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Optimized pseudopotentials
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A plane-wave basis has great advantages for many calculations in the physics of solids. To ap-

ply this basis to a wider class of materials, the atomic characteristic of a pseudopotential is

identified which leads to rapid convergence in the solid, and a new method for generating pseudo-

potentials optimized according to this criterion is shown. As a test case, an ab initio plane-wave

basis determination of the structural properties of fcc copper is performed. The results indicate
that these optimized pseudopotentials will facilitate study of transition metals and first-row non-

metals.

Theoretical studies based on ab initio electronic struc-
ture calculations are useful for elucidating many materials
problems in the physics of solids. Specialized basis sets
(i.e., other than plane waves) have proven to be effective
for calculations of total energies and band structures of
solids. ' The use of such a set is vital if the behavior of the
core electrons of the solid is to be considered explicitly.
However, the behavior of the core electrons frequently has
a minimal effect on properties of interest in the solid, and
the implicit inclusion of the core states into a pseudopo-
tential opens up the possibility of using a plane-wave basis
for electronic structure calculations. This choice of basis
has many advantages for a wide range of calculations, in-

cluding studies of forces on ions, phonon frequencies,
corrections to quasiparticle self-energies, and dielectric
matrices. The plane-wave basis provides controlled con-
vergence and high numerical accuracy. In addition, using
this basis for the single-particle states allows for a con-
venient and unbiased representation of the charge density.
Furthermore, when a plane-wave basis is used, the equa-
tion-of-motion method of Car and Parrinello can be im-
plemented to increase calculational efficiency tremendous-
ly. The method is especially efficient when used with the
excellent fast Fourier-transform algorithms which are
currently available.

The main drawback to using plane waves as a basis is
that real materials require many basis functions for their
description. The problem of convergence becomes critical
for materials which have sharply peaked valence states.
In describing these substances, a prohibitive number of
plane waves would be required, making the use of the con-
ventional plane-wave approach impossible. As a result,
almost all ab initio calculations involving transition metals
and first-row nonmetals have been performed with spe-
cialized basis sets. '

Optimizing the convergence with basis size of quantities
of interest, including total energy, would allow the benefits
of the plane-wave basis to be derived in as wide a class of
systems as possible. As a result, several approaches have
been proposed to achieve this goal. Most of these
focus on improving the norm-conserving pseudopoten-
tials which have been very widely used in the literature to
address problems in the theory of solids. Each of these
approaches was either designed for a specific case or did
not significantly affect convergence of total energies.
The purpose of this paper is to isolate those features of a
pseudopotential which are responsible for the convergence
of the total energy in a plane-wave basis. Having done
that, we then formulate a criterion which can be used to
create a pseudopotential with optimal convergence and
which should be applicable to any element.

%e have found that the convergence of the total energy
of solids with plane-wave basis size mirrors the conver-
gence of the total energies of the isolated pseudoatoms
which comprise the solid. In physical terms, we can un-
derstand this correspondence by dividing materials into
four classes from the point of view of convergence. In the
first class, valence states in the atom and solid are very
similar. For this class, which includes noble gas solids and
ionic solids, correspondence between atomic and solid con-
vergence should be excellent. The second class contains
solids in which the valence electrons are distributed nearly
uniformly throughout the solid, such as free-electron met-
als. For these materials, the solid valence states will re-
quire many fewer plane waves for convergence than the
atomic states. Consequently, they do not present a con-
vergence problem, and their convergence does not need to
be optimized. The third class contains materials such as
transition metals which combine characteristics of the
first two classes. In this class, some valence states in the
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solid are free-electron-like and do not present a conver-

gence problem, and others are highly peaked around each
atomic site and resemble the corresponding atomic eigen-
states strongly. Because the latter states control conver-
gence and because they are similar in the atom and solid,
materials in the third class have convergence properties
which correspond closely to those of the constituent
atoms. In the fourth class are the systems which exhibit
covalent bonding. Here, no direct relationship between
atom and solid exists, since the states in the solid do not
resemble the atomic states. Ho~ever, the bonding states
in the solid are confined in interatomic regions of approxi-
mately the same volume as the atomic states. Therefore,
we expect convergence of atomic and solid total energies
to be similar for covalent systems as well.

We have checked these claims and found close
correspondence between the convergence of the atomic
and solid total energies for a number of elements which
are particularly problematic to treat with standard plane-
wave approaches because of slow convergence. Specif-
ically, we examined ionic, transition metal, and covalent
systems including oxygen, copper, and carbon. All the re-
sults are qualitatively very similar. Below we discuss in

detail and exhibit results for copper, which is about as
difficult a case as exists for the plane-wave method.

