
PHYSICAL REVIEW B VOLUME 41, NUMBER 17 15 JUNE 1990-I

Localized excitons in II-VI semiconductor alloys:
Density-of-states model and photoluminescence line-shape analysis
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A simple but tractable madel of the density of exciton states associated with potential fluctuations
in semiconductor alloys is proposed. It consists of minimizing the fluctuation entropy related to the
composition fluctuation bx averaged over a volume V, for a given localization energy c. A critical
volume V, (hx), defined as the smallest volume in which the fluctuation d x can occur, is introduced.
This model leads to a density-of-states tail of the form exp[ —(e/so)3']. The characteristic energy
c0 depends on the manner an exciton can be localized: as a whole or through electron and/or hole
confinement. It is shown that the most probable event is determined by two physical parameters of
the system: the electron-hole mass ratio and the ratio between the coelcients of variation with
composition of the conduction- and valence-band edges. The density of states is used to model the
exciton photoluminescence line shape of three representative alloys Zn0»Hg003Te, CdS036Se0~,
and Cd0 92Hg0 08Te in which exciton localization occurs, respectively, via the electron, via the hole,
or by electron-hole confinement. In each case a good agreement with the experimental results is ob-
tained.

I. INTRODUCTION

The problem of exciton localization in semiconductor
alloys has been a subject of continuous interest since the
first works of Cohen and Sturge' and Permogorov et al.
The more specific results have been obtained in II-VI
semiconductor alloys situated on the high-band-gap side
of the composition range, including CdS„Se,
ZnS„Se, „, Cd„Hg, „Te, and Zn„Hg& „Te. In that
case the low temperature photoluminescence spectra are
dominated by a band located below the free-exciton
reflectivity structure. This band is interpreted as the
recombination of excitons in a tail of states associated
with alloy fluctuations. Time-resolved photolumines-
cence experiments have been used to study the transfer of
excitation between localized states in the tail.

On the other hand, the behavior of alloys correspond-
ing to the low-band-gap side of the composition range ap-
pears to be somewhat different. The photoluminescence
spectra show the usual donor- and acceptor-bound exci-
ton recombination lines, broadened by alloy fluctuations
and, at higher energy, a narrow line which has been relat-
ed to free-exciton or polariton annihilation in the follow-

ing alloys: Zn„Cd& Te, Zn& „Mg„Se, ZnSe Te&

CdSe„Te, „(Ref. 6), and also CdS„Sei „. However, in

the case of ZnCdS (Ref. 8) and ZnCdSe (Ref. 9) the high-

energy line was still interpreted in terms of shallow local-
ized states.

From the theoretical point of view, the first aspect to
be considered is the modification of the exciton density of
states due to alloying. Baranovski and Efros' first treat-
ed this problem by looking for the optimal composition
fluctuation hx which gives a minimum in the fluctuation
entropy for a given localization energy c. They arrived at
a tail of the density of states varying as exp[ —(s/Ec)' ]

where so is a characteristic energy. Cohen and Sturge'
made reference to the work of Halperin and Lax" on a
related problem, the impurity band tails. This study led
to a density of states of the form exp[ —(s/so)'"] where
the exponent a (s ) varies from 0.5 to 2 with increasing lo-
calization energy. A simpler expression with a = l was
adopted by Cohen and Sturge in their line-shape analysis.
The same form was chosen in subsequent theoretical
modelinps of time-resolved and -integrated luminescence
spectra. ' In these studies the characteristic energy of
the tail sc was not calculated a priori but taken as a 6tting
parameter.

Our own effort was directed towards the derivation of
a physically meaningful, but tractable model of the densi-
ty of states which allows us a comparison between the
various alloys in terms of a few fundamental quantities.

This simple model is presented in the first part of this
paper. Then, the obtained expressions are used to evalu-
ate the relative probabilities of different possible electron-
ic excitations: exciton localized as a whole, exciton local-
ized through one of its components (electron or hole),
and exciton in narrow wells. At last these predictions are
confronted to experimental results by modeling the
steady-state photoluminescence band observed in three
di6'erent exemplary alloys: Znp 97Hgp p3Te,
Cdp»Hgp p,Te, and CdSQ 36Sep 64.

