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Numerical simulations of resonant tunneling in the presence of inelastic processes
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We describe simulations of resonant tunneling through a time-modulated double-barrier poten-
tial. The harmonic modulation of frequency m leads to emission and/or absorption of modulation
quanta of energy htv in close analogy with emission and/or absorption of dispersionless bosons
(optical phonons, photons, plasmons, etc.). The transmission coefficient shows satellite peaks in

addition to the main resonance. Momentum space snapshots can be used to extract detailed in-
formation of the dynamics of the inelastic tunneling processes, such as opening and closing
boson-mediated resonant channels, their relative importance, and related time scales.

Resonant tunneling in semiconductor heterostruc-
tures'2 is currently a very active area of research featur-
ing both device applications and questions of basic phys-
ics. Traditionally most current versus voltage curves are
analyzed with the Tsu-Esaki tunneling formula (or its
modifications )

J- d kv(k) [fFD(E) —fFD(E+eV) l I T I (1)
(2tr)' "

where fFD is the Fermi-Dirac distribution, T(E, V) the
transmission coefficient obtained from the solution of the
static Schrodinger equation, E the total energy of the tun-
neling particle, and V the applied voltage. The use of (1)
implies several assumptions, the following of which are of
relevance to the present work: (i) use of equilibrium dis-
tribution functions (even though a biased resonant tunnel-
ing diode is manifestly in a nonequilibrium state), and (ii)
scattering is not accounted for. A complete theoretical
description would require a numerically tractable quan-
tum kinetic theory for nonstationary and spatially inho-
mogeneous systems. No such theory exists as of today; for
a status report of some candidate theories see Ref. 5. As a
natural first step several research groups have recently ad-
dressed partial aspects of the problem. Phenomenological
theories where the main effect of inelastic collisions is to
broaden the resonant transmission coefficient have been
reported. Wigner function simulations, with simplified
collision operators, have been performed to obtain the
nonequilibrium distribution function, from which the
current can be extracted. Several analytic calculations of
the transmission coefficient in the presence of optical-
phonon scattering have recently been reported. s These
calculations have been motivated by the observation of
optical-phonon related features in the I-V curves. 9

The purpose of this paper is to introduce a different ap-
proach for studying energy exchange, i.e., inelastic
scattering, in resonant tunneling physics. The proposed
method does not overrule any of the above-mentioned
theoretical approaches but rather complements them by
providing a means of obtaining additional insight on de-
tails of various tunneling processes. Our method consists
of solving the time-dependent Schrodinger equation

2 28% (xyt) Ii d +V( ) @( ) (2)
t 2rrt dxi

where the potential V(x, t) contains the heterojunction
band-edge potential and a harmonic modulation of fre-
quency ta. By starting from a given initial state, the
transmission coefficient can be obtained by integrating (2)
forwards in time until the asymptotic state has been
reached. A time-modulated single-barrier has been con-
sidered in a different context by Biittiker and Landauer'
(analytical work), and by Jauho and Jonson" (numerical
work; the Schrodinger equation solver and numerical de-
tails are described in this reference). The phenomenology
is as follows 0 The incoming particles of energy E may
either emit or absorb modulation quanta of energy Sea,
and consequently the reflected and transmitted beams
contain sidebands at E+ nhai Thus .there is a close anal-
ogy to interaction with a dispersionless boson field. The
analogy is not complete: Effects related to statistics
and/or temperature are not included. In a sense the
present approach is an infinite temperature calculation:
Absorption and emission of modulation quanta have the
same probability. We do not exclude the possibility of ex-
tending the present approach to include temperature
effects.

Despite this restriction the present approach has several
advantages. No heavy numerical work is required as is
the case for the Wigner-function simulations. The cou-
pling to the external time modulation can be of arbitrary
strength, and no truncation to low-order processes is
necessary as is customarily done in the analytic calcula-
tions. Further, the shape of the heterostructure potential
can be arbitrary, and the bias and energy dependence of
the transmission coefficient is accounted for exactly. The
part of the structure which is affected by the time-
modulation can be chosen at will. This allows one to ana-
lyze the relative importance of inelastic processes occur-
ring in the barriers, or in the quantum well (see below).