The fact that atomic and solid total energies do con-
verge similarly for all solids for which convergence is a
problem presents a general criterion for the generation of
optimally convergent pseudopotentials: To make the total
energies of solids converge optimally, it is sufficient in

principle to create pseudopotentials which give optimal
total-energy convergence for the constituent atoms. In
practice, we implement this criterion with two approxima-
tions; we require the potential to be continuous, and we
optimize only the atomic kinetic-energy convergence. It
can be proven' using scaling arguments that total-energy
convergence and kinetic-energy convergence are very
similar in the limit of large cutoff energies. By requiring
pseudopotential to be continuous, we lower the cutoff en-

ergy above which this is ture. In fact, we have found
kinetic-energy convergence to mirror total-energy conver-
gence for all continuous pseudopotentials which we have
examined, for all cutoff energies of interest. One or both
of these approximations may be eliminated to obtain mar-
ginally better results. The method we have chosen has the
merits of straightforwardness of implementation and nu-
rnerical stability.

Our goal is to create an atomic pseudo wave function
which has a continuous pseudopotential and kinetic-ener-

gy convergence to a certain level of tolerance in as small a
basis as possible. A pseudo wave function gives rapid
kinetic-energy convergence when the high Fourier com-
ponents of the pseudo wave function contain very little ki-
netic energy. If one simply minimizes the kinetic energy
of the pseudo wave function, as proposed by Cohen and
Heine, " no control is exercised over the distribution of
the remaining kinetic energy among the Fourier com-
ponents of the pseudo wave function. To achieve optimal
convergence, the kinetic energy in the high Fourier com-
ponents of the pseudo wave function must be minimized
directly. To accomplish this, it is sufficient to minimize

the portion of the kinetic energy in the atomic pseudo
wave function above some cutoff q, in Fourier space while
ensuring that the pseudo wave function has two continu-
ous derivatives. We can begin with any pseudo wave func-
tion F(r) which matches the atomic eigenfunction
smoothly at r r, . To it we add a correction function
C(r), which optimizes the convergence of the original
wave function. The result is 0, the optimized wave func-
tion, which equals F+C for r ~r, and which equals the
all-electron wave function for r & r, . We find it efficient
and convenient to have an analytic form for F. In prac-
tice, we write F as a sum of four Bessel functions whose
wave vectors q are chosen so that their logarithmic
derivatives match that of the all-electron wave function,
p~(r), at r, :

The coefficients of these four functions are chosen to nor-
malize the wave function and to make it continuous with
two continuous derivatives at r, . Because normalization is
a quadratic constraint on the a s, a sum of three Bessel
functions cannot always be found which satisfies these
constraints. Accordingly, a fourth Bessel function is in-
cluded whose coefficient is chosen arbitrarily within the
range of values which permits the constraints to be met.
To the expression F, we add C(r), which we expand in
Bessel functions whose wave vectors q; are chosen so that
the functions have a node at r, :

N

C(r) g p;j I (q;r ); jl (q; r, ) 0.

Lagrange multipliers enforce the constraints of normali-
zation and continuity of two derivatives at r„adnthe
coefficients P; of these Bessel functions are chosen to mini-
mize the kinetic energy beyond the cutoff q„which is ex-
pressed as follows:

Q OO ~lc—„, d'r eI'(r)V'e((r) —„d'qq'i eI(q) i'.
The pseudopotential is calculated by directly inverting the
Schrodinger equation.

This scheme for generating pseudopotentials has two
parameters which may be chosen differently depending
upon the application. The parameter r, may be varied to
insure transferability of the pseudopotentials. For any
given r„our method provides the wave function which
converges most rapidly. The other parameter q, is deter-
mined iteratively. A q, is chosen and the amount of kinet-
ic energy beyond q, is minimized. Then q, is varied until
exactly the tolerated quantity of kinetic energy is found
beyond q, after minimization.

%'e now illustrate this approach for the case of copper.
We begin with an all-electron calculation of an atom of
Cu '+ (3d 4s 4p ). We pick the cutoff radius
r, 1.97ao to be smaller than half the interatomic spac-
ing. We optimize convergence for a tolerance of 1 mRy,
and this leads to q, 7.14. In the expression for F, a4 is
fixed equal to 0.5. Five Bessel functions are included in
the correction function C for the potential we present.
(Extending the set of Bessel functions in C up to twenty
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TABLE I. Expansion of the optimized d pseudo wave func-
tion for r &r, . CoeScients and wave vectors of the spherical
Bessel functions of angular momentum 2 are provided in atomic
units for functions F and C, which are defined in the text.

Function F
a;

1.619452
2.436 893
1.744898
0.500000

I
q;

2.278 679
3.921 348
5.536 289
7.142447

Function C
Pi

0.203 543
—0.448 616
—0.827052
—0.169339

0.016011

q;

2.926964
4.618887
6.258 186
7.879067
9.491 198

gave only marginal improvement of convergence. ) The
coef5cients and wave vectors for F and C are contained in
Table I.

