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We demonstrate the accuracy of the self-consistent orthogonalized linear combination of atomic
orbitals method within the local-density approximation by applying it to ten different phases of Si.
The electronic properties, total energies, and possible structural phase transitions are studied. Also
calculated are the static properties of the diamond-structure Si including the equilibrium lattice
constant, bulk modulus, and the pressure derivative of the bulk modulus along with the lattice
dynamical properties of a few selective phonons at the zone-center I' and the edge X points of the
Brillouin zone. Furthermore, we have evaluated the internal strain parameter of the diamond-
structure Si along the [111] direction. The results of our calculations are in very good agreement
with the measured values and the results of the pseudopotential calculations.

I. INTRODUCTION

In recent years, accurate calculation of the total energy
(TE) of simple crystals based on the Hohenberg-Kohn-
Sham local-density-functional (LDF) theory' has become
possible and extensively used to study the electronic and
structural properties of materials. These properties in-
clude the equilibrium lattice constant, the bulk modulus,
structural changes of bulk phases, cohesive energy, and
even more complex problems associated with lattice vi-
brations, surfaces, interfaces, defects, etc. However, the
accuracy of the total-energy calculation depends on the
accuracy of the method of the electronic band calcula-
tion. Among the current methods, the pseudopoten-
tial,>~7 linear augmented-plane-wave (LAPW),® linear
muffin-tin orbitals (LMTO),’ and linear combination of
atomic orbitals (LCAO) (Refs. 10-15) methods have been
more extensively used and results in excellent agreement
with the measured values have been obtained.

Several methods of band calculation have been applied
to calculate the structural properties of Si by TE calcula-
tions. Si has been used as an excellent test case and is the
most intensively studied solid. The most complete and
accurate TE calculations on several phases of Si has been
performed by Cohen et al.>~7 using the ab initio norm-
conserving pseudopotential method (PM). They calculat-
ed the structural properties, such as the equilibrium
volume (EV) and TE, bulk modulus, pressure derivative
of the bulk modulus, pressure-induced phase transforma-
tions, lattice vibrational modes, and the electronic prop-
erties of several phases of Si. They obtained excellent re-
sults as compared with experiment. In the same series of
calculations,’ they predicted several new high-pressure
phases of Si, which included a hcp with two atoms in the
unit cell, a fcc, a bee, and a sc phase each with one atom
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per primitive unit cell. Few years later, several indepen-
dent experiments verified the hcp and fcc phase transfor-
mations.!” 18 In 1988, Weyrich9 calculated the equilibri-
um bond length and the phonon frequency of Si at point
I along the [111] direction as a test of accuracy of the re-
cently developed full-potential linear muffin-tin orbitals
method (FP-LMTO). By minimizing TE as a function of
the phonon amplitude, excellent results, such as the equi-
librium bond length and the phonon frequencies, were
obtained. Also Tsai et al.!® have used the pseudofunc-
tion method to calculate the TE of cubic diamond Si as a
function of Si—Si bond length.

In this work, we have used the self-consistent orthogo-
nalized linear combination of atomic orbitals (OLCAO)
method to calculate the electronic structures, total ener-
gies, and pressure-induced phase transformations of ten
different forms of Si, including cubic diamond (cd), hex-
agonal diamond (hd), B-tin, simple hexagonal (sh), hexag-
onal close packed (hcp), face-centered cubic (fcc), two
body-centered cubic phases, one with one atom per prim-
itive cell (bcc) and the other with eight atoms per primi-
tive cell B-8 (“bcc8”), simple cubic (sc), and a simple
tetragonal with 12 atoms per unit cell T-12 (“st12”). In
1982, the same OLCAO method with slightly different
computational procedures (to be discussed in Sec. II) was
performed on cd-Si by Harmon et al.!' They obtained
excellent results in the structural and lattice dynamical
properties of cd-Si. The motivation of the present work
is to further demonstrate the accuracy of the OLCAO
method in calculating the transition pressures (TP) and
transition volumes (TV) for all possible phases of Si. Be-
cause of the small structural energy differences between
some of the phases, these calculations require even higher
accuracy than the earlier OLCAO TE calculations!!
which were applied to cd-Si only.
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We will first discuss the method of calculation in Sec.
II. In Sec. III we present our results which include TE
and structural phase transitions of Si, band structures,
density of states (DOS), and the charge densities of the
ten phases of Si, lattice dynamics, and calculation of the
internal strain parameter. In Sec. IV we summarize our
results.

II. METHOD

In this work we have employed the SCF OLCAO
method to calculate the electronic structures and TE of
various phases of Si. Since the method has been de-
scribed in detail elsewhere,!? we limit our discussion to
those aspects that are different from the earlier calcula-
tions.!°”!* In the crystal calculation, the one-electron
Schridinger equation is solved within the LDF approxi-
mation. The basis functions are expressed in terms of 18
Bloch sums of the atomic orbitals of Si (1s, 2s, 2p, 3s, 3p,
3d, 4s, 4p). We have adopted the orthogonalization to
the core procedure which makes the computations
affordable. We have employed the self-consistent-field
(SCF) Hartree-Fock-Slater method®® to calculate the
atomic wave functions, potentials, and charge densities
for a radial grid of 250 mesh points which are expanded
logarithmically from the nucleus for a maximum radius
of 60.0 a.u. Then we searched for a set of Gaussian ex-
ponents (GE) a; to least-squares fit the radial atomic
wave functions &, (r) to a linear combination of
Gaussian-type orbitals (GTO) of the form

Nw —a r2
®,(nN=r'S ¢e (1

i=1

where n and [ are the principal and orbital quantum num-
bers, respectively, N, is the number of the GTO’s, and
¢, are the coefficients to be obtained in the least-squares
fitting procedure. We found that a set of 22 GTO’s with
exponents distributed geometrically from 0.1 to 10°
would reproduce the calculated atomic wave functions
with a root-mean-square (rms) fitting error of less than
0.001. A similar procedure has been engaged to find a set
of GE f; to least-squares fit the atomic potentials and
charge densities to the forms

g2 N g
Vin=—2e 4 3 e @)
i=1
and
Ny g
pr)= > pe ", (3)

i=1

respectively. In these equations, Z is the atomic number
of Si, Np is the number of the GTO’s, and v;’s and p,’s are
the coefficients to be obtained from the fit. We found
that a set of 20 GTO’s with GE’s ranging from
Bmin=0.07 to PB,,,=15000.0 fits the potentials and
charge densities with rms fit errors of less than 0.001 Ry
and 1X 173 electrons, respectively. This set has been ob-
tained by slightly varying the middle term S, (the tenth
term in this case) while following two geometrical distri-
butions in the intervals B, ,;,—Bmiq and Big—Bmax tO get
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the least rms fit error. In the present calculation, B4 is
calculated to be 12.0, which is also used as B, of the
singular term of the total potential in Eq. (2).

