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Monolayer and bilayer solid lattices of molecular nitrogen adsorbed on the basal plane surface of
graphite are modeled with realistic intermolecular-potential models, and the Helmholtz free energy
is evaluated with quasiharmonic lattice dynamics. The stability of herringbone and pinwheel order-
ings of the layers relative to each other and to the low-temperature three-dimensional solid is deter-
mined. There is good agreement with the observed length and energy scales of the monolayer and
bilayer lattices. The modeling is consistent with the following succession of lattices: commensurate
monolayer herringbone, uniaxially incommensurate monolayer herringbone, monolayer pinwheel,
and bilayer pinwheel or bilayer uniaxially incommensurate herringbone.

I. INTRODUCTION

Molecular nitrogen adsorbed on the basal-plane surface
of graphite, N,/graphite, is the molecular physical ad-
sorption system for which the most detailed and most ex-
tensive body of experimental data exists. It displays
several geometrical packings and ordering transitions and
has already been the subject of much theoretical effort.
We report here calculations which attempt, and to a con-
siderable degree succeed in reaching, a quantitative ac-
count of the lengths and energies of the ordered mono-
layer and bilayer lattices based on molecular-interaction
models.

The low-temperature solid of three-dimensional molec-
ular nitrogen has the Pa3 structure of ordered molecular
axes which often occurs for solids of linear molecules. 2
This intricate ordering is disrupted, or frustrated, in the
adsorbed monolayer and there is a limited layer-by-layer
condensation at low temperatures.’ We treat the evolu-
tion of the ordering in monolayer and bilayer structures
under an increasing mechanical stress which changes the
relative importance of the intermolecular and molecule-
substrate forces. As for three-dimensional solids of linear
molecules,* several orderings have comparable energies
and the succession of phases under increasing stress de-
pends on small stability margins.

The phase transitions of N,/graphite may be grouped
roughly as thermally or mechanically driven. The
thermally driven class includes orientational ordering and
melting transitions, identified in thermodynamic experi-
ments such as specific heat> ® and adsorption isotherm
measurements.” The mechanically driven class includes
commensurate-incommensurate and layer condensation
transitions, for which structural information is obtained
from diffraction experiments with electrons,'® neu-
trons,'! "% and x rays;'>'® there also are signatures in the
thermodynamic experiments. The monolayer solid
displays commensurate and uniaxially incommensurate
rectangular lattices and a triangular incommensurate lat-
tice; the structural assignment for the bilayer solid is still
uncertain. We attempt to reproduce the observed succes-
sion of lattices with our model calculations.

4

The dense phases of molecular nitrogen are usually
held to be governed by classical mechanics, although the
quantum-mechanical zero-point energy!’ " is 15% of
the cohesive energy of the low-temperature three-
dimensional solid. The orientational ordering transition
and fluid states of the adsorbed nitrogen have been treat-
ed?®?! with classical Monte Carlo and molecular-
dynamics methods. Previous treatments®>~2* of the rela-
tive stability of the low-temperature thin solid layers were
based on potential-energy calculations or on Monte Carlo
calculations applied at very low temperatures. We
present here stability calculations for the ordered solids
with the quasiharmonic lattice approximation?® for the
Helmbholtz free energy; thus the lattice dilation caused by
the zero-point energy is included. This is the first work
in which the internal parameters of the molecular lattice
are varied to minimize the quasiharmonic free energy; vi-
brational and librational spectra were calculated previ-
ously?®™2®  for specific structures of monolayer
N,/graphite.

The organization of the paper is as follows. Section II
contains definitions of the proposed lattices and unit cells
for monolayer and bilayer solids, a description of the in-
teraction models and a summary of the quasiharmonic
theory. Section III contains a review of experimental
data for adsorbed nitrogen and of previous theoretical
treatments. The results of our calculations and a com-
parison to the experimental observations are presented in
Sec. IV. Section V contains a final discussion.

II. FORMULATION

A. Lattices

We treat structures of the monolayer and bilayer solids
of nitrogen based on the triangular and rectangular lat-
tices, two-dimensional Bravais lattices of high symmetry.
The triangular lattice with four and eight molecules in
the bases for the monolayer and bilayer, respectively, has
similarities to the Pa3 ordering? in three dimensions.
The rectangular lattice with two- and four-molecule bases
for the monolayer and bilayer, respectively, has the
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geometry observed!” in the initial stages of the mono-
layer. Each (rigid) molecule has five coordinates (three
for the center-of-mass position and two for the orienta-
tion of its axis), so that there are 10—40 variables per unit
cell for these structures. Assuming pinwheel ordering for
the triangular lattice cell and herringbone ordering for
the rectangular cell imposes relations among the average
coordinates. Although these assumptions limit the
search for the optimal structures, rather high symmetry
structures are in accord with overall features of the ex-
perimental observations.

The ordered low-temperature solid of nitrogen and of
many other linear molecules has the Pa3 structure’? with
a simple cubic primitive space lattice and a four-molecule
basis. The molecular centers are sited at the corners and
face centers of the cubic cell. Figure 1 shows a projection
of three successive layers onto the (111) plane; these are
the repeating sequence in the close-packed stack of tri-
angular lattices in a face-centered-cubic lattice of a mona-
tomic species.

The four-molecule basis in one of the (111) planes (Fig.
2) shows pinwheel ordering: one (“pin”’) molecule has its
axis perpendicular to the plane and three (“wheel”’) mole-
cules have axes which are related by successive 120° rota-
tions about the (111) direction. The spherical polar coor-
dinates of the molecular axes in the Pa3 lattice are set by
the symmetry: for molecule “2” the polar angle is
109.47° (or 19.47° into the plane) and the azimuthal angle
is 30° relative to the A4, axis.

We take the unit cell in Fig. 2 as the basis of the
pinwheel monolayer lattice. The spherical polar coordi-
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FIG. 1. Two-dimensional projection of layer stacking along
the (111) axis of the Pa3 lattice. The stacking sequence is ABC.
Circles denote molecular axes oriented perpendicular to the
plane and arrows indicate the orientations of projections of
molecular axes onto the plane.

12 237

nates of the wheel molecule ‘2 are internal coordinates
to be determined by free-energy minimization. The axis
vector of molecule ‘2" is expressed as

1i,=cosé cosy X +cos¢ siny ?—sind) z, 2.1)

with Cartesian axes X and Y shown in Fig. 2 and the y4
axis directed outward from the substrate. The orienta-
tions of molecules “3”” and “4” are obtained by successive
120° rotations of fi, about the (111) or Z axis, as for the
Pa3 lattice.

