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Second-order Lowdin perturbation theory is used to calculate the interaction matrices for an
eight-band k.p model (near the I point) of zinc-blende crystals under a uniform strain. The model
treats the I 6 conduction bands, I 8 valence bands, and I 7 spin-orbit split-ofF bands. The model in-

cludes strain interactions arising from both the orbital and spin-orbit terms of the Hamiltonian. In
addition to the usual Pikus-Bir deformation-potential constants, a, b, and d, which describe the cou-
pling of the valence band to strain, two new deformation-potential constants arise, a' and b', which
describe the coupling of the conduction band to strain. The constant a' couples the conduction
band to hydrostatic deformations and the constant b', which results from a lack of inversion sym-

metry, couples the conduction band to shear deformations. The strain also introduces a k-
dependent conduction-band —valence-band mixing that is linear in strain, in wave vector, and in the
momentum matrix element between the conduction and valence bands. In the absence of strain, the
eight-band Kane model is recovered. Under a finite strain, in the limit of a large conduction-
band-valence-band gap and large spin-orbit splitting, the four-band Luttinger model with strain is
recovered.

I. INTRODUCTION

Theoretical' and experimental work on strained
Si and Ge crystals has been instrumental in gaining a de-
tailed understanding of their energy-band structures.
These crystals, which have an indirect energy gap in k
space, ' are characterized by a complex valence band,
and consequently, many past research efforts concentrat-
ed on achieving a detailed understanding of valence-band
mixing effects.

More recently, there is considerable interest in direct-
gap zinc-blende semiconductors, such as GaAs and InSb,
as well as strained-layer heterostructures because of their
potential optoelectric applications. "' Experiments
dealing with strained zinc-blende bulk crystals' ' and
strained-layer heterostructures' ' are interpreted using
the Luttinger (four- or six-band) model for bulk crys-
tals with the strain interaction matrix derived by
Pikus and Bir' or Suzuki and Hensel. These models as-
sume the diamond structure (O„point group), which
contains inversion as a symmetry operation, and treat the
light-hole, heavy-hole, and spin-orbit split-off valence-
band states, but they neglect the conduction band and the
details of valence- and conduction-band mixing.

The purpose of this paper is to extend earlier work to
include the strain-dependent coupling between the con-
duction and valence bands. We calculate the interaction
matrices of a k.p model for strained zinc-blende crystals.
The model treats the (I 6) conduction band, the (I 8)
light- and heavy-hole bands, and the (I 7) spin-orbit
split-off valence bands (Td point group). The model in-
cludes certain strain interactions that have not been dis-
cussed by Pikus and Bir in their treatment of zinc-blende
crystals. ' We include in the model strain interactions
coming from the orbital part of the Hamiltonian, as well

as the largest portion of the strain interactions from the
spin-orbit part of the Hamiltonian. The lack of inversion
symmetry in zinc-blende crystals leads to certain mixing
effects that are absent in the diamond structure.

When the conduction band is included together with
the valence bands, there emerge two extra deformation-
potential constants, a' and b', in addition to the
deformation-potential constants a, b, and d of Pikus-
Bir.' The deformation-potential constant a' is the usual
one that couples the conduction band to hydrostatic de-
formations. The lack of inversion symmetry in zinc
blende gives rise to b', which induces a mixing of conduc-
tion and valence bands in the presence of shear deforma-
tions and results in a coupling of the conduction band to
shear strains. Large shear strains are expected to exist in
strained-layer heterostructures grown along the (111)
crystal axis. Experiments on such structures may be
fruitful in determining values for this deformation-
potential constant. The strain interactions also induce
mixing between conduction and valence bands through
matrix elements that are linear in strain and in wave vec-
tor k.

Our approach closely follows the works of Kane and
Pikus and Bir.' We use the transformation originally
introduced by Pikus and Bir to obtain the strain interac-
tion terms, but we treat these terms using Lowdin pertur-
bation theory, as was done by Kane in the absence of
strain. This approach allows us to clearly see the origins
of the strain couplings and the approximations made in
their treatment using perturbation theory.