In the crystal calculation, we have used the Wigner in-
terpolation formula?' to calculate the exchange and
correlation potentials. The major part of the input con-
sists of the basic translational vectors of the crystal,
atomic wave functions, and potentials in the form of
linear combination of GTO’s, the position of the basis
atoms, a set of special k points?*?* corresponding to the
crystal symmetry, and a number of spacial directions
used in generating a set of mesh points to be used in the
treatment of the crystal exchange and correlation poten-
tials. In the present work we have used a grid consisting
of approximately 3500 mesh points which are radially
distributed in 100 different directions about each basis
atom. We have found that the convergence of the TE for
the metallic phases of Si depends considerably upon the
number of the mesh points, but is much less sensitive to
the semiconducting phases of Si.

There are two outstanding differences in the present
calculation and the earlier TE calculations performed by
Harmon et al.!' First, in the latter, in addition to the
real atomic potential centers, some auxiliary sites were
included within each unit cell. At each auxiliary site,
they placed few single GTO’s. The use of the auxiliary
sites in their calculations resulted in an improvement in
their SCF charge density. However, in the present calcu-
lations, we are considering ten different phases of Si for
which there do not exist common locations for placing
the auxiliary sites. Besides, we have tested the conver-
gence of our calculated TE of the cd-Si against locating
the auxiliary sites within the unit cells. By doing so, with
the optimized set of the GE’s, we did not observe any
significant changes in our calculated TE. Therefore we
chose not to use the auxiliary sites in our calculations.
Second, Harmon et al. also scaled the radial extent of the
GTO’s of the wave functions, potentials, and the charge
densities according to the size of the lattice parameter en-
gaged in their TE calculations performed as a function of
volume. In our calculation, we further tested the conver-
gence of the total energies against the scaling of the radi-
al extent of the GTO’s. We found that, using this pro-
cedure with our optimized GE’s, the total energy data
points obtained could not be fitted to a polynomial or any
other form of the equation of state (EOS) smoothly with a
small rms fitting error. Besides, since our purpose has
been to keep the GE parameters in the TE calculations of
different phases the same, and because the scaling is
paramount to a change of the original exponential pa-
rameters from one volume to another volume and from
one phase to another phase, we have avoided using this
scaling procedure in the present calculation.

The TE as a function of the volume has been calculated
for the ten phases of Si using the same set of wave func-
tions and potential GE discussed earlier in this section.
We have used a larger number of special k points for the
metallic phases of Si so as to locate the Fermi levels more
accurately and to achieve a better convergence. Careful
tests of convergence of the TE against the number of the
special k points resulted in the requirement of using 10,
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12, 8, 80, 144, 144, 60, 40, 120, and 6 special k points in
the irreducible region of the first BZ for the cd, hd, B-8,
B-tin, sh, hcp, fce, bee, sc, and T-12 phases of Si, respec-
tively. With this test, we have achieved a total energy
convergence of approximately 0.001 Ry/atom for various
phases of Si. We have also used the same optimized ¢ /a
ratios for the fS-tin, sh, and hcp phases of Si as calculated
by Liu, Chang, and Cohen? using PM. We utilized the
experimental ¢ /a ratios* for the other phases.

In each SCF iteration, the calculated charge densities
are fitted by an unconstrained fit to the linear combina-
tion of GTO’s as used for the potentials. The error of the
total charge within a unit cell is then calculated with
respect to the actual number of valence electrons in the
unit cell. This error is an indication of the overall quality
of the numerical fitting procedure. In the present calcu-
lation, we have achieved an error in the unconstrained fit
of self-consistent charge density to less than +1X17°
electrons per unit cell. The iteration stops where the
fitted potential stabilizes to less than 1X 1% a.u.

For calculating the static structural properties of cd-Si,
we have examined different forms of the EOS, such as the
polynomial form of the TE, as a function of the lattice
constant, the volume, and Murnaghan’s EOS:%

_ BV
EaM=g )
B
, Vmin Vmin
X |B' |1 v + Vv 1
+Emin ’ 4)

where V ;. is the volume per atom corresponding to the
minimum TE E_; , and B,B’ are the bulk modulus and
the pressure derivative of the bulk modulus at V; , re-
spectively. The variations in evaluating V_;, and E_;, in
using different forms of the EOS were less than 0.01 Al
and 0.001 Ry/atom, respectively. We have therefore
used the polynomial form of the EOS to calculate V, ,
E i.» TV, and TP because the linearity of the polynomial
form of the EOS makes these calculations easier while re-
taining a reasonable accuracy. We have also made simi-
lar test calculations for B and B’. We obtained devia-
tions up to 10% for B, and even larger variations for B’
in using the polynomial form and the more accurate
Murnaghan EOS. We have therefore used Murnaghan’s
equation to calculate B and B’, while using the calculated
E i, Vmin obtained from the polynomial form of the
EOS.

For each crystal structure, we have calculated the TE
at 6-20 different atomic volumes. The TE as a function
of volume have been least-squares fitted to a polynomial
of the order of 5-8. The rms errors of the fits were of the
order of 0.0001 Ry/atom. The polynomial form of the
EOS was then used to plot the total-energy curves.

The energy bands along the high-symmetry lines of the
irreducible BZ, the DOS, and the charge densities have
been calculated using the self-consistent potentials and
charge densities thus obtained. We have utilized the
Lehmann-Taut analytical linear tetrahedral method?®
with 240, 225, 196, 225, 225, 240, 140, 84, 140, and 126 k
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points in the irreducible portion of the BZ of cd, hd, -
tin, sh, hep, fce, bee, sc, B-8, and T-12 phases, respective-
ly, for an accurate evaluation of the DOS. This is espe-
cially important for precisely locating the Fermi levels of
the metallic phases.

III. RESULTS

A. Total energy and phase transformation

The calculated TE as a function of volume for the ten
phases of Si are shown in Fig. 1. The volumes are in the
units of the experimental atomic volume V., of cd-Si.
The crystal parameters and the number of the atoms in
the unit cells used in our calculations, along with the
number of the first nearest neighbors (NN) and their dis-
tances from the central atom, are listed in Table I. Also
listed are the calculated V,_;, and E_;, for each phase
and the difference AE ;, with respect to that of the cd-Si.
From this table, we note that cd-Si has the lowest E_;,
indicating that this is the most stable phase at the am-
bient pressure. The next smallest E_; belongs to hd-Si,
the second most stable phase of Si. This is an expected
result since these two phases have similar numbers of NN
and distances over a long range. Moreover, we note that
in an ascending order, B-8, B-tin, sh, sc, hcp, bec, and fec
phases have higher AE_; , indicating the order of stabili-
ty of the various phases. These results are in excellent
agreement with those of the PM calculations.