The unit cell of the pinwheel bilayer is constructed
from the four-molecule cells of layers 4 and B, shown in
Fig. 1. The angles ¢ and Y, defined as in Eq. (2.1), differ
for the wheel molecules in the two layers. As shown in
Fig. 1, the second layer is displaced laterally with respect
to the first layer so that its pin molecule is in a site of
threefold symmetry with three wheel molecules in the
first layer as neighbors. The interlayer spacing is not sim-
ply related to the lateral spacings.

In both the monolayer and bilayer pinwheel lattices,
the pin molecules may have a different center-of-mass dis-
tance from the substrate than the corresponding wheel
molecules. The wheel molecules are physically
equivalent; thus while the four molecules in the Pa3 basis
are physically equivalent, the monolayer basis has two
inequivalent molecules and the bilayer basis has four ine-
quivalent molecules.

The planar herringbone lattice is defined with the rec-
tangular unit cell and two sublattices shown in Fig. 3.
Molecules “B’ are centered in the rectangle formed by
““4” molecules and the axial orientations are given by
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FIG. 2. Four-molecule unit cell in the (111) plane of the Pa3
lattice. X and Y axes and primitive vectors of the triangular
Bravais lattice are shown. The four-molecule basis of the mono-
layer pinwheel, with the axis of molecule 1 perpendicular to the
plane, is shown.
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FIG. 3. Monolayer herringbone lattice showing unit cell and
two sublattices. The background represents the basal-plane sur-
face of graphite. This herringbone is in the commensurate
(V3XV3)R30° lattice; more general rectangular lattices with
the same value of L,, but with L,7L,V'3, are termed uniaxially
incommensurate lattices.

f , =cos¢ cos)(f(+cos¢ sin)(?—sind)z (2.2)

and
iy =cos¢ cos)()A( —cosd sin)(? - sin¢2 ;

the molecules are at the same height from the substrate
and are physically equivalent. The case ¢ =0 is termed
the “2-in herringbone” lattice; the case with ¢+0 is
termed the ‘“2-out herringbone.”

The bilayer herringbone lattice is constructed from two
planar herringbones, with spherical polar coordinates
(¢1,x1) and (¢,,x,) for the first and second layers, respec-
tively. The “A molecules” of the second layer are dis-
placed from the 4 molecules of the first layer by C, L, X.
We have also treated more general lateral positioning of
the second layer but the energy minima still occurred for
zero displacement along the Y axis. There are two
inequivalent molecules, one from each layer, in the four-
molecule basis.

The bilayer herringbone lattices are closely related to
two structures treated by James* in his analysis of
hexagonal-close-packed (hcp) stacks of linear molecules.
The case in Fig. 4(a), in which ¢, and ¢, and also y, and
X have the same signs, is labeled the P2, /c structure by
O’Shea and Klein.? The case in Fig. 4(b), ¢, and ¢,, and
also Y, and Y,, have opposite signs, corresponds to the
Pca?2, structure.

The monolayer and bilayer herringbone lattices illus-
trated in Figs. 3 and 4 show the full registry of the
(V3XV3)R30° commensurate monolayer. We also treat
two other classes of uniform herringbone lattices: (1) in-
commensurate lattices in which L | and L, have no sim-
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FIG. 4. Bilayer herringbone lattice showing unit cell with
four sublattices. The background represents the basal-plane
surface of graphite. In the text, the uniaxially incommensurate
bilayer herringbone lattice is treated, in which L, remains at
4.26 A and L, is varied. The positioning of molecule 3 along
the x-axis, expressed as a distance C, L, from molecule 1, is also
an adjustable parameter. (a) P2,/c, (b) Pca2,.

ple relation to the substrate, and (2) uniaxial incommens-
urate lattices in which L, is held at the 4.26 A value of
the graphite and L, is permitted to have a continuous
range of values. The number of molecules in the basis
remains the same; there is no provision??* for modula-
tion of the adlayer along the incommensurate axis by the
periodic substrate potential. In comparisons of structural
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stability, this approximation artificially enhances the

periodic energy contributions for commensurate lay-
21,24

ers.””

B. Interactions

The interaction model for the adsorbed nitrogen sys-
tem is constructed similarly to those for adsorbed inert
gases:’® an intermolecular potential which reproduces
three-dimensional solid data is supplemented by estimates
of the substrate-mediated interactions and by a model for
the interaction of the molecule with the substrate. The
molecular case is made more complex®! by the anisotropy
of the intermolecular potential and by the static mul-
tipole moments of the isolated molecule. However,
quantum-chemistry calculations’*3® of the interaction
and experimental data for librational frequencies®* test
the models of the anisotropy. We discuss here the com-
ponents of two interaction models for which we made ex-
tensive calculations.

1. Atom-atom interaction models

The interaction of an isolated pair of nitrogen mole-
cules is divided into an electrostatic energy arising from
the static multipole moments and an energy analogous to
the inert-gas potential energy. For the latter, we use a
sum of spherically symmetric potentials with force
centers at the nitrogen nuclei. Such atom-atom interac-
tion models

o=3 3 é(r,)

i=1j=3

(2.3)

were introduced as empirical models with rather simple
functions for ¢; the calculations® of Berns and van der
Avoird have been fitted to this form too. Ling and Rig-
by*® review the nitrogen atom-atom models.

Etters et al.>® adjusted the potential of Berns and van
der Avoird to fit the solid-nitrogen data better and gave
as the functional dependence for r > 3.45 A

#(r)= A exp(—ar)—B/r, (2.4)

with 4= 9 261205X 107 K, a=4.037 A™!, B=1.79
X 10° K A%, and molecular internuclear spacmg 1=1.094
A. We take Eq. (2.4) as the “ Etters model,” although
slightly smaller nitrogen atomic separations occur in the
densest layers treated. Bulk-nitrogen properties for this
model and slight variants of it have been report-
ed.3363738  Kychta and Etters®*?* applied it to

N,/graphite.

Our most extensive calculations are for the X1 model

of Murthy et al.;* it has the Lennard-Jones (12-6) poten-
tial

d(r)y=4¢[(o /r)2—(o /r)°] (2.5)

for Eq. (2.3), with e=36.4 K, 0 =3.318 A, and molecular
internuclear spacing /=1.098 A. Murthy et al.’** re-

ported bulk-nitrogen properties for this model. It has
been applied in several calculations for
N,/graphite,?228:41.42

The pair-molecule energy sums omit multibody ener-
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gies such as the triple-dipole dispersion energy. Monson
and Rigby estimate® that the triple-dipole energy for
three-dimensional (3D) solid nitrogen is less than 50 K in
a total lattice potential energy of —1000 K. We neglect
it.