II. MODEL OF THE DENSITY GF EXCITON STATES
INDUCED BY COMPOSITION FLUCTUATIONS

Consider a pseudobinary semiconductor alloy of nomi-
nal formula A, „B„Cwhere xp denotes the average

0 0
composition. At the microscopic level the random distri-
bution of atoms A and 8 on the same sublattice generates
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local composition fluctuations. If in a small volume V the
average composition is g, the corresponding composition
fluctuation is

dS(g) cr(g}—o(xo) —(g—xo)o'(xo}
dV V,

(2)

where cr(x)= —x lnx —(1—x)ln(1 —x). V, is the in-

teraction volume of the perturbation. In their study,
Baranovski and Efros take V, equal to the volume of a
sublattice site. ' Following Singh and Bajaj' we take V,
as the smallest volume in which a fluctuation hx can
occur. It is given by

rC/Sx/V, =l, (3)

where K is the concentration of sublattice sites. The en-

tropy of the fluctuation in the volume Vis obtained by in-

tegrating Eq. (2). In our simple model we write

S(g)= [o(g) o(xo—) (g —xo)cr—'(xo)] .V

C

(4)

From the general relation between configuration proba-
bility and entropy p —exp( —S), we obtain after some
transformations:

p(g, V)= exp, — gin
V

V, xo

1—
+(1—g) ln

1 x0
(5)

In the approximation of small fluctuations,
~
M

~
&&min(x o, 1 —x 0 ), which corresponds generally to

the experimental cases, the expression (5}becomes similar
to a Gaussian distribution with a standard deviation
o 0= [( V, /V)xo(1 —xo)]'~ . Introducing the relation (3),
the configuration probability is finally expressed as

p(hx, V)- exp
ICVfwx ['
xo(1 —xo)

(6)

The next step is to relate the local composition fluctua-
tion (b,x, V) to the energy spectrum of excitons in the
semiconductor. The basic idea is that, at low tempera-
tures, excitons are localized in potential wells associated
with composition fluctuations. However, depending on
the extension of the wells and on the fluctuation ampli-
tude different kinds of exciton localization can be con-
sidered, namely the following: (i) localization of the exci-
ton as a single particle in a well of radius larger than the
exciton Bohr radius, (ii) localization of one of the exciton
components (electron or hole), the other particle being
bound by coulombic interaction, and (iii) quantum locali-
zation of both exciton components in a narrow well lead-

b,x ( V) =g( V) —xo .

We are interested in the relative probability p (hx, V) of
occur ence of the composition fluctuation hx in the
volume V.

To express it we refer to the statistical formalism of
Lifshitz' who writes the density of fluctuation entropy as

ing to a confined exciton. The two first cases can be
treated on the same foot and will be studied first.

This procedure determines the optimum fluctuation pa-
rameters hE, and R, . In the approximation of a
spherical potential well, the kinetic energy 8 is related to
c. and R by the well known transcendental equation writ-
ten in dimensionless variables

cot(v 2Z ) = —v'Y/Z,

where Z=8MR /vari and Y=eMR /R. We have fitted
the solution of (9) in the range of interest by a third de-
gree polynomial:

Z= g co„(v'Y )" .
n=0

(10)

dE

FIG. 1. Scheme of one-particle localization in a spherical po-
tential mell.

A. One-particle localization

Besides the separate localization of either an electron
or a hole, this case covers the situation where the exciton
can be treated as a simple particle of mass equal to the
exciton translation mass M=m„*+m' (center-of-mass
localization}. The necessary condition is that the locali-
zation energy is a small perturbation compared to the ex-
citon binding energy, as indicated by Baranovski and
Efros. ' This case also corresponds to the quantification
of excitonic polaritons in wide two-dimensional wells

( ~ 500 A) analyzed by Merle d'Aubigne et al. in
CdZn Te/CdTe/CdZn Te quantum structures. 's

We consider the energy configuration of Fig. 1 relevant
to a localized exciton. The particle of mass M is localized
at an energy e below the threshold energy E» in a (sup-
posed) spherical potential well of radius R and of depth
b,E. 8 is the kinetic energy of confinement, a function of
M, bE, and R. E» is the free-exciton energy correspond-
ing to the average composition xo. The recombination
energy is then h v =E» —s. We can write

b,E=e+8= —a» b,x,
where a» =dE»ldx is the coefficient of variation of the
excitonic band gap with composition. The fluctuations
Lx considered are such as hE & 0.