The static structural properties of cd-Si are obtained
from the EOS in polynomial form and the Murnaghan’s
equation. We have used ten special k points in an irre-
ducible wedge of the BZ to calculate the TE at 20
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FIG. 1. Calculated total energy of various phases of Si as a
function of volume. The volumes are in the units of the equilib-
rium volume per atom of cd-Si. Energies are in Ry/atom.
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TABLE 1. Crystal data of various phases of Si used in the present calculation and the resulting minimum total energies, equilibri-

um volumes, and the structural energy differences with respect to cd-Si. See text for explanation of data marked by an asterisk.

cd hd B-tin sh sc bee hep fcc B-8 T-12
a (A) 5.43 3.80 3.875 2.667 2.561 3.175 2.196 4.005 3.36 5.69
b (1}) 5.43 3.80 3.875 2.667 2.561 3.175 2.196 4.005 3.36 5.69
c (A) 5.43 6.28 2.139 2.547 2.561 3.175 3.722 4.005 3.36 6.70
c/a 1.00 1.65 0.552 0.955 1.0 1.0 1.695 1.00 1.00 1.178
No. of atoms
per unit
cell 2 4 2 1 1 1 2 1 8 12
No. of NN 4 4 6 2 6 8 12 12 4 4
NN .
distance (A) 2.350 2.35 2.487 2.547 2.561 2.749 2.196 2.832 2.37 2.39
V min 7 Vexpt 1.00 0.994 0.803 0.784 0.840 0.800 0.777 0.803 0.935 0.904*
Ein Ry —7.9280 —7.9258 —7.9006 —7.8993 —7.8972 —7.8772 —7.8769 —7.8724 —7916 —7.950*
AE ;. (eV) 0.0 0.042 0.385 0.403 0.431 0.703 0.707 0.768 0.175 —0.544*

different volumes ranging from 0.80V,, to 1.12V,.
The calculated TE are then least-squares fitted to a poly-
nomial of order 8 with a rms error of less than 1X173
Ry/atom. From the fit, we obtained an E;, of —7.929
Ry/atom and an equilibrium lattice constant of 10.26 a.u.
These results are to be compared with the experimental
values of —7.92 Ry/atom (Ref. 27) and 10.26 a.u.* The
calculated E_;, and V;,, along with the 20 data points,
were then least-squares fitted to the Murnaghan’s equa-
tion to calculate B and B’. The rms of this fit is approxi-
mately 0.0001 Ry/atom and the B and B’ values are 1.05
Mbar and 4.2, respectively. These results are in excellent
agreement with the experimental values*® of 0.99 Mbar
for B and 4.2 for B’. Harmon et al.,!! using the same
OLCAO method with different potential fitting parame-
ters and slightly different procedures in preparing the
atomic and crystal data, obtained —8.00 Ry/atom for
E > 10.40 a.u. for the lattice parameter, 0.89 Mbar for
B, and 3.22 for B’. Yin et al.,® using a first-principles

E ., 10.30 a.u. for the lattice parameter, 0.98 Mbar for
B, and 3.2 for B’. We have listed in Table II the results
of the present work and those of Refs. 6, 11, and 19 with
the corresponding percent deviations from the experi-
mental values.

By applying pressure, cd-Si undergoes a series of
structural phase transitions which have been observed ex-
perimentally.'®"'® These are: cd—pB-tin, B-tin—sh,
sh—hcp, and hcp—fcec. The existence of hep, fecc, sc,
and bcc phases of Si were predicted by Yin et al.® in their
PM total-energy calculations. The other phases of Si,
such as the hd-Si, B-8-Si, and T-12-Si are metastable
phases of Si and are not induced by applying pressure to
cd-Si. Experimentally, it has been shown that cd-Si
transforms to B-tin Si at a pressure of 12 GPa.!"!8 We
can calculate this pressure based on the thermodynamics
theorem that, when the transformation occurs, the Gibbs
free energy

PM, reported these quantities to be —7.91 Ry/atom for G=E,tPV—TS 5)

TABLE II. Comparison of the equilibrium lattice constant a,,,,, minimum total energy E,,, bulk
modulus B, and the pressure derivative of the bulk modulus B’ calculated by the present work, earlier
OLCAO calculations (Ref. 11), pseudopotential calculations (Ref. 6), pseudofunction (Ref. 19), and the
experimental results. Percent deviations from the measured values are given adjacent to the calculated

values.

A (a.ul) E_. (Ry/atom) B (Mbar) B’
Present calc. 10.26(0%) —7.929(0.1%) 1.05(6%) 4.2(0%)
Ref. 11 10.40(1.4%) —8.003(1%) 0.89(10%) 3.22(23%)
Ref. 6 10.30(0.4%) —7.91(—0.1%) 0.98(1%) 3.2(23%)
Ref. 19 10.21(—0.5%) —7.82(—1.2%) 1.03(4%) 3.4(19%)
Expt. 10.26* —7.92° 0.99¢ 4.2°¢

2 Reference 24.
®Reference 27.
¢ Reference 28.
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becomes equal between the two phases. At zero tempera-
ture, which is considered in these calculations, the trans-
formation occurs along the common tangent between the
TE curves of the two phases. The negative of the slope of
the tangent gives the TP.

We have calculated the TE of B-tin Si at several
different volumes using the optimized c /a ratio of 0.551
of Ref. 4. Since S-tin Si is a metallic phase of Si, a larger
number of special k points (80) in the BZ than that used
for the cd-Si is required. This is expected, since the TE
depends on the accurate determination of the Fermi level.
Our calculated TE for cd-Si and B-tin Si along with their
common tangent is shown in Fig. 2(a). Our calculation
gives a TP of 15.4 GPa, which is in reasonable agreement
with the experimental values of about 12 GPa. It also
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shows that cd-Si undergoes this transition at a volume of
0.89Vyp, to B-tin at 0.71V,,,. These values have been
measured'®!” to be 0.91¥,,,, and 0.71V,, for the cd-Si
and p-tin Si, respectively. Liu et al.? calculated this tran-
sition to occur at 9.9 GPa, with the TV of 0.931V,,, for
cd-Si and 0.719V,,, for B-tin Si.