In order to clearly show all the approximations made
in the eight-band model, we give a detailed derivation of
the model in Sec. II. In Sec. III, we take a limiting case
of the eight-band model to recover the four-band Lut-
tinger model with strain interaction.

11 992 1990 The American Physical Society



EIGHT-BAND k-p MODEL OF STRAINED ZINC-BLENDE CRYSTALS 11 993

II. DERIVATION OF THE EIGHT-BAND MODEL
WITH STRAIN

and

H=H +H„+H„. +H, , +H,'

2

Ho= + Vo(x),
2mp

g2Q2
Hi, =

2mp

(2a)

(2b)

Hq. = kp,
m 0

(2c)

(VVO)Xp cr,
4m pc

(2d)

(VVO) Xk cr,
4m pc

(2e)

for the periodic Bloch spinor, u„'z'(x). The potential
Vo(x) is the self-consistent periodic potential of the un-
strained crystal, mp is the bare electron mass, and
o =(o„,or, o, ) are the Pauli spin matrices

0 1 0 1 010' ~ i 0 ' 0 —1

The superscript on u„'„'(x) is used to denote Bloch spi-
nors in the unstrained crystal. Standard notation is used
for the other quantities.

When the crystal is strained it has a new crystalline po-
tential which can be denoted by V(x;™e),such that
V(x;e)~ Vo(x) when e~0, where e is the strain dyadic
with components e; . Under an arbitrary strain the
periodicity of the crystal is destroyed and Bloch's
theorem is invalid. However, for the case of a strain that
is uniform in space, the potential V(x, e) has a new
periodicity, ' with lattice constants c&, c2, and c3, along
the new axes, a &, a2, and a 3. Under this strain a point
initially at g x;a; moves to a new position,

g x;a,' = g x,.'a;, where the new (generally nonorthonor-
mal) basis vectors a '„a z, and a 3, are related to the origi-
nal basis vectors by

a,'= g (5,J+e,~)a
J

(4)

The lattice constants with and without strain are related
by

c, = 1+ ge," co .
J

The band structure in the presence of strain (for any k in
the Brillouin zone) can be found by solving Eq. (1) with

In the absence of strain, a zinc-blende crystal will have
a lattice constant cp along the edges of the unit cell,
defined by the orthonormal vectors at, a2, and a3. The
band structure can be found by solving the k-p equation

Hu„'z'(x}=E„' '(k)u„'z'(x),

where

fi
Di, = — k e.p

m 0
(9b)

D, , = g e,"[V'V; (x}]Xpo
4m pc

—[V Vo(x) e]X p o

—VVO(x)X(e p) cr (9c)

D,', = ge, [VV;,(x)]Xk.o.
4m pc

—[V Vo(x) e] X k o (9d)

The eigenvalue problem in Eq. (8) now contains the po-
tential Vo(x ), which has the periodicity of the unstrained
crystal. In what follows we restrict ourselves to values of
k near the I point. We use the basis spinors at k=o
from the unstrained crystal, U„(x') [given in Eq. (A2) of
Appendix A], as basis spinors for doing a Lowdin pertur-
bation expansion in the deformed coordinate system x'.
States U„within the eight-dimensional manifold are taken
to be in class A, while all other states are taken to be in

V(x;e) in place of Vo(x). However, the eigenspinors for
this problem have a different spatial periodicity than the
basis spinors in the unstrained crystal. Consequently, ex-
panding the potential V(x;e) in powers of e,. and per-
forming a direct perturbation expansion using the origi-
nal unstrained crystal basis spinors is a poor approach.
Instead we use the method of Pikus and Bir' by which
we can restore the unstrained crystal periodicity to the ei-
genvalue problem. With V(x;e) in place of Vo(x), we
transform Eq. (1), to a deformed coordinate system, x',
using the transformation

x;= g (5;, +e;, )x,
' . (6)

J
We can then perform a perturbation expansion in the de-
formed coordinates and transform back to the original
coordinates.

