( refiects the density of available
tip states at energy E„—V on atom i.

For typical metals, kFd may be of order unity, so nei-
ther extreme corresponds strictly to reality. The point
here is simply to motivate two limits for treating the
difficult part of the problem, the wave-function coherence
within the tip. In this way, bounds are established for the
true behavior, since we expect the image to vary monoton-
ically with kF of the tip.

Equations (6) and (7) could be used directly for model-
ing possible tip structures. However, instead, in order to
make a more "generic" model, the discrete atoms are re-
placed here with an integral over a continuum of atom po-
sitions, uniformly distributed over a surface S. To be con-
sistent with the assumption of a uniform distribution, we
take D;„and A; as independent of the site i (Wit.hout loss
of generality we take A; 1.) Then the notation D„can
be used for D;„as well, since the two are now equivalent.

The current (6) from ter„is then
2

Jcoherent ~ gD (r)dr (8)

where the integral is over the surface S, which implicitly
depends on tip position; or from (7),

J "'"' tx: gD, ~
ttr„(r)

~
dr .

V

(9)

The term Q„D„ is simply the usual integration" over the
energy range (determined by the voltage) which contrib-
utes to the tunneling, weighted by the tip density of states.
For small voltage, this reduces to projecting out those y„
at the Fermi level, as in Ref. 2. For many purposes, it is
adequate to take D„as constant over the allowed energy
range.

Equation (9) represents a particularly intuitive and ap-
pealing result. It says that, in the incoherent limit, the to-
tal tunneling current is simply proportional to the surface
LDOS integrated over the tip; so the image is the LDOS
convoluted with the shape of the tip This result .has been
implicitly assumed in some previous discussions of the
role of tip shape; but here the result is derived, along with
the condition for its validity.

To proceed further, and evaluate the integrals (8) and
(9), we need explicit forms for the wave functions ter„and
the tip shape S. As usual, y, can be expanded in the

Jcoherent~ gD gge ( ) 2

V

where D„g„f„„~a„) is closely related to the total den-
sity of available tip states at energy E„E„—V.

On the other hand, for kFd &) 1, it is natural to assume
that the relative phases of the coefficients a;„will be essen-
tially random from atom to atom. In that case
g&a;&a&& b Jg„(a';z ~, gtvtng

where r, is the position of the center of curvature of the
tip. This is essentially equivalent' to the earlier result of
Tersoff and Hamann. The sum over v is simply the sur-
face LDOS at r„multiplied by the tip state density and
integrated from EF —V to EF.

The treatment of the incoherent case (9) is trickier, be-
cause an explicit form is needed for

~
ter„(r) ) . From (10),

~ ter„(r) ~'- g bgbg exp[i(Q —Q') x]
Q.Q'

x exp[ —(x.g+ trg )z] . (12)

For any given Fourier component 6 of the charge, the
term in (12) which (if it exists) decays most slowly with
distance is that with Q —Q' G/2.

If states at both the center and edge of the surface Bril-
louin zone (SBZ) fall near enough to EF to contribute
current, so that Q —Q' G/2 is always satisfied for
some state, then asymptotically

) ttr„(r) )'=gcaexp(i6 x)
G

xexp[ —(4rr2+G )' z].
Substituting (13) into (9) gives, for a spherical tip,

J'"""'""'cc R sinh(2xR)QD„) tir, (rr ) ( (14)

In this case the coefficient is linear in R, consistent with
the macroscopic limit originally considered by Binnig et
al. '

However, the important dependence, that on
~ ttr„(rr ) ~,

is identical to the coherent case (11). Thus the propor-
tionality between tunneling current and P ~ ttr„( (i.e.,
LDOS) is apparently quite general.

[Actually, the conditions for the approximate validity
of (13) turn out to be considerably less stringent than
might be expected. Equation (13) typically applies (with
a slightly renormalized value of rr) even at distances
which cannot be considered asymptotic, because the more
rapidly decaying terms scale with the asymptotically dom-
inant one. Moreover, the requirement of having states
with kii 0 and with kii G/2 is far from strict. In fact, a
state with kii G/4 is close enough to both the center and

form

ttr„(r) gbg exp(iQ. x)exp( —xgz), (10)
Q

where trg (a. + Q ) '~, Q kii+6, kii is the two-
dimensional wave vector, and G is a two-dimensional
reciprocal-lattice vector of the surface.

For simplicity, the tip is taken as spherical, with the ra-
dius of curvature R. The resulting current does not differ
appreciably from that for a parabola or other smooth
shape with the same curvature, as long as xR&&1. This
condition is well satisfied except when R is so small as to
correspond to a single atom, in which case the spherical
model is particularly appropriate.

The integral in (8) can be evaluated much as in Ref. 2,
giving'

Jcohefetlt R2 ' h2( R)gD ~
( ) ~2
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edge to make (13) accurate enough for most purposes.
Thus (13) is a good approximation for essentially any
metal. The interested reader is referred to Ref. 13 for fur-
ther discussion. ]

The important point here is that, insofar as (13) ap-
plies, the two opposite approximations give essentially
identical images. The same would presumably be true for
a realistic intermediate degree of coherence as well. Thus
the result of Tersoff and Hamann, that the current is
proportional to the local density of states at the center of
curvature of the tip, is for metals [where (13) is rather ac-
curate], much more generally valid than the original
derivation might suggest.