In 1984, it was reported by Hu e al.'® and Olijnyk
et al.'7 that B-tin Si transforms into an intermediate sh
phase before transforming to a hcp structure. This phase
was not considered in the PM total-energy calculation of
Yin and Cohen® for the B-tin—hcp phase transforma-
tion. The pressure for this transformation has been mea-
sured to be ranging from 13.2 to 16.4 GPa. We have cal-
culated the TE of the sh phase as a function of volume
using the optimized c¢/a ratio of 0.995 as suggested by
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FIG. 2. Calculated total energy and structural phase transition for (a) cd-Si— B-tin Si, (b) B-tin Si—sh-Si, (c) sh-Si— hcp-Si, (d)

hcp-Si—fce-Si.
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Ref. 2, using 144 special k points. The TE of B-tin Si and
sh-Si as a function of their atomic volume and their com-
mon tangent are shown in Fig. 2(b). Our calculated TP
for B-tin to sh-Si is 15.3 GPa, which is in the range of the
reported experimental values. This transition occurs at a
volume of 0.71V,,,, for B-tin Si and 0.69V ., for sh-Si,
which compare very well with experimental values'®!? of
0.69V ¢y, for the B-tin and 0.67V,,,, for sh-Si. The PM
calculation of Ref. 2 obtained a TP of 12.0 GPa, and a
TV of 0.707V oy, for B-tin and 0.69V,,, for the sh phase.

The sh-Si, in turn, transforms into the hcp phase at
about 40 GPa as measured experimentally.'®!” We have
used 144 special k points for the TE calculation of this
phase using the optimized c /a ratio of 1.695 as suggested
by Ref. 3. The TE for the sh-Si and the hcp-Si phases
along with their common tangent are shown in Fig. 2(c).
Our calculation shows that this transition occurs at the
pressure of 46 GPa. This is also in good agreement with
the experimentally measured value, and the result of the
PM calculation® which reported a TP of 41 GPa. The
calculated TV for sh-Si is 0.594V,,,, and that of hcp-Si is
0.547V .,y These quantities are to be compared with the
experimental values of 0.615V,,, for the sh-Si and
0.570V ., for the hcp-Si and the PM values? of
0.603V.,, and 0.556V,,, respectively.

The fcc-Si is induced by applying a pressure of 78 GPa
(Ref. 18) to hep-Si. This is a free-electron-like phase of Si
with a metallic band structure (see Sec. III B6). We have
used 60 special k points for the TE calculation of this
phase. Figure 2(d) shows the calculated TE of hcp-Si,
fcc-Si, and their common tangent. Our calculation gives
a TP of 89 GPa with TV of 0.477V,,,, for hcp-Si, and
0.460V ., for fcc-Si. These are to be compared with the
measured values'® of 0.481V,,, for the hcp-Si and
0.475V .y, for the fce-Si, respectively, with a TP of 78
GPa. Chang et al.,* using the PM, have calculated the
TP to be 116 GPa, much larger than the experimental
value, and TV of 0.465V ., and 0.456V,, for the hcp
and fcc phases, respectively. Also, our calculated B of
the fcc-Si is close to that of the cd-Si, while the PM ob-
tained a B value for the fcc-Si phase over 5 times larger
than that of the cd-Si. It is possible that at such a high
pressure, core states start to play a significant part in the
overall electronic structure, and the PM description be-
comes less accurate. Moriarty and McMahan® calculat-
ed a TP of 76 GPa using the LMTO method and obtained
the TV of hep-Si to be 0.496V,,. By using the general-
ized pseudopotential theory?® (GPT), the same authors
were able to improve their results for the TP and TV to
80 GPa and 0.482V.,,,, respectively.

The existence of the bcc and sc phases of Si was also
first predicted by Yin and Cohen.>® We have used 80
special k points for the TE calculation of the bcc-Si
phase. Our TE are slightly lower than those of the hcp
phase at volumes larger than 0.78V,,,. The PM gave
similar results.®> Their TE of the bcc-Si are also smaller
than those of the hcp-Si starting at volumes larger than
0.80V,,,. McMahan and Moriarty®® predicted the
phase transformation from fcc-Si to bce-Si to be in the
pressure range of 250-360 GPa. However, this transition
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has not yet been verified experimentally. Our TE calcula-
tions are up to pressures of the hcp— fcc phase transfor-
mation, which is far below the pressures in the possible
fcc—bce transition. Our calculated TE for sc-Si using
120 special k points are lower than the hcp phase over a
wide range of volumes down to 0.65V,,, suggesting that
sc-Si is more stable than the hcp-Si phase. Chang and
Cohen® have obtained similar results for the TE of the
sc-Si with respect to those of the hcp phase.

hd-Si has a wurtzite structure and is a semiconducting
phase of Si, so that 12 special k points would be sufficient
for the TE calculation. The TE of this phase have been
calculated using the experimental® ¢ /a ratio of 1.653.
Our calculated EV of 0.99V,, is in excellent agreement
with the measured value** of 0.98V,,,. Our calculated
TE at the EV is only 0.042 eV higher than that of the cd-
Si. This phase is not a pressure-induced phase of Si, since
its transition Gibbs free energy is higher than that of the
B-tin phase. Similar results have been obtained by Yin
et al., although they obtained an even smaller energy
difference between this phase and the cd-Si phase.

We have further calculated the TE of the metastable
B-8 phase,®! a body-centered-cubic phase with eight
atoms in the primitive cell. The common tangent of the
TE curve of this phase with that of the cd-Si also gives a
higher Gibbs free energy than that of cd-Si to B-tin Si.
Nevertheless, this phase can be formed as pressure is
released from the B-tin Si.>! Our calculated EV of B-8-Si
is 0.935V,,,, per atom, which is in good agreement with
the experimental result®! of 0.912V - The PM (Ref. 32)
gave a TV of 0.903V .

Unlike the T-12-Ge, which has been identified as a
high-pressure phase of germanium,*® the T-12-Si has not
been observed experimentally. The T-12 structure is
commonly used as a model structure for calculating the
electronic structure of amorphous Si (Refs. 7, 34, and 35)
because of the presence of five-member rings. To explore
the possibility of this phase theoretically, we have calcu-
lated its TE at several different atomic volumes with the
internal parameters®> equal to those of T-12-Ge. We
have used a ¢ /a ratio as suggested by Joannopoulos and
Cohen.” The calculated TE were not giving a minimum
over a wide range of volumes. This result may suggest
that Si does not exist in the T-12 phase as Ge does. R.
Biswas et al.*? have calculated the TE of T-12-Si for one
point which is higher than that of the B-8-Si and lower
than the B-tin Si by relaxing its structural parameters.
They concluded that T-12-Si can be a stable phase of Si.
Their relaxed parameters and the c/a ratio were not
given. However, the existence of a stable T-12 phase for
Si with other c¢/a ratios and optimal crystal parameters
cannot be ruled out at this time.

We have summarized the results of the present calcula-
tion of the TP and volumes of pressure-induced phase
transformations of Si in Table III. Also listed are the
corresponding experimental values and the results from
other theoretical calculations.