For small strains the potential of the deformed crystal,
V(x;e), can be expanded to first order in the strain as

V(x;e)= Vo(x')+ g V, (x')e,, (7)
JJ

where V,"(x')=[BV(x'+e x';e)/Be; ], o. The eigenval-
JJ

ue problem in the deformed coordinate system, correct to
linear terms in the strain, can be written as

(H'+D)u„z( x)=E„(k)u„z(x'), (&)

where u„z(x')=u„z(x), and u„z(x) is the solution to Eq.
(1) with V(x, e) in place of Vo(x). The operator H' is the
same as H, given by Eq. (2), but x and p are replaced by
x' and p'. The terms linear in strain,

D =Dp+Dg. p
+D p +D,', (9)

are functions of the operators x' and p' in the deformed
coordinate system and are given by (with x' and p' re-
placed by x and p)

p,.p + V~J(x) e,j,1
(9a)

mp
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class B. Second-order perturbation theory leads to the
nonlinear eigenvalue problem

(U „E—5 „)C„=O,
n=1

where U „=&u IH(k)+D(k, e)lv„& is the renormalized
interaction matrix among the class-A states, given to
linear order in the strain by

(10)

~ H'
&v IH(k)+D(k, e)lv„&=H'„+ g +D „

a

H'+ „+D
E —Ea a

(11)
where the matrix elements H'„=&u IH'Iv„&,
E.=&v. lH'lv. &, and H'. =&u IH'Iu. &, etc. In Eqs.
(10) and (11) the labels m and n refer to matrix elements
among the class-A basis states. The sums in (11)are only
over states in class B, labeled by a. The operators H(k)

I

and D(k, e) defined by Eq. (11) act only within the class-
A states. The renormalized interaction matrix U „ takes
into account the effect of states in class B on the states in
class A. The first two terms in (11), given by matrix ele-
ments of H(k), describe the band structure in the absence
of strain and lead to the Kane eight-band model, plus
several other terms. The effects of strain are described by
the operator D (k, e). In what follows we neglect the last
term in Eq. (11},which renormalizes the matrix elements
of U „by strain interactions that couple class-A and -B
states.

Within the class-A states in Eq. (11), we make a uni-
tary transformation to basis states u, (see Appendix A),

u, = QR,„u„, (12)

which form a basis for the irreducible representations of
the Td double group. In this new basis, the strain-
independent Kane piece of the interaction operator can
be written as

&u, lH(k)li, &= y (Z'), ZJ„&v IHv+H„+H„.ulv„&+ y "' "' "
+&u, lH, .+H,'. Ii, &,

&u IH&.ulv & &u, lHi, .ulu, &

m, n a a

(13}

where we have included the small interaction H,', . This
interaction results in small linear k matrix elements that
mix the conduction band (I'6) with both the light- and
heavy-hole bands (I s) and also with the spin-orbit split-
off bands (I'7). The operators Ho and Hz are diagonal in
the basis U„and hence do not contribute in the second or-
der of perturbation, where only off-diagonal elements
enter. In addition, two cross terms in the second order of
perturbation, the first coming from the products of ma-
trix elements of Hz. with (H, , +H,', ), and the second
coming from products of matrix elements of
(H, , +H,', ) with itself, have been dropped. The first
cross term leads to (small) linear and quadratic k terms.
The linear k terms have been shown to be negligibly
small. The quadratic k terms, coming from products of
matrix elements of H&.&

with H,', , are even smaller be-
cause H,', is a much weaker interaction than H. .. due
to the smallness of irik as compared with matrix elements

I

I

of p. The second cross term, containing products of ma-
trix elements of H, , with itself, H, , with H,', , and
H,', with itself, leads to small k-independent, linear, and
quadratic k terms, respectively. All the above-mentioned
terms arise from matrix elements that couple class- A and
-B states, leading to corrections that are expected to be
small for eigenvalues well within the class-A energy
range. Following Kane we neglect these terms.