For a given localization energy s, b,E and R can be
chosen to maximize the probability p (hx, V), (6), by solv-

ing

" (R'~~x~i)= " "+" =0.
dR dR
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Figure 2 presents the adjustment obtained with the
coefficients coo=1.2642, co, =1.2656, co2= —0.2462, and

co3 =0.0193. Introducing (10) in (8) leads to the optimum
parameters:

=1.4
M c.

(1 la)

hE =2.33'.=4.567op MR 2
OP

(1 lb)

F
g (s)=go exp

Cp
(12)

where c,0 is a characteristic energy given by

32/3 Ma [xo(1—xo)]
E

g 0

( 1 4 X 2 33 )2(4 )2/3 g2~ 2/3 (13)

We have introduced ag =dEgldx =ax, where Eg is the
energy band gap which amounts to neglecting the varia-
tion of exciton binding energy with composition x. The
value of the constant first factor is about —,', . If we con-
sider instead the localization of an electron or a hole the
product Ma is replaced by the quantity m„'a„or m 'a
respectively, where m„' (m') is the electron (hole)
effective mass and a„(a ) is the variation rate of the
conduction- (valence-) band edge with composition. In
the latter cases the localized energy c, is referred to the
corresponding continuum edge, either the conduction- or
the valence-band edge. By considering that the localiza-
tion particle attracts a (delocalized) carrier of opposite
sign to form an exciton the recombination energy is still
given by hv=Ex —c.

4.0

Then the density of states at the energy c. in the tail is
taken to be proportional to the probability p (R, , b,E, ).
We find

' 3/2

B. Two-particle localization

When the perturbation due to localization is greater
than the electron-hole interaction energy, one has to treat
first the localization of both particles before introducing
electron-hole Coulombic interaction. We assume that the
potential wells are distant enough to consider the two
particles to be confined in the same well of radius R (Fig.
3). Then we can write

hE„=—a„hx = c,„+8„,
hE =+a Ax =c +8
b,E = —(a —a )b,x = —a hx =e+ 8 +8

g n p g n p

hv=E —Eg BX

(14a)

(14b)

(14c)

(14d)

The recombination energy is related to the total localiza-
tion energy c and involves the exciton binding energy
EBx. As a first approximation we assume that EBx does
not depend on R. As above the possible fluctuations bx
leading to localization are such as hE„&0 and AEp & 0.

The optimum fluctuation for a given c value is deter-
mined by solving Eq. (8). In this case it is more con-
venient to express the kinetic energies H„and 8 as a
function of R and of the potential depths EE„and hE .
The equation of the spherical potential well (9) is solved
to give Z as a function of X =Z + Y, where
X =b,E MR IR We hav. e approximated the solution by
a second-degree polynomial as shown in Fig. 4. We write

2Z=pa X
m=0

with a0=0.3813, a& =0.8537, and a2= —0.0802. This
simple form can now be introduced into Eqs. (14a), (14b),
and (14c) to get a relation between b,x, R, and a, where
hx appears at the second order only. Substituting the
solution for b,x in (8) allows one to determine the parame-
ters of the optimum fluctuation for a given localization

2.6

2R

1.2
0.0 1.0 2.0 3.0 4.0 .g 5.0

MR2 /A2

Ev
FIG. 2. The dimensionless kinetic energy plotted vs the di-

mensionless localization energy for a particle of mass M in a
spherical potential well: solid line, exact solution; dashed line,
approximation by a third-degree polynomial (see text).

FIG. 3. Scheme of electron and hole localization in a spheri-
cal potential well.
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energy c.:
' 1/2

that the various alloys can be classified according to two
quantities only: the ratio m„'/mp* and a„/a .

bx, = 2E

(1—ai )(1—u /Q)ag

with

(16)

2pa

(1—a, )0= = —0.228,
4aoaz

where

pa [xo(1—xo}]
(u) kg 2/3

(18)

where p, is the reduced exciton mass [p=(1/m„'
+ 1/mp') '].