B. Electronic structures

In this section, we present the result of our SCF band-
structure calculations, the corresponding DOS, and the
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TABLE III. Transition volumes ¥, and pressures p, of various phases of Si calculated by the present
work, other theoretical calculations, and the measured values.

Transition V,(cd) V,(B-tin) V,(sh) V,(hcp) V,(fcc) p: (GPa)
cd—pB-tin
Present calc. 0.89 0.71 154
Other calc. 0.9312 0.719* 9.92
0.915° 0.707° 9.5°
0.928° 0.718° 9.9¢
0.926¢ 0.719¢ 10.04
Experiment 0.918° 0.710° 12.5F
0.9118 0.7068 11.38
0.92h
B-tin—sh
Present calc. 0.71 0.69 15.3
Other calc. 0.707* 0.692* 12.0°
0.678° 0.661 14.3!
0.683° 0.672° 14.9°
0.69" 0.673¢ 16.0
Experiment 13.2-16.4%
sh—hcp
Present calc. 0.594 0.547 46.0
Other calc. 0.6032 0.556* 41.0°
0.580° 0.538°
0.608¢ 0.563¢ 41.0¢
Experiment 0.6158 0.5708 35.0-40.0"
0.548 36.0-42.08
hep—fec
Present calc. 0.477 0.460 88.0
Other calc. 0.465% 0.456° 116.0°
0.482¢ 80.0¢
Experiment 0.481) 0.475 78.0

2 Reference 3.

b Reference 36.

¢ Reference 5.

d Reference 30.

¢ Reference 37.
fReferences 38 and 39.
& References 16 and 40.
h Reference 17.
iReference 41.
iReference 18.

TABLE IV. Comparison of energy eigenvalues of cd-Si (in units of eV) at I, L, and X calculated by the present work, other
theoretical calculations, and the measured values.

Present EMTO Pseudopotential LAPW Pseudofunction

work (Ref. 48) (Ref. 5) (Ref. 8) (Ref. 19) Experiment
r, —12.18 —11.87 —11.93 —12.02 —12.52 —12.4+0.6*
L, —9.63 —9.69 —9.52 —9.64 —9.77 —9.31+0.4*
L, —-7.1 —6.98 —7.00 —7.06 —7.23 —6.410.4*
3, —44 —4.52 —4.7+0.2%°

—4.4°

X, —3.05 —2.92 —2.88 —2.82 —2.98 —2.5+0.3°
L, —1.41 —1.27 —1.20 —1.16 —1.38 —1.2+0.2°

2 Reference 45.
b Reference 44.
¢ Reference 47.
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valence-charge densities (VCD) in the plane containing a
Si—Si bond for the ten phases of Si. In Table I we have
listed the crystal data used in our calculations.

1. cd-Si

The calculated band structure of cd-Si at the experi-
mental EV (Ref. 24) along the symmetry lines of the irre-
ducible ;; BZ of the fcc lattice is shown in Fig. 3(a). The
top of the valence band (TVB) is at 0.81T"X along the axis
from I' - X, which is in excellent agreement with the ex-
perimental value*? of 0.82. Our indirect band gap is 0.76
eV, which is 35% lower than the experimental value of
1.17 eV. This reduction in band gap is consistent with
the generally accepted notion that the LDF which was
developed for the ground-state properties underestimates
the gap. Recently several theoretical methods have been
developed to improve the gap value by applying the
many-body corrections to the local-density approxima-
tion,*? but we have not used them in this work. Yin and
Cohen® have obtained a band gap of 0.55 eV using the
first-principles PM.

The calculated DOS wusing the analytic linear
tetrahedral method?® using 240 k points in the irreducible
part of the BZ is displayed in Fig. 4(a). The peak posi-
tions are in excellent agreement with those of the experi-
mentally determined values from the angle-integrated
photoemission spectra,** %" and those of the PM calcula-
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FIG. 3. Calculated band structure of (a) cd-Si, (b) hd-Si. En-
ergies are measured from the top of the VB.
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tions.> In Table IV we compare the eigenvalues corre-
sponding to the peak positions in the DOS at T, X, and L
with the measured values and with other theoretical re-
sults. The difference of our eigenvalues at these points
with those of the PM is approximately 0.37 eV for I, and
much smaller for others.

The VCD of cd-Si at the experimental volume, has
been calculated in the (110) plane. The contour plot in
this plane is shown in Fig. 5(a). It-is noted that there is a
large maximum charge along the bond indicating a
strong covalent bond in the cd-Si. Our calculated VCD is
in good agreement with the experimental results* deter-
mined by the x-ray diffraction for the same plane. Our
calculated VCD is also in excellent agreement with that
of Weyrich® using full-potential LMTO method, and that
of Yin and Cohen® using the PM.

2. hd-Si

This phase contains four atoms per unit cell with a
wurtzite structure.’* The NN are tetrahedrally bonded
with bond lengths almost the same as the cd-Si. The ma-
jor structural difference of the two phases is that hd-Si
has four extra neighbors at 3.90 A in addition to the 12
second-nearest neighbors at 3.83 A. Its EV per atom is
0.99¥ ¢yt~ The equilibrium TE of the two phases are very

close, with that of the cd phase being 0.042 eV lower. We

1.50
(a)
E
S 1.00f
«
>
<
o L
K
wn2 —
a 0.50
[=]
0.00 1 1 1 1
—-12 -9 -6 -3 o) 3 6
1.00
| (b)
0.80
E 1
S
s
> 0.60r
<
§ L
S
2 0.40
wn
[e>) -
(=]
0.20
0.00 K 1 L
—12 -8 -4 o 4 8

Energy (ev)

FIG. 4. Calculated DOS of (a) cd-Si, (b) hd-Si in units of
states/eV atom.
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may expect that the hd phase having electronic proper-
ties the same as the cd-Si. The result of our band-
structure calculation for hd-Si is shown in Fig. 3(b). We
have obtained an indirect band gap of 0.6 eV, with the
TVB to be at I' and the bottom of the conduction band
(BCB) at M. Using a semi-ab initio OLCAO method,
Huang and Ching®® have calculated the electronic struc-
ture of this phase using a minimal basis function. They
obtained a very similar band structure and DOS, and a
direct band gap of 1.067 eV located at I'. However, in
the semi—ab initio approach of Huang and Ching, the ex-
change potential was adjusted so as to give the experi-
mental gap value of 1.17 eV for cd-Si. In comparison, the
present results are also in good agreement with the
empirical-pseudopotential (EMP) calculations of Joanno-
poulos and Cohen.” They obtained an indirect band gap
of 0.85 eV with the TVB at I" and the BCB at M.