The operator Ho in Eq. (13) is diagonal in the basis v„,
with eigenvalues E, and E„' for the conduction- and
valence-band states, respectively. The operators in the
large parentheses in Eq. (13) are spin-independent, and
consequently, the matrix within the large parentheses can
be written as block diagonal,

0 H;„,
where H;„, is Kane's 4X4 interaction matrix given by

S

E + A'k'+A'k'/2m Bk k, +iPpk Bk k, +iPpk Bk,k +iPpk,

Bky kz iPp k&

Bk„k,—iPpk

E„'+M(k +k, )

rk 2+g2k 2/2m

N'k„k„

N'k„k

E„'+M(k„+k, )

+L'k +A k /2m

N'k„k,

N'k, k,
(14)

Bk k —iPpk, N'k k, N'k k, E„'+M(k„+k )

+L'k +A k /2mp
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Equation (14) is obtained by noting that all momentum
matrix elements between the I

&
single group states van-

ish due to time reversal symmetry. ' The Kane parame-
ters A ', 8, Po, M, N', and L' in (14) are taken to be con-
stants by approximating the exact eigenvalue, E in Eq.
(13), by conduction- and valence-band energies, E, and

E,'. This approximation has the e8'ect of linearizing the
eigenvalue problem in Eq. (10). These constants can be
determined experimentally or they can be calculated from
their definitions given in Appendix B. The parameter Pp
mixes the conduction- and valence-band states away from

l

k=0. The parameter B is the inversion symmetry pa-
rameter. When 8 =0, the matrix in (14) corresponds to
the diamond structure.

The spin-orbit interaction H, , transforms as I, and is
diagonal in the double group basis class-A states u, tak-
ing the values 0, 6/3, and —25/3, for the I 6, I 8, and I 7
irreducible representations, respectively, where 4 is
defined in Appendix B. In the new basis u, the interac-
tion matrix in (13), (u; ~H(k) ~u ), u)ithout the k-
dependent spin-orbit matrix ( u, ~ H,', ~ u, ), is given by
the following:

r6
Q 1/2

18"—3/2
rs"1/2

rs
Q 3/2 Q 1/2

T+V
A

~2( W —U)

—v 3(T+ V)

T4+ V4

v 2(W —U)

0
—v 3(T + V*)

—S*

—v'3(T —V) v 2( W —U)

T —V

W —U

—v 2{T—V)

(
3 )1/2S
2

—v'zz

v 2(T*+V )

W'+ U

—v'zg

1 S

—v 3(T*—V )

v 2(W —U)

W —U

v 2{T+V)

VQ

—v Z(T* —V')

W+U

(
3 )1/2S

—v'zg (
3 )1/2s
2

(
3 )1/2S4
2

(15)

g =E + g'+ (k2+k~+k2)
2P72 p

U = —Pokz,
1

3

V = —P()(k„i' ),—1

6

W =i —Bk„k1

3

T = Bk,(k„+ik ),1

6

$2
P = E„+—,

' y, —( k„+k +k, ),'mo

(16)

The constants y„yz, and y& are the modified Luttinger
parameters and are given in terms of the Kane parame-
ters [see Eq. (Bl) in Appendix B]:

mp
y = —— (L'+2M) 1, —

PPl p
yq= —— (L' —M),

1 mp
y = ——

The modified Luttinger parameters are related to the
parameters used by Luttinger, y &, y2, and y&, by

g =
—,
'
y2 (k„+k 2k, ), —

Alp

R = —
y2 (k„k) 2i—yak„k—

2 Alp

Ep
y1

1 E
y2 y2 2 3E +Q

(18)

