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Contribution of optical phonons to sound velocity in piezoelectric semiconductors
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The inhuence of optical phonons on the sound velocity is investigated in piezoelectric semicon-

ductors. In a large-wave-number region near the electron Fermi wave number, the contribution of
optical phonons to the sound velocity is appreciable in connection with the wave-number depen-

dence of the dielectric function of electrons.

The amplified acoustic phonons in piezoelectric semi-
conductors have been studied in the high-frequency range
for which the wave number q satisfies the condition

ql »1,
where I is the electron mean free path. In the high-

frequency range, it must be significant to investigate the
terms which have been neglected in the low-frequency

range on account of small e8'ects. Miranda and ter
Haar' have predicted that the phonon amplification

may be enhanced by plasmons in the high-frequency re-

gion. Their prediction has been supported by Kagoshima
and Ishiguro experimentally.

In polar semiconductors, the optical-phonon frequency
is the same order as that of the electron plasma frequen-

cy, which is given by

ca =(4nnoe /m. e)'

where no is the average carrier density, and e is the
dielectric constant. In these materials, conduction elec-
trons interact with acoustic waves through the piezoelec-
tric coupling and with longitudinal-optical phonons
through the polar coupling. In this report, we investigate
the explicit contribution of optical phonons to acoustic
waves by making use of a renormalization procedure. '

In the low-frequency region, the polarization field in-

duced by optical phonons is almost screened by conduc-
tion electrons and therefore does not give rise to the
modification of acoustic waves. But, in the high-
frequency region, we may expect that the polarization
field induced by optical phonons gives a contribution to
the modification of acoustic waves, as a screening eft'ect

decreases.
We suppose the longitudinal acoustic waves propaga-

ting parallel to the c axis in CdS and also suppose the spe-
cial configuration where the stress components are zero
except for the diagonal component concerned with the c
axis, corresponding to the experimental configuration.
We take the c axis of a crystal as the z axis. In this
configuration, the piezoelectric polarization induced by
acoustic waves can be expressed by making use of the
effective piezoelectric constant,

e33 e33 2e31c13 J ~c1 1 +c12 } ~

where e, and c,- are the piezoelectric and elastic con-
stants, respectively. As the electron-phonon interaction

in piezeoelectric semiconductors, the piezoelectric cou-
pling gives a main contribution and the deformation-
potential coupling can be neglected in comparison with
that. This is valid up to a frequency value of 10' s ' in
CdS.

We develop our calculation after the method of Born
and Huang. We introduce the longitudinal vector field

w which is defined by

w=(u+ —u )(M/Qo)'i' .

Here, u+ and u are the longitudinal lattice displace-
ments of cations and anions in a unit cell, respectively, M
is the reduced mass, and Qo is the volume of a unit cell.
The longitudinal vector field w obeys the equation of
motion

W
b &1W+612E

where

bll T& 12 g
(~L ~T) '2 2 ~ 2 2

4w

Here, coL and cuT are the frequencies of longitudinal and
transverse optical phonons, respectively, E is the longitu-
dinal electric field, and e„ is the high-frequency dielectric
constant. The equation of motion of the longitudinal lat-
tice displacement u is written by

Bu Bu, BE—K e33P~2

with

K —
C33 2C t3 /(C)) +C)2 )

2

K is the effective elastic constant and p is the mass densi-

ty. The polarization P is related to w, u, and E through
the equation

BQ
P =I »w+e,'3 +S»E,

Bz

where

b32=(e„—1)/4' .

Next we have to include the contribution from free-
carrier density fiuctuation to the self-consistent field E.
The electric displacement D defined by
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D =E+4ap (4) values of parameters used are as follows:

is related to the deviation of carrier density n, (r, t) from
its average value no through the following Poisson's
equation:

V.D=4nn, (r, r) . (5)

n,—(r, t)+V j(r, t)=0 . (6}

The current density j(r, t} will be linearly related to the
electric field E by the constitutive equation

j(r, t}=f dr' f dt'cr(r r', t—t')—E(r', t') . (7)

Taking the Fourier transforms of Eqs. (1)—(7}, we have
the following dispersion equation for the coupled modes:

2
4~e 33

q 2(~2 ~Z }
&~p

K
(

2 2
)

2 q2 —0 (8)

e(q, co) is the dielectric function of electrons and is set as

e(q, co) =1+i4ne(q, co)/e„co, (9)

which is the standard relation between dielectric function
and conductivity. Equation (8) yields the dispersion rela-
tion of acoustic waves as follows:

N =q K+
e2

4m.e»
coT /[cur+ (coL car )/—s(q, ~) ]E'~ Eq,co'

(10)

We note that we are dealing with jellium, a uniform posi-
tively charged medium against which the electrons move.
The time dependence of n, ( rt} obeys the continuity
equation. Thus we have

e(q, co) = 1+q TF /q~, (13)

where qTF is the Thomas-Fermi screening wave vector.
The wave-number dependence of the dielectric function
shown in Fig. 1 can be understood by Eq. (13). The
change in the renormalized sound velocity can be inter-
preted by the behavior of e(q, co) Whe. n the carrier den-
sity no increases, the ratio b,S/So decreases on account
of increase of a screening effect.