The calculated DOS of hd-Si is shown in Fig. 4(b). It
shows peak positions similar to those of the cd phase.
The widths of the valence band in both phases are slight-
ly larger than 12 eV.

The calculated VCD in the (2110) plane is shown in
Fig. 5(b). It is practically the same as those of the cd-Si
in the (110) plane, as expected.

FIG. 5. Contour plot of the calculated VCD of (a) cd-Si in
the (110) plane, (b) hd-Si in the (2110) plane. The units are in
electrons per unit cell. The contours have equal intervals of
0.005 electrons. The contour values have been scaled by 100.
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3. B-tin Si

The band structure and DOS of B-tin Si at the volume
of Vi, =0.803V,,, are shown in Figs. 6(a) and 7(a), re-
spectively. The results characterize this phase to be me-
tallic, in agreement with experiment.’"3” We have used
196 k points at the corners of 648 tetrahedra for an accu-
rate determination of the position of the Fermi level
which lies at about 10.31 eV above the BVB. The con-
tour plots of our calculated VCD in the (100) plane is
displayed in Fig. 8(a). From this figure, it is noted that
there still exists a considerable amount of covalent bond-
ing in spite of a metallic band, although the charge distri-
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FIG. 6. Calculated band structure of (a) B-tin Si at the equi-
librium volume with the experlmental ¢ /a of 0.552, (b) sh-Si at
the transition volume of 20.0 A per atom and the optlmlzed
c/a of 0.955, (c) hcp-Si at the transition volume of 9.54 A’ per
atom and the optimized ¢ /a of 1.695.
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bution is quite different from the cd-Si. The PM (Ref. 5)
gave similar results for the electronic properties of this
phase.

4. sh-Si

We have calculated the electronic ban°d structure,
DOS, and VCD of sh-Si at a volume of 12.6 A’/atom. At
the vicinity of this volume, Si transforms to the hcp
phase. Our results are to be compared with those of the
PM calculation of Chang and Cohen* performed at the
same atomic volume and the same optimized c /a ratio of
0.955. Our results for the band structure, DOS, and
VCD contour are shown in Figs. 6(b), 7(b), and 8(b), re-
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FIG. 7. Calculated DOS of (a) B-tin Si, (b) sh-Si, (c) hcp-Si in
units of states/eV atom.
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spectively. These results are in excellent agreement with
those of the PM calculation. The DOS was calculated us-
ing 255 k points at the corners of 768 tetrahedra. The
Fermi level is found to be at 16.5 eV above the BVB,
which compared to the 16.0 eV obtained in Ref. 4.

The contour plot of the VCD in the (1010) plane
shown in Fig. 8(b) shows a strong covalent bond along
the ¢ axis and a minimum local charge along the a axis.
These results are also in good agreement with those of
Ref. 4.

5. hcp-Si

The calculated band structure, DOS, and VCD of the
hep-Si at its transition volume (0.48V,,,) to fcc struc-
ture, using a c /a ratio of 1.695, are shown in Figs. 6(c),
7(c), and 8(c), respectively. We have used 225 k points or
768 tetrahedra in the evaluation of DOS. The band and
DOS characterize hcp-Si to be a metallic phase of Si with
a Fermi level which lies at 14.43 eV above the BVB. The
contour plot of VCD at the (1120) plane is shown in Fig.
8(c). The bond charge of this phase is weaker than that
of the sh-Si, which indicates a more metallic characteris-
tic of this phase. The VCD of hcp-Si has also been calcu-
lated by the PM in the same plane but at a different
volume of 0.75V_, ,.>

expt*

6. fec-Si

The electronic band and DOS of the fcc-Si calculated
at the TV of 0.46V,,, are shown in Figs. 9(a) and 10(a),
respectively. In this calculation, we have used 240 k
points (or 864 tetrahedra) and obtained a Fermi level at
20.0 eV above the BVB, which is in excellent agreement
with 19.45 eV calculated by the PM (Ref. 2) at slightly
smaller volume. The DOS near the BYB shown in Fig.
10(a) is closely proportional to E!’/?, indicating a free-
electron-like phase for fcc-Si at this volume.

The contour plots of the VCD in the (100) plane are
shown in Fig. 11(a). They are in good agreement with
that of the PM.* Even in this metallic phase, there is still
some charge buildup between the Si—Si bond.

7. sc-Si

For the sc phase, we have calculated the band struc-
ture and DOS at the calculated EV of V;,=0.84V ;.
Eigenvalues at 84 k points (216 tetrahedra) have been
used to locate the Fermi level accurately. The results of
our calculations are shown in Figs. 9(b) and 10(b), which
indicate that sc-Si is also metallic. The calculated Fermi
level lies at 18.24 eV above the BVB.

The contour plot of the VCD in the (100) plane is
shown in Fig. 11(b), which is in good agreement with the
PM calculations® performed at a slightly different volume
Of 0.75V . Their charge buildup between the Si—Si
bond is much weaker than that in the fcc-Si phase of Fig.
11(a). However, it is difficult to make such comparisons
because their calculations were carried out at different
volumes.
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TABLE V. Calculated Fermi level, DOS (states/eV atom) at the Fermi level (metallic phases), TVB,
band gap (semiconducting phases), and the corresponding atomic volume for various phases of silicon.
Fermi level and the TVB are measured with respect to the bottom of the valence band. Volumes are in
units of the equilibrium volume of the cubic diamond phase (¥, ).

Volume Fermi level TVB Gap DOS
Si phase (Vexpt) (eV) (eV) (eV) (states/eV atom)

cd 1.00 12.184 0.76
hd 0.994 12.396 0.60
B-8 0.935 13.00 —0.37
B-tin 0.803 10.31 0.98
sh 0.594 16.496 0.731
hep 0.477 14.432 0.527
fce 0.460 20.0 0.571
sc 0.840 18.242 0.350
bce 0.800 16.648 0.427
T-12 0.904 12.5 1.6

FIG. 8. Contour plot of the calculated VCD of (a) B-tin Si in the (100) plane, (b) sh-Si in the (010) plane, (c) hcp-Si in the (1120)
plane in units of electrons per unit cell (the contours intervals are the same as Fig. 5).