As an illustration of the method we have calculated the
transmission coefficient for a symmetric double-barrier
structure with 50-A barriers and a quantum well. The
other parameters in the simulation were as follows: Vo
(barrier height relative to contacts and quantum well)

0.23 eU, V~ (amplitude of harmonic modulation) 0.05
x Vo, and @ca 0.3 x Vo. The initial Gaussian wave pack-
et had a half width of 1000 A which was required for
sufficient energy resolution. The simulated transmission
coefficient is depicted in Fig. 1, where we show results for
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FIG. 1. Transmission coefficient as a function of momentum
for a 50&50x50 A' double-barrier structures. Units are chosen
so that p E2 corresponds to an energy equaling the static bar-
rier height. Squares, static structure; circles, modulated bar-
riers; triangles, modulated quantum well. In addition to the
main resonance at p, 0.864 the satellite at p (p,'+2)}m) '~' is
seen. The feature corresponding p (p,' —2he) '~' is weak (not
shown in the figure) and best analyzed in momentum space
snapshots (see Fig. 2).
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the static double barrier (squares), modulated barriers
(circles), and modulated well (triangles). The satellite at
E,+hco (E„ is the resonant energy) is clearly visible for
the case of the modulated quantum well while it is barely
discernable for the modulated barriers case. To our
knowledge this effect has not been discussed previously,
and it can be understood as follows. The tunneling parti-
cles pass through the classically forbidden region so fast
(typical estimate for a tunneling time for a 0.23 eV high
and 50-A broad barrier at energy 0.1 eV would be a few
femtoseconds) that they do not have time to absorb or
emit a modulation quantum. '0 However, once in the
quantum well the particles stay there so long (semiclassi-
cally, they reflect back and forth several times before tun-
neling out) that a sideband has time to form, and there-
fore the modulated well shows a stronger effect than
modulated barriers. This seems to suggest that in experi-
mental situations barrier phonons are of minor impor-
tance. Interfaces, however, which are probed many times
(within the semiclassical picture) may have an important
effect.

Further insight on the dynamics of the tunneling pro-
cesses can be extracted by analyzing the wave-packet in
momentum space. " In Fig. 2 we show the momentum
space wave function for four different energies at the time
instant when the simulation was terminated. Two
different criteria were used to determine this time: (i)
The transmission coefficient had converged to its asymp-
totic value [Figs. 2(a) and 2(d)], or, equivalently, there
was no wave function left in the quantum well. In the case
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FIG. 2. Square modulus of the momentum space wave func-
tion during the simulation for four different incident energies:
(a) E E, —Am, (b) E E„(c)E E,+ha, and (d) E 0.9
x V0. The large solid arrows show the incident momentum,
while the small open arrows indicate the locations of the n + 1

sidebands (the n —1 sideband does not exist for the lowest
energy).

of a strong resonant coupling to the quasibound state in
the well a second criterion was used: (ii) The part of wave
function trapped in the quantum well had reached its
asymptotic exponentially decaying time dependence [Figs.
2(b) and 2(c)]. Let us now examine in detail the
transmitted part of the wave function, i.e., positive mo-
menta (similar considerations can be made for the
reflected pulse). Starting from low energies [Fig. 2(a)],
E E, —Am, we observe that the transmitted pulse does
not have any amplitude at the incoming energy E: all its
weight is located at channels E+ h, ro and E+ 2@co. Thus
we have a very clear case of velocity filtering: the
transmitted pulse has a different velocity, or energy, than
the incoming one. The mechanism leading to this behav-
ior is easily understood by recalling that the transmission
coefficient is very small for small energies (see Fig. 1), and
that by absorbing a modulation quantum the tunneling
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particles are excited to the resonant channel with an
enhanced probability for transmission. For E E„[Fig.
2(b)] the momentum space wave function is characterized
by a very broad uniform background, with a sharp peak at
the incoming energy and small features corresponding to
emission and absorption of modulation quanta. The back-
ground corresponds to the trapped part of the wave func-
tion which slowly leaks out from the quantum well. For
E E„+@to [Fig. 2(c)l we also observe a large back-
ground; the interesting feature is the large feature at
E —@to, which corresponds to the particles that have em-
itted a modulation quantum, and therefore are at reso-
nance, and thus contribute strongly to the transmitted
pulse. Particles that have absorbed modulation quanta,
however, do not contribute significantly to the tunneling
current. At even higher energies [Fig. 2(d)] the situation

differs in two aspects: first, there is hardly any uniform
background, which shows that tunneling is fast and dom-
inated by nonresonant effects, and second, the dominant
sideband now occurs at E+ hto, which corresponds to par-
ticles that by absorbing a quantum are excited above the
barriers, and therefore can contribute to the transmitted
pulse.

In summary, we have described a numerical procedure
which is simple and straightforward to apply, allows the
simulation of inelastic processes, and gives insight to the
dynamics of tunneling in the presence of inelastic effects.
The method can be applied to many other tunneling prob-
lems where scattering or relaxation effects are important.
Examples of potential applications include studies of sto-
chastic time modulation, and sequential tunneling and re-
laxation in biased multiple quantum well systems. '
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