For semiconducting surfaces at low tunneling voltage,
the situation is a bit different. Tunneling then occurs to
states at the band edge, so only a small pocket of the Bril-
louin zone contributes. Then for a given Fourier com-
ponent 6, of the charge, there may be no G such that
kt+G 6,/2 is well satisfied for the available small range
of k((.

However, it turns out' that the relative errors in (13)
are still not large except for the lowest Fourier component

g of the image. The image is determined by the ratio of
the higher Fourier components of the charge to the G 0
component. This ratio in turn depends sensitively on the
difference in decay constants. For higher Fourier com-
ponents, k((«G, so the details of the electronic structure
are relatively unimportant, just as for a metal. Even for
the second-lowest Fourier component of the image, (13) is
reasonably well obeyed. However, the difference in decay
constants between the G 0 and g Fourier components,
which determines the g component of the image, can vary
drastically, from zero to about twice the metallic value, if
k(( is restricted to the edge or center of the SBZ.

For the g Fourier component, the correspondence be-
tween the image and the LDOS may therefore break
down completely. The most extreme and most interesting
example of this breakdown occurs when only states at the
edge of the surface Brillouin zone contribute. This case
has already been discussed elsewhere, because it also leads
to anomalous corrugations' and enhanced resolution. '

Consider the limit where only a single wave function
contributes to the tunneling current, and that wave func-
tion falls exactly at the edge of the surface Brillouin zone.
To illustrate the resulting dependence of the image on the
tip, it is sufficient to consider a two-plane-wave model,
which in any case accurately describes the wave function
at large distances. ' Then

case, ' shown in Fig. 1, with a periodic array of singular
dips associated with nodes in the wave function.

For finite R, however, the singularity in the image
disappears, and the image becomes progressively smooth-
er with increasing R. In fact, in the incoherent limit and
for R)) 1/2a, the tip radius has exactly the same eff'ect
here as for a metal, in suppressing nonzero Fourier com-
ponents of the image. This is true even though, unlike the
metallic case, increasing the tip height has no such effect
on the lowest nonzero component.

It is worth considering a specific example to illustrate
the magnitude of these effects. The case of graphite has
commanded considerable attention, and may be treated
using (15), with appropriate parameters, for a path con-
necting hollow sites. ' (Such a path passes over the bonds
but not the atoms, and so does not sample quite the full
corrugation. ) An elegant treatment of this case for a
somewhat diff'erent tip, but also not assuming s-wave wave
functions, has been reported by Sacks et al. '

Figure 1 shows the theoretical graphite image for the
coherent model, and for the incoherent model with two
values of R. 'For comparison, clean UHV experiments
have seen corrugations of about 0.3 A or larger, although
there is still considerable uncertainty. '

For a one-atom tip, a reasonable value of R would be
the metallic radius for W or Ir, about 1.4 A. The result-
ing corrugation in Fig. 1 is slightly under 0.2 A, somewhat
smaller than that seen experimentally. ' Of course, just
as the coherent limit neglects the smoothing due to finite
R, the incoherent limit exaggerates the smoothing by an
amount which is difficult to estimate. The most important
point is that in a case such as graphite, unlike the case of
metals, the two limits give radically different results, and
the real image is thus quite different from the LDOS (i.e.,
from the image in the s-wave model or the R 0 limit).

In an ad hoc attempt to model a realistic case inter-
mediate between incoherent with R 1.4 A, and coherent
(i.e, incoherent with R 0), we consider the incoherent
limit with R 0.7 A. This gives a corrugation of over 0.4
A, also shown in Fig. 1, which is apparently consistent
with experiment. ' Thus for graphite, unlike metal sur-
faces, a precise knowledge of the tip electronic structure is
crucial for a quantitative analysis.

In conclusion, we have considered two simple models
for the STM tip. By comparing these, we address the

ycLcos(gx/2)exp[ —tr +g /4) '~ z] . (15)

The image for the incoherent tip must be calculated
directly from (9) and (15), since (13) does not apply in
this case. One obtains

z [ln[1+agcos(gx)] —1nC]/(4N +g ) '

ag (1+g /4x )'~ sinh(2NR)/sinh[2(x. +g /4)'~ R].
(C is proportional to the tunneling current, and in this
special case only shifts the image uniformly in z.) For
R 0, this reduces to the same image as in the coherent

~ a ~ ~

0 1 2 3 4
x (A)

FIG. 1. Calculated STM image from Eq. (16), with parame-
ters appropriate for graphite, for R 0 (equivalent to coherent
model) (solid line), R 0.7 A (dashed line), and R 1.4 A (dot-
ted line) ~
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question of to what extent the STM image depends on the

tip electronic structure. For metals, the earlier con-
clusion that STM measures the surface LDOS is shown

to be valid under much more general assumptions than
those of Ref. 2, i.e., an s-wave tip is not required. Howev-

er, in tunneling to semiconducting or semimetallic sur-

faces at low voltage, where only a small pocket of the sur-

face Brillouin zone contributes, the actual STM image
may deviate drastically from the results of the s-wave tip

model, and from the LDOS. Fortunately, this deviation is
con6ned to the lowest Fourier component of the image.
The simple s-wave tip model may therefore be used even
in this case to interpret data, as long as its one shortcom-
ing is borne in mind.

I am grateful to A. Baratoff for discussions, and to N.
D. Lang for comments on the manuscript.
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