2. Electrostatics

An isolated nitrogen molecule has a permanent quad-
rupole moment* of —(1.42+0.08)X1072° esucm?
However, at center-of-mass separations corresponding to
nearest neighbors in the 3D solid, there is considerable
interpenetration of the charge clouds of the nitrogen mol-
ecules.*> Both to better represent the average charge dis-
tribution of the molecule and because the displacement
expansions for the lattice dynamics are formed more easi-
ly, we use distributed point-charge representations for the
electrostatic moments.

The Etters model®® has a 4q representation: charges
0.373|e| are located along the internuclear axis at 0. 847
A from the center of mass and —0.373|e| at +1.044 A
from the center of mass. The correspondmg quadrupole
moment is —1.34X 107 2¢ esu cm?.

The X1 model®® has a 3¢ representation: charges
—0.405|e| are placed at the nuclear sites, +0.549 A from
the center of mass, and a charge O. 810|e| at the center of
mass. This corresponds to a quadrupole moment
—1.173 X 10726 esucm?, which was shifted from the iso-
lated molecule value as part of the fitting of the 3D dense
phase data.

In spite of quite different point-charge representations
in these models, the electrostatic energy for the lattices
which we treat scales mostly as the square of the corre-
sponding point quadrupole moments. The total electro-
static energy is rather insensitive to the details of the dis-
tributed charges.

3. Holding potential

Nitrogen is phy51sorbed to the basal-plane surface of
graphite and Steele*® modeled the holding potential in
analogy to his constructions for inert gases adsorbed on
graphite. The holding potential is a sum of spherically
symmetric atom-atom pair potentials for the interaction
between the atoms of the nitrogen molecule and the car-
bon atoms of the graphite substrate. Two functional
forms are used for the nitrogen atom to substrate atom
potential: the exponential —6 form of Eq. (2.4) and the
Lennard-Jones (12-6) potential of Eq. (2.5).

Kuchta and Etters®® give for the holding-potential pa-
rameters in Eq. (2.4) the values 4= 3. 6537>< 107 K,

B=1.5976X10° K A%, and a=3.8966 A~', with a tri-
angular Bravais cell of side 2.46 A for the graphite and
an interlayer spacing of 3.357 A. We take as the
holding-potential parameters for Eq. (2.5), to go with the
X1 model, e=31 K and 0 =3.36 A, with a Bravais cell of
side 2.46 A and an interlayer spacing of 3.37 A; slightly
different values are used with the X1 model by other
workers. 2842

In the Fourier decomposition*’ of the net holding po-
tential into a laterally averaged term and terms with la-
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teral periodicity expressed in terms of the reciprocal-
lattice vectors of the surface triangular lattice, we retain
only the first nonzero shell of reciprocal-lattice vectors.
The lateral average potential has a sum over 15 planes of
carbon atoms, while only the first carbon plane is used for
computing the first Fourier amplitude.

These holding potential models have similar values,
about —1100 K, for the lateral average energy minimum
of N, on graphite. In spite of the different functional
forms of the repulsions, the lateral variation of the hold-
ing potential at an overlayer spacing corresponding to the
potential minimum is also quite similar.

When the electrostatic screening of the nitrogen quad-
rupole moments by the substrate is included in the
effective interactions among the nitrogen molecules, the
corresponding term?? is included in the holding potential
and contributes about —30 K.

Joshi and Tildesley*® modified the holding-potential
construction to include terms reflecting the dielectric an-
isotropy of the graphite. The lateral average of the hold-
ing potential is not affected by their modification, but the
leading Fourier components have increased amplitudes.
Commensurate and partially commensurate lattices
would have greater stability with the modified holding
potential, but it was not used in this work, which already
has some drastic approximations for the uniaxial incom-
mensurate monolayer.

4. Substrate-mediated interactions

Two adsorption-induced interactions are frequently in-
cluded in the energy calculations for adsorbed inert
gases:*° (1) the effect of substrate screening of the electric
fields of static moments on the adsorbate, represented by
electrostatic images, and (2) the effect of the dynamic
screening response of the substrate to fluctuating dipole
moments on the adsorbate in reducing the intermolecular
van der Waals energy, the McLachlan interaction.** We
include these terms in the static potential energy of the
adsorbed nitrogen.

The electrostatic image energy has the same prescrip-
tion as used before for linear molecules:??> the reference
plane for the image is located at

z;=z—d/2, (2.6)

where z is the distance of the molecular center of mass
from the outermost plane of carbon atoms in the graphite
and d is the interlayer spacing of the graphite. The image
energy is not included in all the calculations. As dis-
cussed in Sec. IV B, there are some lattice instabilities
which we consider to be artifacts of the modeling. Belak
et al.*® and Peters and Klein®! also noted problems aris-
ing from the use of this prescription for the static screen-
ing response for carbon monoxide adsorbed on graphite.
We construct the coefficients in the McLachlan in-
teraction from the data of Rauber et al.,*? C,;=33.4 a.u.
and C,=17.0 a.u,, and use Eq. (2.6) for the distance to
the image plane. Thus a spherical-average approxima-
tion is used for the nitrogen molecules. Kim et al.* re-
port the generalization of the McLachlan interaction for
linear molecules. We made trial calculations for the her-
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ringbone monolayer, approximating the molecular polari-
zability anisotropy by its static value.>* The energy shifts
were only of the order of 15% of the spherical-average
McLachlan term, and the anisotropy was omitted for the
calculations reported here. Kuchta and Etters?® incor-
porated some molecular anisotropy in their calculations
by distributing the McLachlan coefficients, calculated in
the spherical approximation, over the four pairs in an
atom-atom representation of the intermolecular potential.

We truncate all components of the intermolecular po-
tentials for molecular center-of-mass separations equal to
33.18 A, i.e., ten times the o of the X1 potential; contri-
butions to the static potential energy and to the dynami-
cal matrix for molecules at larger separations are omit-
ted.

C. Static and quasiharmonic energies

The total potential energy for the array of nitrogen
molecules is the sum of the terms described in Sec. II B:
D=V ..tV a1V (2.7)

pair quad image

+ VMcL + Vhold ’

the atom-atom (pair), distributed point charge (quadru-
pole), static substrate screening (image), McLachlan
(McL), and holding potentials. We made parallel calcula-
tions incorporating or omitting the electrostatic image
terms and using the X1 model® or the Kuchta-Etters
model.?*

The frequencies for small-amplitude oscillations of the
molecules about an average lattice are derived from the
dynamical matrix constructed by a small displacement
expansion of the potential energy defined in Eq. (2.7).
More precisely, we do not include the Viy,,. and Vi
terms in the expansion procedure; we include V4 be-
cause we found unstable dynamics for the commensurate
herringbone lattice when it was omitted. The expansion®
to generate the dynamical matrix is straightforward but
tedious because of the number of sublattices to be includ-
ed. The size of the hermitian dynamical matrix ranges
from 10X 10 for the monolayer herringbone to 40X40
for the bilayer pinwheel. The frequencies, for each wave
vector, are determined with standard numerical eigenval-
ue methods, but the calculations with many polarizations
are lengthy and the eigenvectors reflect mixing of many
coordinates.