8. bcc-Si

The band structure, DOS, and the VCD of the bcc-Si
are calculated at its EV V;, =0.80V,,. The DOS has
been calculated using 140 k points (432 tetrahedrons).
The results are shown in Figs. 9(c), 10(c), and 11(c), re-
spectively. It shows bcc-Si to be metallic with the Fermi
level at 16.65 eV above the BVB. The calculated VCD in
the (100) plane is shown in Fig. 11(c), which is in good
agreement with those of the PM of Yin and Cohen,’

which has been performed at the volume of 0.75V .
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9. B-8-Si

The band structure of B-8-Si is shown in Fig. 12(a). In
this structure we have found a band overlap of about 0.3
eV at H, characterizing this phase to be a semimetal.
This is in agreement with the earlier ab initio non-SCF
OLCAO calculations of Ching and Lin.>* Similar results
have been obtained by the EMP calculations,” except
they found a direct band gap of 0.43 eV at H. Our calcu-
lated DOS for the B-8-Si using the tetrahedral method
with 140 k points at the corners of 432 tetrahedrons is
shown in Fig. 13(a). We have calculated the Fermi level
to be at 12.5 eV above the bottom of the valence band
(BVB).

The contour plot of the calculated VCD in the (110)
plane is shown in Fig. 14(a). The charge distribution
along the Si—Si bond is very similar to the cd-Si, and we
conclude that strong covalent bonding is retained in this
phase.
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10. T-12-Si

The results of the band structure and DOS for the T-12
structure are shown in Figs. 12(b) and 13(b), respectively.
We have obtained a semiconducting band structure with
an indirect band gap of 1.6 eV. The TVB is at I" and the
BCB is at Z. Our results are in excellent agreement with
those of the PM (Ref. 52) and the earlier non-SCF
OLCAO results.>® Since T-12-Si may not exist, this re-
sult can only be considered as existing for a particular
model structure of Si.

In Table V, we summarize the results of electronic
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structures for the ten different phases of Si. These in-
clude the atomic volumes, width of the VB, gap size for
the semiconducting phases, and DOS at the Fermi level
for the metallic phases.

C. Lattice dynamics

In this section, we present the result of our calculation
of the phonon frequencies of cd-Si (Refs. 53-66) at I" and
X. We adopt the Born-Oppenheimer approximation,®
which assumes that the electrons are in the ground state

FIG. 11. Contour plot of the calculated VCD of (a) fcc-Si in the (100) plane, (b) sc-Si in the (100) plane, (c) bee-Si in the (110) plane
in units of electrons per unit cell (the contour intervals are the same as Fig. 5).
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with respect to the instantaneous nuclear position. The
same atomic wave function and potential fitting function
as utilized for the TE and phase-transformation calcula-
tions of the undistorted cd-Si are used for consistency.
Within the harmonic approximation, the force constants
of these modes are obtained from the second derivative of
the TE (per atom) with respect to the phonon amplitude
u:

k= azEtot 6)
auZ u=0 ’

Then the phonon frequency is given by

Vk/M
f= YEIM

20 @

where M is the atomic mass. The distorted primitive cell
for phonon calculations at I' contains two atoms per unit
cell with trigonal symmetry (D;;). By symmetry, the
LO(T") and TO(I") modes are degenerate, and we refer to
these modes as LTO(I'). We have used 14 special k
points in the 5 of the BZ of the trigonal lattice. The TE
have been calculated as a function of the phonon ampli-
tude for a displacement range of +0.1 A along the [111]
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direction. The resulting TE are fitted to a polynomial of
the order 6 with a rms fit error of 2.6 X 107> Ry/atom,
which is shown in Fig. 15(a). As can be seen from this
figure, the anharmonicity of this mode increases with an
increase in phonon amplitude. We have calculated the
phonon frequency using the second derivative of the
fitted polynomial at the equilibrium atomic positions,
u =0. Our calculated phonon frequency for LTO(T") is
15.35 THz, which is in very good agreement with the ex-
perimental value of 15.53 THz.

We have also calculated the average force constant us-
ing the TE differences™>> AE with respect to the equilib-
rium TE by the following approximation:

~ % . (®)

2

In this way, we obtained a phonon frequency of 15.10

THz, which is close to that obtained by using the second

derivative of the fitted polynomial curve. Harmon

et al.,"! using the same OLCAO method with somewhat

different optimized Gaussian parameters, calculated the

frequency of this mode to be 15.0 THz. Yin and Cohen’®

obtained an average frequency of 15.15 THz by using the
PM and Eq. (8).

We have further calculated the cubic force constant
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FIG. 15. (a) Total energy of the cd-Si as a function of the
phonon amplitude along the [111] direction for the LTO(T)
mode. (b) Total energy of cd-Si as a function of the phonon am-
plitude for the TA(X) mode.
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k,,, corresponding to the third-order anharmonic term of

this mode>>* using the equation
3
AE (0)=tku’+4k,, T/% )

We obtained k,,, = —30.1 eV/A3, which compares favor-
ably with the experimental value of —35.1 eV/A>. The
experimental value was obtained from utilizing the mea-
sured values of the third-order force constants®® in con-
junction with the Keating model involving anharmonic
force constants.’! References 11 and 5 gave the Ky,
values of —34.3 and —32.7 eV/AJ, respectively which
are in better agreement with the experimental value.

For a calculation of the phonon frequency of Si at the
edge of the BZ, the size of the primitive cell must be dou-
bled. We have used a tetragonal primitive cell with four
basis atoms in the TE calculation for the TA(X) phonon
mode. We used eight special k points in ;; of the BZ.
For this mode, the TE were calculated for severagl
different phonon amplitudes ranging from 0.0 to +0.05 A
and fitted to a polynomial of the order 5. The rms error
of the fit was better than 10~° Ry/atom. The result of
our calculation is shown in Fig. 15(b). Our calculated
phonon frequency is 4.65 THz, which can be compared
with the measured value®”*® of 4.49 THz. The theoreti-
cal phonon frequency of this mode using the PM (Ref. 6)
is 4.45 THz, while Harmon et al.!! obtained a frequency
of 4.9 THz using the OLCAO method.

The results of our lattice dynamic calculation, together
with the measured frequencies and other existing theoret-
ical values, are summarized in Table VI. It is fair to say
that our calculation for phonon frequency in Si is of com-
parable accuracy to the other state-of-the-art calcula-
tions.

D. Internal strain parameter

In this section we present the result of our calculations
of the internal strain parameter £ (Refs. 67-74) for cd-Si
along the [111] direction by minimizing the TE as a func-
tion of £&. In this calculation, a trigonal unit cell with two
atoms per unit cell was used. The atomic positions of Si
in the trigonal crystal under stress are given by®’

Ri=(I+g)R,, (10
1

R,=(I+g)R,—lage, |1, (1
1

TABLE VI. Comparison of the phonon frequencies of the
cd-Si at I" and X calculated by the present work, other theoreti-
cal calculations, and the experimental values.