The density of states in the tail, proportional to
p (R, , M, ), keeps the same form as above (12), but now

with

III. TYPES OF EXCITON LOCALIZATION
IN II-VI SEMICONDUCTOR ALLOYS

A. Electron localization

The optimum fluctuation parameters are obtained from
(11):

R„—1.4
(m„"e)

(20)

Except for the study of Ablyazov et al. ,
' we are not

aware of any general discussion about the possible kinds
of exciton localization in II-VI semiconductor alloys.
Our simple model allows us to establish the conditions of
existence and relative probabilities of the different kinds
of electronic excitations in terms of only a few parame-
ters. In the following, three categories of alloys will be
defined according to the nature of the localized particle.
Each category will be represented by a typical alloy for
which experimental results have been obtained or are
known from the literature.

y(u)=
4m

' 2/3 0
Q Q 1

Q
(19)

A necessary condition of validity is that the hole is not lo-
calized in that well. Then the hole potential well has to
satisfy

The previous case of one-particle localization can be also
obtained from (18} and (19},by setting u =1 and intro-
ducing the appropriate mass and band variation
coefficient; then y(1)= —,', .

In the model of density of states developed above, the
alloy characteristics are represented by five quantities de-
pending on the composition xo: K, m„', m ', a„, and ap.
The last four parameters determine the type and the de-
gree of localization that excitons can exhibit in the stud-
ied alloy. In this respect we will show in the next section

2.8

bE =a hx( m' R' '
p n

(21)

which is the localization criterion for a spherical well.
From (20) and (21) we deduce the explicit condition

ap 1 m„'

a„3.7 m*
p

(22)

Note that this inequality is always satisfied in the case
( —a„/a ) &0.

Another requirement is that this type of excitation has
the highest probability of occurence compared to the oth-
er ones (hole localization and exciton confinement). This
comes down to make maximum the corresponding densi-

ty of states at a given energy c and consequently the
characteristic energy eo. From (18) this is written as

y(1)a„m„')maxIy(1)a m', y(u)a p] . (23)

2.0 Two cases are worth considering. If ( —a„/a ))0 the
above condition is equivalent to (22). If ( —a„/a~) &0,
the possibility of localizing an electron and a hole in the
same disorder-induced well is excluded, and (23) is re-
duced to

1.2
1.2 3. 1

MR2 /~2
5.0

an

a

1/2
mp

m*
n

(24)

FIG. 4. The dimensionless kinetic energy plotted vs the di-

mensionless potential depth for a particle of mass M in a spheri-

cal well: solid line, exact solution; dashed line, approximation
by a second-degree polynomial (see text).

B. Hole localization

This case is symmetrical to the previous one. There-
fore, the necessary condition of validity is
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an

a
mp

m„'

1 1Co(t)=A Q —————1,

This inequality is always satisfied for (
—a„ /a~ ) & 0.

The condition of maximum probability reads

y(1)adam~' & max(y(1)a„m„', y(u)a pI . (26)

C, (t) =2AQ,

1
C (r)=A(Q —1 r)—+At Q ———1 —1 r—

2 (29)

In the case ( —a„/a ) &0, for the same reasons as above,
(26) becomes

Ci(t) =2AQr,

C, (t)=At(Q 1 —r) —.
Q is defined in (17), and A =2.66a28 = —0.81.

an

a

' 1/2
mp

m'
n

(27) C. Exciton confinement

For the other case ( —a„/a ) & 0 the conditions (25) and
(26) are simultaneously satisfied if the following inequali-
ty applies:

Electron and hole are both localized in the same well,
which implies ( —a„/a ) &0. The conditions of ex-
istence are

2 f2—a„bx )
m„*R' '

4
P (s, t)= g C (t)s'i&0 .

q=0
(28)

a hx) m' R'
P

(30)

Where we set t = rn„'/m~', s = —a„/a, and the
coefBcients C are de6ned by

With the optimum R and b,x values given in (16), we get
the following equivalent inequalities:

16ao[1+(m„' /mz' ) ] —1
n (1—ai)

a„
a

m ' 16ao
1+

m„' m (1—ai)
(31)

The condition of maximum probability is

y(u)gag & m xaIy(1)m„'a„, y(1)mz'a I . (32)

E 1.4(C
I+(m„'/2m*)+(m '/2m„')

(35)

The combination of the three conditions (31) and (32)
leads to the following result:

a~ mp
& 3.7 m'

n
a

P, (s, t}&0,
where P is defined by (28) and (29).