The Helmholtz free energy at temperature T is, in the
quasiharmonic approximation,

F=®+ky T In[2sinh(fiw, ,/2kz T)] (2.8)
k,A

where @ is the static potential energy [Eq. (2.7)], kp is
Boltzmann’s constant, # is the reduced Planck constant,
and o, ; are the angular frequencies for wave vector k
and polarization index A. The sum extends over all po-
larizations and over wave vectors in the first Brillouin
zone. At zero temperature the free energy is equal to the
internal energy, which is the sum of the static potential
energy and the zero-point energy

Eo=0+ (i, /2) . (2.9)
k,A
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The free energy per molecule f=F /N is minimized
with respect to variations of the internal structural pa-
rameters, as in calculations for bilayers and trilayers of
inert gases.?>>® The spreading pressure p is then the iso-
thermal derivative of the free energy f with respect to the
area per molecule a,

ar

da ) (2.10)

T

p=-

and the chemical potential is

u=f+ap . (2.11)
At zero temperature the chemical potential is equal to
the enthalpy per molecule.

The normal-mode frequencies w,; and eigenvectors
e, also lead to mean-square vibration amplitudes, as fol-
lows. If j labels a Bravais cell, @ the molecule in the
basis, and B the component of the displacement (in the
center of mass or angle), the corresponding mean-square
displacement is

((u),,0)) =3 (A/2Np My 3 ) €g ;0
kA

X coth(iy ,/2ksT) (2.12)

where M is the mass of molecular nitrogen, and Ny is the
number of Bravais cells in the lattice. The fourth and
fifth components of u,, are the angle increments scaled
by //2. The Goodings-Henkelman result!’ for the mean-
square deviation of the molecular axis is recovered from
Eq. (2.12) by neglecting the coupling of the librations to
the vibrations and the dispersion of the librational fre-
quencies.

Relative stability of structures is decided by comparing
values of u at the same spreading pressure and tempera-
ture. The slope of an isotherm of y as a function of p is
the area a, so that the monolayer and bilayer lines have
easily located crossings. Extrapolating to locate the tran-
sitions between monolayer phases with areas per mole-
cule differing by 10-20 % is delicate, because the slopes
of the intersecting lines differ by only 10-20%.

The sum over wave vectors in the first Brillouin zone in
Egs. (2.8) and (2.9) is done with special points summa-
tions>”® which are modified to reflect the symmetries of
the normal-mode problem for a Bravais lattice with a
molecular basis.>

The minimum-energy or minimum-free-energy
configuration as a function of area is determined by an
iterative search for the optimal structural parameters.
Essentially, searches are made on three-parameter grids,
fitting calculations to a quadratic form and using the ex-
trapolated minimum as the starting point of the next
iteration. The 2-in monolayer herringbone has two pa-
rameters, the overlayer height and the planar herring-
bone angle y (Fig. 3). While the 2-out herringbone is a
possible result of the search, the optimal tip angle is zero
for the molecular densities in this work. The monolayer
pinwheel has four parameters, the overlayer heights to
the pin and wheel molecules and two spherical polar
coordinates for the orientation of the wheel molecule
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axes. However, since the optimal tip angle of the mono-
layer wheel molecules is zero, this optimization
effectively is in three variables. The herringbone bilayer
has seven parameters: the overlayer height and spherical
polar coordinates for the molecular axes in each layer,
and the lateral offset C,L, of the second layer. The op-
timization for the herringbone bilayer is an iteration of
three parameter searches within each layer, for given C,,
followed by a variation of C,. The bilayer pinwheel has
eight parameters, four for each layer. This optimization
is an iteration of three parameter searches for specified
azimuthal angles of the two layers, followed by a search
in }; and Y, Implementing such searches requires an
efficient energy calculation for a given configuration.

III. REVIEW

A. Experimental data for low-temperature N,/graphite

We summarize information on orientationally ordered
bulk and thin-layer phases of molecular nitrogen at low
temperatures. The molecular centers of mass are ar-
ranged on regular lattices and the molecular axes too
have a spatial periodicity. Data for the bulk a-N, solid®
and for low-coverage nitrogen adsorbed on graphite were
used in constructing the molecule-molecule potential and
the molecule-graphite potential; in the analysis of the ad-
sorbed layers, they provide comparison energy and length
scales. The data for the thin ordered layers of nitrogen
adsorbed on the basal-plane surface of graphite,
N,/graphite, set the framework for the discussion of our
calculations.

We emphasize thermodynamic paths of increasing
chemical potential at constant temperature, correspond-
ing to an increase of mechanical stress. The monolayer
condenses'®!>15 in the commensurate (V3XV3)R30°
lattice and under increasing 3D gas pressure makes tran-
sitions to uniaxial incommensurate®%? and then to tri-
angular incommensurate!>® monolayer lattices. With
further increase, the bilayer condenses'® !4 and then the
bulk solid; apparently there is a limited layer-by-layer
growth at low temperatures.’

Other interesting thermodynamic paths are for increas-
ing temperature at approximately constant chemical po-
tential. Such paths display’~® orientational disordering
transitions at temperatures in the range 25-35 K and
melting transitions. The quasiharmonic lattice theory,
however, is not applicable to these phenomena and we do
not consider them further.

The ground state of the 3D a-N, has cohesive energy
—831 K/molecule (Ref. 18) for nearest-neighbor spacing
3.994 A of the molecular centers of mass.*® The lattice
potential energy'® is —1002+25 K. The zero-point ener-
gy is given as 156 K by Goodings and Henkelman,'” from
measured vibration and libration frequencies, and as 160
K by LeSar.% The molecular axes have the ordering of
the Pa3 structure (Sec. II A and Fig. 1).

The isosteric heat for N,/graphite at very low coverage
is reported to be 10.1+0.2 kJ/mole at 90-210 K (Ref.
66) and 10.410.1 kJ/mole at 80 K.*” Since thermal ener-
gy terms of the adsorbed and 3D gases nearly cancel,?
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the minimum potential energy for one nitrogen molecule
interacting with the basal-plane surface of graphite is
—1170 to —1250 K.