LTO(T') phonon k"ys , TA(X)

(THz) (eV/A") (THz)
Present calc. 15.35 —30.1 4.65
Ref. 11 15.0 —34.3 4.90
Ref. 5 15.15 —32.7 4.45
Expt. 15.53 —35.1 4.49
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where R, and R, are the positions of the atoms in the un-
strained unit cell, a is the cubic diamond lattice parame-
ter, £ is the internal stain parameter, and g is the uniaxial
stress tensor in the [111] direction of the form

€ & &
E= g, € &, (12)
2 &1 &

€, € €

where €, and €, define a pure hydrostatic volume change
and a pure trigonal deformation, respectively. For every
set of €, and €,, we have calculated the TE for seven
different values of & between 0.1 and 1.0. Fourteen spe-
cial k points in the irreducible ;5 of the BZ have been
used, and the TE converged to better than 1X1073
Ry/atom. The TE data are then fitted to a polynomial of
the order of 4 and the internal strain parameter is ob-
tained from the minimum position of the TE versus &
curve.

We have performed the calculations for four different
sets of €, ¢€,:

(i) £,=0.0, &,=—0.02,
(ii) £,=0.0, e,= —0.035,
(iii) ,=0.0, £,= —0.04,
(iv) e;=¢€,=1(0.04).

In the first three cases, the volume change vanishes as a
result of a 4%, 7%, and 8% compression in the [111]
direction, and a 2%, 3.5%, and 4% expansion in the
(111) plane, respectively. In each case the TE are fitted to
a polynomial of the order 4 with a rms fitting error of
about 4X107° Ry/atom. The minimum of the three
cases occurred at £=0.40, £=0.50, and £=0.64, respec-
tively.

In the case (iv), the volume is increased by 4% as a re-
sult of a 4% bond stretching in the [111] direction,
whereas the distances in the (111) planes do not change.
In this case, we obtained no minimum but a kink at
£=0.73. In spite of the reasonable accuracy of our TE
calculations, we obtained different values of £ for
different cases, depending on how the crystal is set under
stress. J. Sanchez-Dehesa et al.,®’ using the PM, have
also obtained different values of & for different ways of
stressing the crystal. They obtained ¢§;=0.816,
£,=0.785, and £;;=0.99 for the three cases of (i)
£,=g,=—0.02, (i) ¢&,=¢,=—1(0.04), and (iii)
£,=¢,=1(0.04), respectively. Harmon et al.'' had ob-
tained £=0.61 using a similar OLCAO method by apply-
ing a strain of ~4.7% along the [111] direction. Weber’*
used the adiabatic bond-charge model (ABCM) for cd-Si
and obtained £ to be 0.5. The experimental values of &
have been reported to be 0.6 (Ref. 72) and 0.73.”> The
average of our four calculations gives a value of 0.57 for £
which is low compared to the experimental values. How-
ever, as mentioned above, theoretical calculation of & is
not unique. Rather, it depends on the assumption made
with regards to the crystal distortion. Similarly, the
analysis of experimental data may not be unique and sub-
ject to additional corrections. With this in mind, we con-
sider our calculated values for the internal strain parame-
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ter to be quite reasonable.

The result of this and other theoretical calculations, to-
gether with the measured values, are summarized in
Table VI.

IV. SUMMARY AND CONCLUSIONS

In the present work, we have successfully demonstrat-
ed the accuracy of the OLCAO method within the local-
density approximation by calculating the static structural
properties of various phases of Si, such as the equilibrium
volume, bulk modulus, the pressure derivative of the bulk
modulus, the transition pressures and volumes, and the
electronic states, as well as some dynamical properties of
the cd-Si phase. In summary we have obtained the fol-
lowing results:

(i) We have calculated the static structural properties
of the cd-Si from first principles by calculating the TE as
a function of the crystal volume. We have obtained the
equilibrium lattice parameter to be 10.26 a.u. The bulk
modulus to be 1.05 Mbar, and the pressure derivative of
the bulk modulus to be 4.2, which are in very good agree-
ment with experiments. Our calculated B is 6% larger
than the measured value of 0.99 Mbar. This value can
probably be improved by further optimizing the fitting
Gaussian parameters for crystal charge density. We have
obtained a band gap of 0.76 eV, which is 35% smaller
than the measured value.

(ii) We have further tested the accuracy of our method
in predicting the phase transitions of Si under high pres-
sures up to 100 GPa, and calculated the TV and TP for
various phases of Si. Our calculated TV’s are at most 5%
different from the average of the measured values. TP’s
are more difficult to obtain both experimentally and by
calculation. Up to 30% difference in TP has been cited in
the reported measured values. We have up to a 24% de-
viation with respect to the average of different experi-
mental values. Our results are also in quite good agree-
ment with the first-principles pseudopotential calcula-
tions. At very high pressures, we have obtained a TP of
89 GPa for hcp-Si to fcc-Si, which compares very well
with the experimental value of 80 GPa.

(iii) The electronic band structures, the DOS, and the
VCD of the ten different phases of Si calculated in the
present work are presented. They are generally in very
good agreement with the measured values and the results
of the pseudopotential calculations.

(iv) For lattice dynamics in the cd phase, we have ob-
tained a frequency of 15.35 THz for the LTO(T") mode,
with 1% deviation from the measured value, and a fre-
quency of 4.65 THz for the TA(X) mode, compared to
the measured value 4.45 THz.

(v) Moreover, we have calculated the internal strain pa-
rameter £ in the [111] direction of the cd-Si, which varies
between 0.4 and 0.73 depending on the way the crystal is
set under stress. Our results are in reasonable agreement
with the measured values of 0.6 and 0.73 and the results
of other theoretical calculations (see Table VII).

Our extensive calculation of ground-state properties of
various phases of Si using the local-density approxima-
tion demonstrates that the OLCAO method is capable of
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TABLE VII. Comparison of the internal strain parameter &
calculated by the present work, other theoretical calculations,
and the experimental values.

Internal parameter &

0.4, 0.553, 0.645, 0.730

Present calc.

Ref. 11 0.61
Ref. 67 0.86
Ref. 74 0.50
Expt. 0.62, 0.73

giving accurate total-energy results comparable to those
of the first-principles pseudopotential method. The accu-
racy of the OLCAO calculation can probably be further
improved if optimized fitting parameters for the potential
and charge-density functions can be obtained. At this
time, there appears to be no simple and efficient way of
determining the optimal set of fitting parameters, and
more developmental work in this regard is warranted.
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However, one advantage of the OLCAO method is its
economic use of the basis function and its versatility in
application to different types of condensed matter sys-
tems, and, as such, the OLCAO method will have a great
advantage in studying the energetics of complex systems
within the local-density approximation. With further de-
velopment of the method to improve its accuracy and
efficiency, it may eventually be possible to tackle prob-
lems such as phase transitions and defect migrations in
complex ceramic oxides and nitrides.
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