We have derived the dispersion relation Eq. (8) based
upon the method of Born and Huang from the macro-
scopic viewpoint. This method is an intuitively clear way
to understand the physical properties of the system.
However, we note here that the dispersion equation can
be also derived by the quantum-mechanical method to be
outlined below. The full Hamiltonian of the system is
written by

e 33
= 1.822 X 10 esu ( Ref. 10),

«.=5.884X 10" dyn/cm (Ref. 10),

L 295 cm ', coT=261 cm

p=4. 819 g/cm, e„=9.53, m =0.205m, ,

and the number density of electrons no=10' cm
which leads to a Fermi velocity v~ =3.76 X 10 cm/s.

For a small q range, the polarization field induced by
optical phonons is almost screened by electrons and does
not contribute to the modification of a sound velocity.
Hence in the long-wavelength limit, Eq. (10) reduces to
Eq. (11). However, for a large q range, but smaller than
the Fermi wave vector kF, the contribution of optical
phonons to the sound velocity is appreciable but not so
large, as shown in Fig. 1. In the region of consideration,
the dielectric function of electrons may be expressed as

We see that the polarization field which causes the
difference (coL —coT) is screened by the presence of con-
duction electrons. When the electron-optical-phonon in-
teraction is not taken into account, we have the following
dispersion relation of acoustic waves:

02
co =q [«+4me33 /e„e(q, co)]/p .

From Eqs. (10) and (11), the contribution of optical pho-
nons to the sound velocity is given by

e2
S 2me3

So Sos„pe(q, cu)

(12)

with

So=[(«+4me33 /e„)/p]'
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For the numerical computation, we use the expression
obtained by Lindhard as the value of e(q, co). Figure 1

shows bS/So and e(q, co) as a function of wave number q.
The computation is carried out for CdS. The numerical

FIG. 1. The ratio of the change in the renormalized sound
velocity due to optical phonons, hS/Sp is shown as a function
of wave number q for a carrier density np=10' cm . The
dielectric function of electrons e(q, co) is also plotted (dashed
line).
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H =&0+He+

H0 g+kakak +
p X~~k ~k +t Qk Qk )

k k

k «2+ g PkPk+ «+4~e33 «. )qk 'qk

k P

4me
HC 2 X zak+q k' —q k' k

kkq~ 0

(14)

Ht =gut(k)Qkn k+gvz(k)qkn k++ v3(k)Q —kqk
k k k

where

phonon —electron, and acoustic-phonon —optical-phonon
interactions, respectively. nk is the Fourier component
of the electron-density operator,

7lk =Z Qpap+A
P

By calculating the equations of motion of nk, Qk, and qk
in the random-phase approximation, we have

e(k, to)nk+ [e(k, to) —l][v, (k)Q„

+ u2 (k)qk ]4qtez/(e „k ) =0,
(15)

1/2

v &(k) =— (cot —coT )
ie 4m 2 2

e2
u2(k) = 4'—ee33 /e„v'to,

(co —
coL )Qk

—
u&( k)—nk

—v3(k)qk =0,
k e2

to (K+4me33 /e„p) qk

(16)

' 1/2
4mu3(k)=ie 33k (toL —coT)

&~p

Here, ak and ak are the creation and annihilation opera-
tors of electrons, respectively, Pk and Qk are the normal
coordinates of longitudinal-optical phonons, and pk and

qk are those of acoustic phonons. Ho is the zeroth-order
Hamiltonian of the three-components system. Hc is the
Coulomb interaction between electrons. The terms in H&

represent the optical-phonon- electron, acoustic-

—u, ( k)n„——u, (
—k)Q„=0 . (17)

Here, e(k, co) is the electron dielectric function which is
defined by

4tre fp +q fp
e„k Rto E(p+—q)+E(p)

(18)

where f is the Fermi-Dirac distribution function. Expli-
cit values of e(k, co) were obtained by Lindhard as stated
above. Solving Eqs. (15)—(17), we have the same disper-
sion equation of the coupled modes as that of Eq. (8).
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