(33}

D. Center-of-mass exciton localization

R ))a~ =
2pEax

(34)

where az is the exciton Bohr radius and E~~ the exciton
binding energy. Taking into account the expression (I la)
of the optimum fluctuation radius, the condition (34) be-
comes

This situation can occur whatever the sign of
( —a„/a~ ). It was not opposed to the previous ones be-
cause of its particular validity range. It corresponds to a
weak localization regime such as

' 1/2

As rn„'/m' is typically around 0.2 the above inequality
requires that e is much smaller than the exciton binding
energy. Practically this corresponds to a small part of
the observed luminescence bands, about 2-3 meV below
the free-exciton energy, and is completely absent in the
small-band-gap alloys. Thus this process will not be con-
sidered any more for the modeling of luminescence spec-
trum (Sec. IV).

E. Summary and examples

The conditions of appearance of the different types of
exciton localization expressed in the previous section can
be represented by limit curves in a graph relating
( —a„/a~) to (m„'/m~'} (Fig. 5). The expressions (22),
(28), and (33) corresponding to the case —a„/az &0 al-
low one to delimit three domains: The upper domain
(EL) corresponds to alloys where conduction-band fluc-
tuations are much larger than valence-band fluctuations
(a„»—a~ },which leads to electron localization. A pro-
totype of this class is Zn„Hgi „Te (0.9&x &1) for
which the coef6cient a was recently determined by pho-
toemission and is near zero. ' The lower domain (HL)
covers the opposite situation where the hole is localized
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Pnog(c)+ g W, ,(c ',c)n(c ') — =0 .n(c)

I p
c

(36)

30

20

10

The first term is the total capture rate including the
direct capture and the indirect one involving scattering
on states of intermediate energy c.

' & c. The efFective cap-
ture coefficient P is assumed not to depend on c. The
second term represents phonon-assisted tunneling from
states localized at energy c,'&c,. The last term includes
all the processes of state emptying: radiative recombina-
tion and transfer to states deeper in the tail. The lifetime
r(c) can be decomposed in a radiative r„(c) and a
transfer component r„(c):

(37)

C~HgooeTe
(H$8 (HLj

with

rt, '(c)= g W, , (c,c') . (38)

-10
0. 1 0.3 0.5

m„mp
FIG. 5. Graph relating the ratio of the coeScients of varia-

tion of band edges with composition to the electron-hole mass
ratio. The domains (EL) and (EL)' correspond to electron lo-
calization, (HL} and (HL)' to hole localization and (EC) to exci-
ton confinement.

IV. PHOTOLUMINESCENCE
LINE-SHAPE MODELING

We consider a steady-state nonresonant type of excita-
tion: Photons of energy higher than the semiconductor
band gap contribute to establish a population of free exci-
tons of density n0, from which capture to localized states
proceeds. In the small-excitation regime and at
suSciently low temperatures, the density of localized ex-
citons at energy 8 satisfies the rate equation:

in potential Buctuations. A representative alloy is

CdS, Se, „(0.3&x &0.97) for which a„ is quite small
(see Sec. V). The intermediate domain (EC) corresponds
to excitons conSned in narrow wells. This appears to ap-
ply to the alloy Cd„Hg, „Te (0.8&x &1}because —a~
is not negligible compared to a„as it was the case for
Zn, Hg& „Te. Hence, localization of both electron and
hole occurs in potential fluctuations.

For the case (
—a„ja ) &0, two domains are delimited

by the conditions (24) and (27). In the lower part of Fig.
5 the domain (EL) corresponds to electron localization
and the domain (HL)' corresponds to hole localization as
the adjacent domain (HL) does.

To go a step further we will now use our model of den-
sity of states to fit the spectral distribution of the photo-
luminescence bands observed in three typical alloys pre-
viously mentioned.