The (V3 X V/3)R 30° monolayer lattice has herringbone
ordering of the molecular axes at temperatures below 28
K.Sb1L15 The heat of adsorption ¢, at the condensation
is 1260-1290 K/molecule, from data at temperatures in
the range 45-55 K. % The nearest-neighbor spacing on
the triangular lattice of molecular centers is 4.26 A. The
2-in herringbone ordering is inferred from the presence of
a superlattice diffraction peak in neutron scattering'? and
from glide-plane symmetries corresponding to the extinc-
tion of leading superlattice peaks.’’ The angle y is
45°+5°, from fits to neutron-diffraction intensities.'3

Under isothermal compression, the commensurate
monolayer is succeeded by a uniaxially incommensurate
monolayer lattice with observed misfits along the long
(“x”) axis of the herringbone cell of 2-5%.% At very
low temperatures, the commensurate-to-incommensurate
transition may be discontinuous.! The uniaxial incom-
mensurate lattice has 2-in herringbone ordering, accord-
ing to glide-plane symmetries reflected in low-energy
electron diffraction (LEED) patterns.!®®! From an ad-
sorption isotherm®® at 34.3 K we estimate that a
chemical-potential increase of at least 200 K from the
condensation value is needed to drive the adlayer to 5%
uniaxial misfit.

Under further compression, the monolayer forms an
incommensurate lattice which, to 1%, has a triangular
arrangement of the molecular centers of mass.®> Low-
energy electron diffraction experiments show lattices with
nearest-center spacings in the range 4.15-4.04 A.!%62
The nearest-center spacing in the densest monolayer is
about 4.04 A in both LEED (Ref. 63) and neutron
diffraction.'>'* You and Fain® identify the orientational
ordering as a ‘“2-out herringbone,” on the basis of an ap-
parent glide-plane extinction of a leading diffraction
peak; Wang et al.!* identify it as a four-sublattice
pinwheel, on the basis of intensity analysis of neutron-
diffraction data.

The bilayer solid at low temperatures has a double-
period superlattice (relative to the center-of-mass lattice)
with no glide-plane symmetries apparent in the LEED
data.!® The 2D center-of-mass lattice is nearly triangu-
lar, with a small obliquity and an area of 14.1 A? per mol-
ecule in each layer, according to the analysis of the
neutron-diffraction data.!* The data were fitted to both
pinwheel and 2-out herringbone models. The chemical
potential at the bilayer condensation can be estimated
from the second-layer risers in LEED isotherms:* it is
about 80 K lower than the value for what was identified
as fourth-layer condensation and which we take as essen-

tially the bulk chemical potential.®®

B. Modeling of N,/graphite

There have been two types of theoretical treatment of
the phenomena observed in thin layers of N,/graphite:
(1) analysis of the ordering of the molecular axes in terms
of the phases of point quadrupoles arranged on a rigid
triangular lattice,”°~ 72 and (2) calculation?0~24:41:42.73.74
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of structures, thermal averages, and time correlations
with intermolecular potential models. The first of these
contributes an overview of the phase diagrams and the
language (2-in herringbone, 2-out herringbone, and
pinwheel) which is used to describe the orientational or-
dering. The second attempts to clarify the succession of
observed lattices and to place the phenomena of this sys-
tem in a wider perspective of solids of linear mole-
cules.’"”> We review the theoretical work to set the
background for the present calculations.

Harris and Berlinsky”® gave a mean-field approxima-
tion for the statistical mechanics of a monolayer of point
quadrupoles on a rigid triangular lattice with nearest-
neighbor interactions. They determined the stabilities of
various orderings as a function of the temperature and of
the ratio of the quadrupole-quadrupole interaction to an
aligning crystal field of the underlying substrate. The
ground state of the 2-in herringbone has a planar angle y
(Fig. 3) equal to 45°. The angles for the ground state of
the pinwheel structure, Fig. 2, are ¢=0° and y=38.81°,
compared to values 19.47° and 30° in the close-packed
plane of the Pa3 lattice. The angle y for the monolayer
pinwheel depends on the range used for the quadrupole
interaction; we find that when many shells of neighbors
are included, it increases from 38.81° to 39.5°.

O’Shea and Klein?® determined the lowest-energy or-
derings of several bilayer arrays of point quadrupoles on
rigid triangular lattices. These include pinwheel and 2-
out herringbone orderings. The bilayer pinwheel case is
an intermediate state between the monolayer and bulk
pinwheel lattices: for the “free bilayer” (no external po-
tential), the optimal angles for nearest-neighbor point
quadrupole interactions are ¢ =10.49° and y =34.90°; ex-
tending the interaction to many neighbor shells we find
the optimal angles become ¢=12.3" and y=35.0°. These
values show the beginning of the healing of the frustrated
ordering in the monolayer toward the bulk 3D solid or-
der.

In related work, Kobashi and Etters’® determined the
relaxations of the outermost layers at the (111) surface of
a-N,, with a realistic intermolecular potential. The first
layer has a slightly distorted pinwheel basis; the angles
are $=23.410.2° and y=32.0%+0.1°.

The simplest treatments based on intermolecular po-
tentials are potential-energy minimizations to find the
lowest-energy  configuration as a function of
area/molecule.??%2® Such calculations are directed at
deciding the optimal orientation (e.g., the herringbone
angle) in a type of lattice and the relative stability of
different lattice types. Since the zero-point energy in the
nitrogen lattices is about 15% of the potential energy,
conclusions based on stability margins of tens of kelvins
in chemical potential, as occur in the calculations, have
to be accepted cautiously.

A direct extension of the potential-energy minimiza-
tion work is to treat excitations of the lattice by small-
amplitude oscillation theory, termed quasiharmonic lat-
tice dynamics.?>* The frequency spectrum for the
(V3XV3)R30° herrmgbone monolayer was first calcu-
lated by Fuselier et al.;?% the adlayer frequency gap at
the Brillouin-zone center is now measured by inelastic
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neutron scattering.”’ Cardini and O’Shea®’ calculated
and extensively discussed the frequency spectra for her-
ringbone monolayers; the harmonic phonon frequencies
agree well with peaks in molecular dynamics spectra up
to 17 K, although anharmonic effects are apparent in the
broadening of the molecular-dynamics spectra.’®

Monte Carlo simulations are used?"?*?* to treat the
orientational disordering transition near 30 K in the ad-
sorbed layer and to optimize structure without the biases
imposed by the assumption of small unit cells in work
such as the present paper. The uniaxial incommensurate
herringbone monolayer constructed in this way shows lo-
cal strong modulations (“stripes”) at small misfits and a
lattice with a nearly uniform rectangular cell for misfits
larger than 5%.2* The bilayer structures of Kuchta and
Etters vary with lattice constant from bilayer herring-
bone to pinwheel atop a herringbone to bilayer
pinwheel.