As a test of the improvement achieved, we compare the
convergence of our optimized potential to a pseudopoten-
tial created by the standard method of Hamann, Schluter,
and Chiang (HSC). We optimized only the d pseudopo-
tential, because the d electrons clearly govern conver-
gence, even after optimization. The s and p wave func-
tions have r, 's of 2.6ao. We chose the HSC d wave func-
tion so that the HSC and new wave functions match the
all-electron wave function exactly for the same range of
radius, r, 1.97ao. The d wave functions of these two po-
tentials and their Fourier transforms are compared in Fig.
1. Notice that although the two pseudo wave functions
are quite similar in real space, the new wave function has
a Fourier transform which converges much more rapidly.
The ionic pseudopotentials which give rise to these wave
functions are compared in Fig. 2. The new potential is
deeper and somewhat less convergent in Fourier space
than the HSC potential. If potential well depth or poten-
tial Fourier-transform convergence were used as criteria,
the HSC potential would be considered preferable to the
optimized potential. However, the criterion of atomic
total-energy convergence indicates that the optimized po-
tential is far superior. In Fig. 3, we show by solid lines the
atomic total energy as a function of wave vector for both
pseudopotentials. This calculation predicts that the total
energy of solid copper will converge to within 1 mRy at a
plane-wave cutoff energy of 50 Ry (500 plane waves for
fcc copper) with the new pseudopotential, whereas the
same level of convergence for the HSC case requires a
cutoff of 115 Ry (1700 plane waves for fcc copper).

In order to verify the predictions of the atomic calcula-
tions, these pseudopotentials were then used to calculate
the total energy of fcc copper at the experimental lattice
constant. For these calculations we used 256 k points in
Briliouin zone (10 in the irreducible sector). ' The results
are plotted as dots in Fig. 3. The close correlation be-
tween atomic and solid total-energy curves both for the
standard HSC potential and for our new potential shows
that the criterion of atomic total-energy convergence does
indeed have great predictive power in general. In addi-
tion, the fact that a potential which was created to optim-
ize atomic total-energy convergence also exhibits a large
improvement in convergence of the solid total energy,
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FIG. 1. Pseudo wave functions (a) in real space and (b) in

Fourier space, for the copper 3d eigenstate, generated by the
HSC method (dashed line) and by the present approach (solid
line). The pseudo wave functions are normalized to unity.
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FIG. 2. Pseudopotentials for the copper 3d eigenstate using
the HSC method (dashed line) and the present approach (solid
line).
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Experiment Present % Difference

Lattice constant (a.u. )
Cohesive energy (Ry/atom)
Bulk modulus (Mbar)

6.81
0.257
1.42

7.03 +3.2
0.287 + 11.7
1.48 +4.2

TABLE II. Comparison of the bulk properties of fcc copper
as obtained by the present method of calculation to experimen-
tal values.
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FIG. 3. Atomic (solid lines) and fcc solid (dots) total ener-

gies as a function of cutoff energy for copper in the HSC and

present approaches. The zero of atomic total energy for each
pseudopotential was chosen to be the total atomic energy at a
cutoff energy of 324 Ry. The zero of solid total energy was

chosen for each pseudopotential so that the atomic and solid to-
tal energies coincide at a cutoff energy of 80 Ry.

shows that we have gone beyond identifying a valid cri-
terion and have produced and exhibited a potential which
possesses markedly improved convergence.

Using this new pseudopotential, we performed the first
ab initio plane-wave basis determination of the structural
properties of a noble metal. We computed the total ener-

gy of fcc copper at 15 atomic volumes ranging from a 27%
compression to a 34% expansion relative to the calculated
equilibrium volume. For these calculations, we used 1372
k points in the Brillouin zone (44 in the irreducible sector)
and a cutoff energy of 50 Ry, the value predicted by the
atomic calculation. The enlarged k point set was essential
to describe the shape of the Fermi surface realistically.
Using 50 Ry as a cutoff energy insures that all total ener-
gies are converged to within 1 mRy. This tolerance is an
upper bound to the convergence of all energy difl'erences,

and energy differences between similar structures will
probably be converged to a much more stringent toler-
ance. Accordingly, a much smaller cutoff energy may be
used for many applications. The equilibrium lattice con-
stant, cohesive energy, and bulk modulus of fcc copper
which result from these calculations agree very well with
experiment. Experimental and calculated bulk properties
of fcc copper are compared in Table II.

In conclusion, we have addressed the problem of im-
proving convergence in a plane-wave basis. We identify
the essential features of a pseudopotential which deter-
mine its convergence properties. From this, we develop a
criterion which we use to create optimally convergent
pseudopotentials. Using this principle, it should be possi-
ble to optimize the convergence characteristics for any
atom, without sacrificing accuracy. This makes it possible
to scrutinize solids containing transition metals and first-
row nonmetals with the plane-wave pseudopotential for-
malism. As a result of this work, we envision that the sim-
plicity and versatility of calculations using a plane-wave
basis can now be extended to a wide range of ionic, co-
valent, and transition metal systems.
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