The transfer probability W can be evaluated exactly by
formulating the exciton-phonon interaction. '

For the sake of simplicity, we have followed the phe-
nomenological model of Ref. 12. These authors assume
that W(c, c') has the simple form

W(c, c')= Wo(c)g(c') .

Furthermore they express the transfer rate r,, '(c }as

r,, '(c)=ra ' exp[5(c~ —c }]

(39)

(40)

where cM is a reference energy at which the radiative
recombination probability is equal to the transfer proba-
bility.

Here ~z is taken as a constant, independent of energy.
One can argue that with increasing localization energy
the radius R of the optimum fluctuation decreases so that
the exciton oscillator strength which scales as R (Ref.
19) should also decrease. However, taking into account
the small energy range of the luminescence bands (about
10—20 meV), we will neglect this variation before that of
the transfer probability. Then the expression of the life-
time is

'(c)=rx'[1+ exp[5(c~ —c)]) . (41)

Introducing formulas (39) and (40) into (38) and replacing
the summation by an integral allows one to obtain the
probability coeScient

r„' exp[5(cM —c)]
~o(c)=

g(c'}dc'

and to write (36) under the form

n(c)
Pnog=(c)+ J W ( o)nc( )gc( )dc'.c

E

1 c 0

(42}

(43}

This equation can be solved by successive iterations as
follows: The first two steps give

no(c) =Pnog(c)r(c),

n, (c}=no(c)[1+A (c,)],
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where

A(s)= f Wo(E')g(s')r(s')ds'.
O

At the second order we get

n2(E) =no(E) 1+A(e)

(44)
1.4416
1

Photon Energy
I,

'eV'i

1.4246 1.4076

By noting that

+ f 8'0(s')g(E')r(e')A (E')dE'
0

8'o(e'}g(s')r(c') = dA(e')

the second-order solution reads

n2(s) =no(s)[1+ A(e)+ —,
' A (s)] .

Extending this process to the order n leads to the exact
solution:

0
0

~ ~ ~ ~ ~ ~ ~
I

~ Og

34
C(mev )

n(s) =no(s) exp[A(s)] . (45)

The luminescence intensity due to the radiative recom-
bination of the excitons localized at energy c, is
I,(s)=n(s)/r„:

I.(s}=Pnog(E)r(s)r„'exp[A (e)] . (46)

The expression (46) was used to fit the low-temperature
luminescence bands observed in three representative al-
loys by us or other authors: Zno 97Hgo p3Te,
Cdo 92Hgp 08Te, and CdSO 36Seo ~. The experimental
spectra were plotted as a function of the localization en-
ergy c by subtracting the photon energy from the free-
exciton energy (14d). The latter was reduced from
refiectivity measurements in the case of Cd„Hg, „Te
(Ref. 21) and CdS„Se, „(Ref.5) or calculated by linearly
interpolating the re6ectivity results obtained on some
Zn-rich Zn„Hg& „Tealloys.

FIG. 7. Comparison between the experimental luminescence
spectrum (solid line) and the calculated one (dashed line) com-
puted from the model presented in Sec. IV for Cdp»Hgp p3Te.

As the luminescence curves are normalized to their
maximum, the fits involve only three parameters: co the
characteristic energy of the density of states (12), 5, and
s~, which determine the lifetime variation (38).

A simple procedure is to adjust first the position of the
curve peaks which gives a relation between so, sM, and 5.
The short wavelength range (small s) is quite sensitive to
the lifetime variation, while the long wavelength side
(large e) is mainly determined by the density-of-states ex-
pression (so). The best fits obtained are presented in Figs.
6, 7, and 8 as dashed lines together with the experimental
results (solid lines). The fitting parameters for the three
curves are collected in Table I. The experimental value
of the characteristic energy so is compared to the theoret-
ical one in the next section.

2.2724
1

Photon Energy IeVi
2.2624 2.2524

2.006
1

Photon Energy IeV~
1.944 1.932

0
0 10 20

gtrnev &

0
0 24

C(mev )

FIG. 6. Comparison between the experimental luminescence
spectrum (solid line) and the calculated one {dashed line) com-
puted from the model presented in Sec. IV for Znp 97Hgp p3Te.