Molecular-dynamics simulations are used?® to explore
orientational ordering, time correlations, and the time de-
velopment of motions in the adsorbed layers. The gen-
eral structures usually are set by the initial conditions,
but spontaneous rearrangement of seriously unstable
configurations is seen.*> Vernov and Steele*? treated two
uniaxial incommensurate bilayer films with herringbone
ordering at 25 K which remained stable during the simu-
lation. More recently, Bhethanabotla and Steele*? treated
several dense-film cases, including triangular monolayer
lattices, which show evidence of pinwheel structures; in
the bilayer triangular lattices, there is nearly no evidence
for pin molecules in the first layer. Tildesley and
Lynden-Bell?® studied the spectra of orientationally or-
dered and disordered monolayers; with quasiharmonic
lattice dynamics for the vibrational and librational fre-
quencies of the ordered layers, we find, as had Cardini
and O’Shea,”®’® good agreement to the molecular-
dynamics spectra for temperatures near 15 K.

Monte Carlo and molecular-dynamics simulations are
based on classical mechanics, with no simple method of
incorporating zero-point energies. Further, it is quite
burdensome to construct thermodynamic free energies
for stability analyses by these methods. The quasihar-
monic theory includes zero-point energy effects and
directly gives absolute free energies. Although it entails
repetitious calculations of frequency spectra as a function
of structural parameters and has biases introduced at the
outset by the use of rather small unit cells, the quasihar-
monic theory retains some advantages for treating orien-
tationally ordered lattices of nitrogen.

IV. MONOLAYER AND BILAYER STRUCTURES

We determined the sequence of structures for both the
X1 and the Etters models,>®?? with and without the elec-
trostatic screening (image) terms?>*° for the permanent
quadrupole moments and in both the static-lattice and
harmonic-lattice approximations; i.e., there were eight
parallel calculations. For a given interaction model (pair
potential with specified substrate screening response), the
sequence of structures is the same for the static- and
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harmonic-lattice approximations. The zero-temperature
chemical potential and areas per molecule at each phase
coexistence are given in Table I. Figure 5 illustrates the
locating of phase coexistences by intersections of chemi-
cal potential versus spreading pressure plots for the X1
model with images. We describe the structures for the
X1 model with images in Sec. IVA and indicate the
changes for the other cases; extensive tabulations are
given elsewhere.”® Some of the phase-transition deter-
minations are based on extrapolations of the calculations;
there are dynamical instabilities of the pinwheel lattices
at large area per molecule and of the bilayer herringbone
at small area per molecule, which we discuss in Sec. IV B.

A. Calculations

1. Bulk (Pa3) a-N,

For internal consistency, we repeated calcula-
tions3®3%4 for the bulk structure. For the X1 model, the
static potential energy is minimum, —1009.8
K/molecule, at the cubic lattice constant L =5.532 A
and the harmonic cohesive energy (zero-point energy in-
cluded) is minimum, —818.2 K, at L =5.66 A. The cor-
respondmg values for the Etters model are static
minimum, —1030.5 K at L = 5 59 A and harmonic
minimum, —839.2 K at L =5.70 A.

The harmonic zero-point energy 174 K for the X1
model agrees well with the value of Cardini and O’Shea’®
for a very similar model, but it is 10% larger than the
empirical value of Goodings and Henkelman.!”

The libration frequencies at the I" point (Brillouin-zone
center) for the Etters model at L=5.70 A, in the har-
monic approximation, are 54.6, 67.1, and 100.3 K, a few
percent lower than the values for the X1 model at its
minimum.

2. Commensurate herringbone monolayer

The (V'3XV'3)R30° 2-in herringbone monolayer (Fig.
3) is the lowest-energy monolayer lattice, within our ap-
proximations, for each of the eight cases. For the X1
model with images, the static-energy minimum is — 1483
K/molecule and the harmonic-energy minimum is
—1335 K/molecule, both with a herringbone angle
x =45.3°. The molecules are 3.31 A ,above the graphite at
the static minimum and 3.37 A at the harmonic
minimum. Without the image terms, the energies are
about 20 K smaller in magnitude; most of the change
arises in the single-molecule holding potential. The
harmonic-energy minimum for the Etters model with im-
ages is —1320 K/molecule, with y=46.1° and height
3.39 A,

The monolayer heat of condensation at 50 K is
1260-1290 K/molecule, for a lattice which is orienta-
tionally disordered.®* It is in fair agreement with the
ground-state energy, considering the difference in the
orientational states and the accumulated uncertainty in
the total energy from the components of the models.

. NITROGEN ADSORBED ON GRAPHITE
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3. Uniaxial incommensurate herringbone
and pinwheel monolayer phases

The harmonic ground-state energy of the commensu-
rate monolayer is 5-10 K/molecule lower than the
lowest energy state of the uniform uniaxial incommensu-
rate monolayer for these models. The monolayer her-
ringbones have zero-tilt angles (i.e., ‘“2-in” configurations)
even up to number densities for which the chemical po-
tential is 400-500 K greater than the threshold for con-
densation of a-N,. This generalizes the finding of Peters
and Klein” on the absence of 2-out monolayer herring-
bones, by including zero-point energy effects. Including
the zero-point energy helps to stabilize the commensurate
lattice: the minimum-energy uniform uniaxially incom-
mensurate lattice has L within 1% of 7.38 A, while it is
4% smaller for the static potential-energy minimum.

The quadrupole interactions are essential for the
dynamical stability of the monolayer herringbone lattice
of N,/graphite. In early calculations for the commensu-
rate monolayer and for the uniaxial incommensurate
monolayer at small misfit, we found dynamical instabili-
ties for the X1 model when the quadrupole terms were
omitted from the dynamical matrix.

The existence of a range of chemical potential for
which there is a stable monolayer pinwheel lattice de-
pends sensitively on the interaction model. For the X1
potential, the chemical-potential range is 220 K when the
image terms are included, but only 45 K when they are
omitted. For the Etters model, with the image terms in-
cluded the range is only about 110 K and the phase is ab-
sent when they are omitted.

