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We study the fractal property of films formed by random deposition with the use of computer
simulation. The films are shaped by packing particles of unit squares on segments divided into unit

lengths (cells). In the course of packing, clusters with various forms appear, and they become large
in their areas, surface, and bottom lengths. Their shapes are not self-similar but self-affine, and the
forms cannot be represented by a unique value of fractal dimension. Their fractal dimensions are
defined in many ways, and are different according to the definitions of the fractal dimension. In this

paper, by applying three kinds of fractal dimension, we obtain the self-affine fractal dimensions of
film surfaces formed by random deposition on substrates of segment.

It has been reported that irregular patterns such as
percolation clusters, diffusion-limited aggregations
(DLA), and surfaces of deposited film have fractal prop-
erties. Percolation clusters and DLA's grow isotropical-
ly. The thickness and length of deposited films grow, but
the speed of the growth of length is greater than that of
thickness, and therefore deposited films grow anisotropi-
cally. The shapes such as percolation cluster and DLA
which grow isotropically are self-similar, while film sur-
faces which grow anisotropically are self-affine. ' Their
fractal dimensions can be defined in many equations, and
the values of fractal dimension are different by the
methods of definition.

We have studied the fractal property of film surfaces,
using computer simulation. The model of film surfaces
is formed by depositing rigid square particles with an
edge of unit length on a segment divided into unit lengths
(cells). The deposition is carried out without any correla-
tion among the deposited square particles. In Fig. 1 we
present an example of the shaped patterns, and there are
11 clusters numbered from 1 to 11 on the segment divid-
ed into 100 unit cells. The representative sizes of each
cluster are the area A, surface length L, and bottom
length B, and the sizes grow as deposition proceeds. The
smallest and largest cluster of Fig. 1 are, respectively,
number 8 (A =3, L=7, and 8=1) and number 5

(A = 83, L =70, and 8 =26).
We can define the fractal dimension by various

methods; we apply the following three equations as the
definitions of the fractal dimension. The first equation is
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where D~2 is another fractal dimension for the relation
between a one-dimensional quantity B and a two-
dimensional quantity A, and

D&2 Dzt /Dii . (4)

In Fig. 2, we plot L against B on a log-log scale. Fig-
ure 2 shows that a fractal property exists for the long
clusters. Applying the least-squares fit method, we fit a
straight line to the data points for 8 1000 in Fig. 2, and
present cII, DII, and the correlation coefficient y:

cII =2.6,
DII =1.05,
7=0.999 . (7)

In Fig. 3 we plot L against A on a log-log scale. Figure
3 also shows that another fractal dimension exists for
large clusters. By applying the least-squares fit method,

L and A which is a two-dimensional independent vari-
able. Equations ( 1) and (2) were applied in our previous
papers. ' However, in this paper, by introducing the
concept of the self-affinity, we present (l) and (2) with
new notations D

II
and D j .

The third equation is an equation newly applied here
and is written as

where ~
II

is a proportionality constant, and D
II

is the frac-
tal dimension for the relation between one-dimensional
sizes L and B which is an independent variable of the
parallel direction to segment substrates.

The second equation is

where D~, is a fractal dimension for the relation between
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FIG. 1. An example of patterns formed on a segment divided
into 100 unit cells. There are 11 clusters numbered from 1 to
11. The area, surface, and bottom length of clusters are denot-
ed, by A, L, and 8, respectively. For example, A, L, and 8 of
number 1 are equal to 7, 9, and 3.
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FIG. 3. Scatter plot of the surface length L vs area A. The
unit of L is the multiplier of lattice constant, and the unit of A

is the multiplier of the area of unit particle.

B.
FIG. 2. Scatter plot of the surface length L vs bottom length

we fit a straight line to the data points for A «1000 in
Fig. 3, and present c», D», and y:

cj) =1.1,
Dj) =1.86,

y=0.999 .

(9)

(10)

From Eqs. (4), (6), and (9), we obtain the third fractal di-
mension

D~2=1.77 .

In this paper we define three equations (1), (2), and (3)
for the fractal dimension of deposited film surfaces, using
the representative sizes (surface length L, bottom length

D~) &Dj2)D)) . (12)

Can we analytically obtain these values of the fractal
dimension? Can D~~ be expressed by a function of only
D g ~

ol D j 2? Can we shape two difFerent groups of film
surface with the same Dl (Dt) and diff'erent Dt (D~~)?

These are study themes of the future.
In this paper we treat only a lattice filling problem as

opposed to a continuum filling problem which is a more
common operation. Also the fractal property of deposit-
ed films formed by a continuum filling is a theme of the
future.

8, and area A) of the clusters.
The values of the self-aSnity fractal dimension of the

large clusters are given by (6), (9), and (11), and the de-
creasing order of the values is
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