FIG. 8. Comparison between the experimental luminescence
spectrum (solid line) and the calculated one (dashed line) com-
puted from the model presented in Sec. IV for CdSp 36Sep 64.
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TABLE I. Best parameters used for the fit of the experimen-

tal luminescence spectra according to the theoretical model of
Sec. IV.

10

Znp 97Hgp p3Te CdSQ 36Sep 64 Cdp 92Hgp pgTc

cp (meV)
5 (meV ')

c~ (meV)

4.8
1.23
4.7

4.3
0.56
6.7

6.5
1.15
5.5

V. DISCUSSION OF THE RESULTS

The validity of our model for the density of localized
states can be appreciated from a comparison between the
co experimental values and the predicted ones. The latter
are evaluated by introducing the relevant alloy parame-
ters in the appropriate expressions of Sec. II. These pa-
rameters are listed in Table II and come from various
sources. The effective masses are linearly interpolated be-
tween the accepted values of the end compounds. In
the same way E is calculated from linearly interpolated
lattice parameters. The band-edge coefficients for
Zn„Hg& „Te alloys are estimated by assuming that E, is
a linear function of x and that E„(x) follows the non-

linear dependence recently measured' making a valence
band offset of 0.17 eV appear between ZnTe and HgTe.
For Cd, Hg, „Te alloys a linear variation E„(x}has been
assumed with a valence-band ofFset of 0.35 eV between
CdTe and HgTe; then the dependence E,(x) was de-

duced from the band-gap variation given by Legros
et al In the .case of CdS„Se, „alloys the conduction-
band ofFset is taken to be zero as an average value be-
tween calculated (Harrison} and experimental (Swank)
values of opposite signs. Then the variation E„(x) fol-

lows the quadratic dependence of the band gap with com-
position.

For Zno 9~Hgo 03Te and CdSO 36Seo 64 the conditions of
one-particle localization apply, electron, (22), and hole lo-
calization, (28}, respectively: sp is computed from (13}
with the corresponding parameters. In the case of
Cdo 9zHgo osTe the condition of two-particle localization
or exciton confinement is obeyed, (33},and ep is calculat-
ed from the formula (18). Comparison between Table I
and Table II shows that the predicted sp values are in

good agreement with the experimental ones. Note in par-

0
0.0 0.5 1.0

FIG. 9. Composition dependence of the characteristic energy

Gp of the density of localized exciton states (13) for CdS„Se&
alloys.

ticular that Zn„Hg& „Te and CdS„Se, , correspond to
two opposite cases of localization. As for Cd„Hg, „Te
the accuracy of the fit on the long wavelength side (large
s) is limited by the presence of another luminescence
band not represented here, which introduces some uncer-
tainty in the actual band shape. The bottom lines of
Table II indicate the parameters of the optimum fluctua-
tions corresponding to the peak luminescence energy.

On the whole our model appears to represent fairly
well the difFerent physical situations studied here. It
gives the characteristic energy of band tailing with an ac-
curacy never previously obtained. In this respect it is in-
structive to come back to the analysis of Baranovski and
Efros. ' These authors have determined the optimum
fluctuation in using a more rigorous quantum-mechanical
formulation. However, they did not introduce a critical
volume V, depending on composition fluctuation (3):
their calculation is equivalent to taking V, =E '. This
procedure leads to a density of states proportional to
exp[ —(e/ep)' ]. A reasonable fit of the experimental
luminescence bands is also possible with this form, lead-
ing to co values around 3-4 meV. However, introducing
the alloy parameters of Table II in the formula of Ref. 10

TABLE II. Lattice and band-structure parameters of the considered alloys. The three last lines give

the calculated values of the density of states characteristic energy and the optimum Auctuation parame-

ters.