In spite of drastically different division of energy into
molecule-molecule and molecule-substrate potential ener-
gy for the herringbone and pinwheel lattices, the
minimum potential energies for the structures are nearly
equal. For the X1 potential with images, the minimum
static potential energy of the herringbone is — 1483
K/molecule, and that of the pinwheel (at molecular
center spacing of 4.03 A) is —1463 K/molecule. The
center of the pin molecule is about 0.4 A farther from the
substrate than for the wheel molecules for most of the
pinwheel lattices, and the azimuthal angle y is in the
range 36°-38".

When the calculations do yield stable monolayer
pinwheels, the densest monolayer pinwheel occurs at
second-layer condensation. The smallest separation of
molecular centers is 3.94 A in the X1 statics calculations
and about 4.02 A in the X 1 harmonic-lattice calculations.
As in other cases, the corresponding lengths for the
Etters model are about 1% larger.

Uniaxial compression of the monolayer herringbone
lattice is limited by the transition to the monolayer
pinwheel or ultimately to the bilayer. For the X1 model
harmonic-lattice calculations, the limit of L, compres-
sion set by the pinwheel is 3% at a chemical-potential in-
crease of 220 K from the commensurate lattice (with im-
age terms) and 5% at a chemical-potential increase of 390
K from the commensurate lattice (without image terms).
In the former case, the limit set by the bilayer condensa-
tion is 5.5% at 450 K increase. In the Etters model
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without images, to compress the herringbone by 4.5% re-
quires more than a 400 K increase in the harmonic chem-
ical potential; with images an increase of 210 K leads to
2.4% compression. The maximum compressions are of
the order observed in diffraction experiments, but the
chemical-potential increases® are much larger than the
estimate of 200 K given in Sec. IIT A.

Properties of the monolayer pinwheel at areas greater
than 14.3 A%/molecule for the X 1 model with i images and
14.35 A%/molecule for the X1 model without i images are
obtained by extrapolation. A direct search for minima of
the quasiharmonic free energy at larger area leads to
configurations with negative eigenvalues for the dynami-
cal matrix (imaginary frequencies), which are correlated
to unstable motions of the pin molecule for wave vectors
near the center of the Brillouin zone.

The monolayer pinwheel conﬁguration of minimum en-
ergy in all cases, 13.30-14.35 A“/molecule, has zero-tilt
angle for the wheel molecules, the P6;/m arrangement of
the hep stacking of linear molecules. The center of mass
of the wheel molecules is 3.34 A above the graphite in the
static lattice and 3.39 A in the harmonic lattice, for the
X1 model with images; without image terms the values
are 0.02 A larger, and for the Etters model the corre-
sponding values are 0.02 A larger again.

4. Bilayer pinwheel and uniaxial
incommensurate herringbone lattices

We treated five candidate bilayer lattices which, for a
given interaction model, have closely spaced chemical po-
tential versus spreading pressure plots: the bilayer
pinwheel (Fig. 1), the uniaxial incommensurate herring-
bone P2,/c [Fig. 4(a)] and Pca2,; [Fig. 4(b)] configur-
ations and the same configurations of the completely in-
commensurate herringbone lattice. The multiplicity of
herringbone orderings was explored because of re-
ports'®!® that the bilayer N,/graphite has a nearly tri-
angular center-of-mass lattice. If so, the aspect ratio
L, /L, of the herringbone unit cell should be close to V'3
(=1.732). The ratio for the optimized bilayer herring-
bone lattices is in the range 1.55-1.62 for the static lat-
tice and 1.59-1.65 for the harmonic lattice; dense her-
ringbone packing of linear molecules appears to lead
inevitably to aspect ratios much different from V'3. Our
most detailed studies are for the pinwheel and the uniaxi-
al incommensurate P2,/c herringbone. The difference in
chemical potential for other herringbone cases at the
same spreading pressure is less than 5 K and the registry
potential for the case we treated is less than 2
K/molecule, so that we do not have a conclusive assign-
ment for the optimal bilayer herringbone lattice.

For the X1 model with images, we determined the op-
timal pinwheel configurations for areas per molecule in
the ranges 6.575-6.725 A? (static lattice) and 6.75-6.90

? (harmonic lattice). Beyond the largest areas for the
harmomc lattice there is a dynamical instability at small
wave vectors, which is associated with unstable motion of
the second-layer pin molecule. The azimuthal angles y
are nearly equal in the two layers and are about 33°, with
an increase of 0.5° over the range of areas. When the im-
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age terms are omitted, the azimuthal angles in the first
layer are about 1.5° larger than in the second layer. The
tip angles ¢ (into the plane) are about 7° and 25° for the
first and second layers, respectively, for the static lattice,
and 7° and 24° for the harmonic lattice. While the center
of mass of the first-layer pin molecule is 0.3 A higher
than for its neighboring wheel molecules, the center of
mass of the second-layer pin molecule is 0.03-0.06 A
lower than for its neighbors. The ratio of the interlayer
spacing of the wheel molecules to the lateral spacing of
the molecular centers is 0.84-0.87, 5% larger than the
ratio 0.816 for the Pa3 lattice. While there are many de-
tailed differences, the overall trend is that the ordering in
the bilayer pinwheel lattice is healing rapidly from the
P6;/m ordering of the monolayer pinwheel toward the
Pa3 order.

The internal parameters of the uniaxial incommen-
surate  bilayer herrmgbone were optimized for
areas/molecule of 7.05-7.3 A? for the static lattice and
7.2-7.5 A? for the harmonic lattice, for the X1 model
with images, with similar ranges for the other cases. The
lateral offset of the second layer, C,L,, has values of Cx
close to 0.31. The herringbone angle y for the second
layer is 0.5°-1° larger than for the first layer; the first-
layer angle ranges from 53.5° to 50.0° for the static lattice
and from 53.0° to 48.6° for the harmonic lattice. The tilt
angles ¢ are 5° and 16°, into the plane, for the first and
second layers, respectively, of the static lattice at 7.2
A2 /molecule; the values are 5° and 22° for the harmonic
lattice at 7.35 A%/molecule.

Only for the X1 model with image terms do we find a
stable range for the bilayer pinwheel; the existence for the
harmonic lattice is inferred by extrapolation. Without
the image terms, the pinwheel has 8 K higher chemical
potential than the bilayer herringbone at spreading pres-
sures near the bilayer condensation. For the Etters mod-
el, the corresponding increment is 14-20 K. More
thorough searches of the other bilayer herringbone
configurations could only increase the stability margin.

In the static-lattice approximation, the chemical poten-
tial at bilayer condensation is 30-50 K lower than the
value for bulk condensation for the cases listed in Table 1.
In the harmonic-lattice approximation, the calculated
offset is 50-65 K. The value derived from the LEED iso-
therms®® (Sec. III A) is 80 K. We have not treated the
possibility of a stable trilayer for N,/graphite: the frus-
trated molecular ordering makes it doubtful, but an offset
of about 60 K (7%) from the bulk chemical potential is a
margin similar to that for the bilayer of Xe/Ag(111),
where model calculations®® do show a stable trilayer.