K (10 cm )

m„*/mo
m~*/mo
a„(eV)
a~ (eV)
c,p (meV)
R,p (A)
bX,I,

Zno 97Hgp p3Te

1.76
0.11
0.594
2.52

—0.067
4.6
153

—5.4X 10-'

CdSo. 36Seo.64

1.88
0.14
0.5
0

—0.64
5.2

64.5
—2.6X 10

Cdo. 92Hgo. o8Te

1.47
0.093
0.584

1.9
—0.35

5.9
168.9

—7.7 X10-'
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gives so theoretical values 2 to 3 orders of magnitude
smaller. We conclude that the concept of a fiuctuation-
dependent critical volume is a necessary ingredient in this
type of formulation. Another aspect to be discussed con-
cerns the II-VI semiconductor alloys near the small-
band-gap side for which a different type of luminescence
spectrum is observed. As indicated in the introduction,
the spectrum is rather similar to that of the near com-
pound. At low temperature donor- and acceptor-bound
exciton lines appear together with an intense narrow line
very close to the free-exciton energy Ex. We will consid-
er more specifically the alloy CdSp &4Sep «well studied in
Ref. 7 and discuss the particular observed behavior by
comparison with the composition CdSQ36Sep ~ analyzed
above in terms of localized excitons. We wish to show
that these two difFerent behaviors can be related to the
density of localized states at the energy of the donor-
bound exciton. Taking a density of states of the form

g (s) =go exp[ —(c/eo) ],
we note that c.p varies as a function of x as shown in Fig.
9. The calculation was made using the expression (13) in
the framework of hole localization. The quantity gp is es-
timated by matching it to the free-exciton-state density
gf(E) at some energy Es above Ex. gf is given by

3/2

gf =4m (E E»)—2M

where M is the exciton translational mass. Somewhat ar-
bitrarily we take Es Ez =so/2. —With that we calculate

gp =1.98 X 10 eV ' cm for x& =0.36 and
gp=1. 19X10 eV 'cm for x+=0.14. The donor-
bound exciton line is located at a=4 meV and has a half
width DE=2 meV in the Se-rich alloy. This leads to in-
tegrated values of localized state densities in this energy
band of 1.9X10' cm for x&=0.36 and 6.4X10'
cm for xz =0.14 which should be compared to a donor
concentration around 10' cm . We conclude that in
the first case, excitons are predominantly localized in po-
tential fluctuations, while in the Se-rich sample, excitons
are more probably bound to donor impurities. This re-
sult is obtained for c.-4 meV. For smaller e, energies in
the Se-rich sample the intense line observed quite close to
the free-exciton edge should be, in our opinion, attributed
to excitons localized in a tail of short extension. Here the

more probable type of localization is the third case of
Sec. IV: localization of the exciton center of mass, be-
cause the condition (32) applies and Mas&m'a . At
the luminescence peak (c,=0.5 meV) (Ref. 7) the op-
timum well radius, given by (I la), is 218 A, a value larger
than the exciton Bohr radius, as it should be. Although
excitons localized in such wide wells could be considered
as quasifree, the localization is responsible for the high
oscillator strength' which explains the high intensity of
the luminescence line.

Similar considerations on excitons localized in short
extension tails can be applied to Zn„Cd, „S (x &0.15),
Zn„Cdi „Se (0 (x & 1), Zn„Cdi, Te (x & 0.5), and

perhaps also to the systems studied in Ref. 6.

VI. CONCLUSIONS

We have developed a simple model of the exciton den-
sity of states induced by composition fluctuations in semi-
conductor alloys. This model considers the difFerent
ways an exciton can be localized in potential wells —as a
whole or through electron (hole) confinement—
depending on the coeScients of variation of band edges
with composition and on the effective-mass ratio. In this
respect it is remarkable that a good modeling of the
luminescence bands due to localized excitons is obtained
in quite different alloys: Zno 97Hgo Q3Te (electron locali-
zation), CdSQ 36Seo ~ (hole localization), and

Cdo 92HgoosTe (exciton confinement). For the first time
this type of fitting is quantitative in the sense that the
predicted energy dependence of the density of states is
quite well reproduced by the line-shape adjustment. The
model could be refined by introducing the variation of the
exciton binding energy with the potential well radius,
which was neglected in this work. Some calculations
have appeared for spherical wells of infinite depths and
for special quantum boxes. ' They should be adapted to
the present case. On the other hand, our formulation
could now be used to study other exciton-related process-
es in alloys such as the dependence of luminescence upon
excitation intensity, temperature and time.
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