B. Discussion

The main observational support for monolayer
pinwheel ordering in N,/graphite is the fitting by Wang
et al."* of neutron-diffraction data for the dense mono-
layer. Diffraction data for a mixture of argon and carbon
monoxide on graphite®® are consistent with pinwheel or-
dering and nuclear magnetic-resonance data for ortho-H,

on graphite®! at temperatures below 0.6 K are interpreted
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as showing pinwheel ordering. Our calculations for
N,/graphite show, in six of the eight cases (sometimes, by
extrapolation), at least a small chemical-potential range
where there is a stable monolayer pinwheel.

The results are sensitive to the interaction models, be-
cause the stability margins in chemical potential are only
of the order of 10 K for several-bilayer structures. We
felt compelled to give a treatment which included the ap-
proximate 150 K per molecule of zero-point energy be-
cause it might have changed the relative stability of
structures differing by 5-8 % in area per molecule; that
did not occur in this work.

Dynamical instabilities (i.e., negative eigenvalues of the
dynamical matrix) arose at several stages of the calcula-
tions. The instability for the (V'3XV'3)R 30° commensu-
rate monolayer herringbone was simply a consequence of
using an incomplete interaction model, and was removed
by including the quadrupole terms in the dynamical ma-
trix. The instability for the monolayer pinwheel could be
moved out of the thermodynamic stability range by drop-
ping electrostatic screening (image) terms from the mod-
el; such a step was necessary for the modeling of
CO/graphite,*®>! but here it has the consequence of also
eliminating the only bilayer with a triangular center-of-
mass lattice.

The quasiharmonic approximation for the thin molecu-
lar layers is more problematical than for inert-gas bi-
layers and trilayers.”>>® Failures of the approximation,
notably the marked lowering of calculated frequencies for
configurations in the vicinity of dynamically unstable
states, draw searches for the minimum free-energy struc-
ture into nonphysical domains. The extreme case is the
bilayer pinwheel, where it is difficult to find a starting set
of parameters for the search which correspond to a
dynamically stable structure. The quasiharmonic free en-
ergy in its full variational form, with the fourth-order
anharmonicity included,®? might remove this problem,
but evaluating the extra term would significantly
lengthen the calculation.

Kuchta and Etters?® find bilayers with a character
which changes with lattice constant from bilayer herring-
bone to bilayer pinwheel, with an intermediate structure
which has a herringbone first layer and pinwheel second
layer. Since their unit cells are (slightly) oblique, symme-
try does not require a succession of phase changes. Two
features of our calculations are consistent with their pro-
gression: (1) the bilayer pinwheel becomes dynamically
unstable with increasing area (but, apparently in the
second layer), and (2) an incommensurate bilayer herring-
bone becomes unstable with decreasing area, for a wave
vector at the corner of the Brillouin zone corresponding
to a doubling of the planar unit cell from the 2X1 her-
ringbone to the 2X2 pinwheel cell (and with dominant
motion in the second layer).

For a measure of the zero-point librations, we calculat-
ed the mean-square libration amplitude at O K, using Eq.
(2.12) and the X1 model without images. The root-
mean-square angular deviations are the following: 15.6°
in the Pa3 lattice ground state, 18° in the commensurate
herringbone monolayer, 23° and 16° for the pin and wheel
molecules, respectively, in the monolayer pinwheel at
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14.1 ;Xz/molecule, 16° and 21° for molecules in the first
and second layers, respectively, of the uniaxially incom-
mensurate bilayer herringbone at 7.40 Az/molecule, and,
for the bilayer pinwheel at 6.89 A%/molecule, 22° and 16°
for the pin and wheel molecules, respectively, in the first
layer, and 18° for the second-layer molecules. Thus the
librations are larger in the adsorbed layer than in the
bulk; the harmonic-lattice approximation is likely to be
less accurate for the adsorbed layer. The values for the
bilayer pinwheel run counter to the result for the eigen-
vectors of unstable modes, where the dominant entry is
the amplitude for the second-layer pin molecule. For the
monolayer herringbone, the molecular-dynamics spectra
of Tildesley and Lynden-Bell?® are in good agreement
with the harmonic frequencies.

The mean-square displacement of the center of mass of
the incommensurate monolayer is divergent for lateral (x
and y) displacements, as is the case for monatomics. In
particular, we verified this, using Eq. (2.12), for the uni-
form uniaxially incommensurate monolayer herringbone.

V. CONCLUDING REMARKS

Calculations with a realistic potential model which in-
clude zero-point energy terms reproduce the energies and
lengths of the observed monolayer phases of nitrogen ad-
sorbed on graphite. For six of the eight cases treated,
there is evidence for a dense triangular monolayer lattice
of the centers of mass with lattice constants in the range
observed in LEED and in neutron diffraction. We differ
from Kuchta and Etters® in finding a chemical potential
range where this pinwheel structure is stable relative to
the monolayer herringbone and to the bilayer; however,
the stability margins are small, as they noted, and are
sensitive to details of the interaction models. We differ
from You and Fain® in assigning pinwheel rather than
2-out herringbone ordering to the triangular lattice: this
contradiction is troubling, because You and Fain based
their assignment on a glide-plane symmetry which is ab-
sent from the pinwheel, and because our searches for 2-
out herringbone structures led to no viable candidates.

Similarly, we have examined two classes of bilayer
structures, the herringbone and pinwheel. Both
electron'®-and neutron'*-diffraction data indicate that the
center-of-mass lattice is nearly triangular. We find a
dense bilayer herringbone with a centered rectangular
lattice for the centers of mass which has an aspect ratio
10% from the V'3 of the triangular lattice. This feature
is insensitive to details of our modeling and is charac-
teristic of the dense packing of the linear molecules.

The use of harmonic-lattice dynamics for a-N, has
been criticized because of the relatively large zero-point
librational amplitudes. The zero-point librational ampli-
tudes are even larger for the thin layers of N,/graphite.
The quasiharmonic theory does treat some of the cases
and then leads to absolute free energies and chemical po-
tentials. Cases which have not been directly treated here
may be reached by thermodynamic constructions based
on these cases and the use of computer simulations.
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FIG. 1. Two-dimensional projection of layer stacking along
the (111) axis of the Pa3 lattice. The stacking sequence is ABC.
Circles denote molecular axes oriented perpendicular to the
plane and arrows indicate the orientations of projections of
molecular axes onto the plane.