S =&3y~ k, (k„ik~), —
mo 2 3E+6

and

Z =F., —b, ——,'y, (k„+k +k, ),
Plo where

E =E,—E„, (18a)

E =E'+—.v v 3
(16a)

and E~, a parameter that controls mixing of the valence
and conduction bands, is related to Pp by
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2mp
EI.= Pp . (19)

In Eq. (16) the constant A
' results from the interaction of

the I 6 conduction band with class-B states [see Eq. (Bl)].
The matrix elements of the k-dependent spin-orbit in-

teraction in Eq. (13) are given by

(u, /H,'. /u, )=

I 6 F8 I
0 M) M2

M', 0 0

M,' 0 0

(20)

where the 2X4 matrix M& and the 2X2 matrix M2 are
given by

Is
Q

Is
Q &/2

Is
~ 3/2

Co —(k„+ik )

2 2k V3(k„+ik» )

—v 3(k„ik—}

0 k, iky—
,

(21)

M2=2Cp

k, —ik

I7
Q &/2

k +ik

k,

(22}

where
(u, ~D(k, e)~u, &= g (R );R,„(v IDo+Dq. ~lv, &

~I'o
Cp= — s xv'34 '' Bx

(23)
m, n =1

+ & u;~D, , +D,', Iuj &, (24)

To obtain Eqs. (20)—(23) we have made use of the fact
that the matrix element (x~(8Vo/Bx) ~z ) =0. In the ab-
sence of strain, the total interaction matrix in Eq. (13),
( u; ~H (k)

~ ul ), is given by the sum of the matrices in Eqs.
(15) and (20). The constants A', B, Po, y„y2, y3, Co, to-
gether with the band gap Eg and spin-orbit splitting 6
determine the band structure in the absence of strain.

The elements of the strain-dependent interaction
operator D (k, e) in the basis u can be written as

where interactions which couple class-A and -8 states in
the second order of perturbation theory have been
dropped. In the basis U„, the operator Dp+DI, . is spin
independent and consequently can be written as a block-
diagonal matrix,

D 0
0 D

where the 4 X 4 matrix D is given by

a'(e„„+e~~+e )

b 'e, +iPo g e„k.
J

b' e„,+iPo g e k,
J

b'e„+iPo g e,jkj
J

le „+m (e„„+e ) net

ne„, ne, le +m(e„„+e~ )

X z
b' e, —iPo g e„kj b' e„, iPo g e kj b—'e„—iPo g e,~kj

J J J

le„„+m (e +e„) ne„,

(25)

a'= &slD„ Is &,

b'= ( 2lsDIz&,

1=(xiD„„ix&,

m =&y(D,„(y &,

n =2&xlD., lz),

(26)

and where D is the x,y component of the operator D;.,
defined by writing Do in Eq. (9a) as

(27)

To obtain (25) we have used the fact that Do is a real
Hermitian operator and that the basis functions s, x, y,
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and z can be chosen to be real because of time reversal
symmetry. The lower-right 3 X 3 block of the matrix in
(25), containing the real constants I, m, and n, is identical
to the matrix of Pikus and Bir, which describes the orbit-
al valence-band strain interaction in the diamond struc-
ture. ' The strain interaction operator D&. , in the first-
order perturbation, leads to the matrix elements in Eq.
(25) that are linear in k. These terms occur because
strain reduces the crystal symmetry, leading to additional
conduction-band —valence-band mixing through the
momentum matrix element, Pp, between the conduction
and valence bands.

These terms couple the conduction and valence bands
when shear is present, as well as when uniaxial deforma-

I

tions are present along any of the crystal axis. The first

row and column in (25) contain the deformation-potential
constants a' and b', which describe the conduction-band
strain interaction. The constant a' describes the coupling
to hydrostatic deformations and the constant b' describes
the coupling to shear deformations. In the case of the di-
amond structure where the I -point conduction-band
states transform as I & and the valence-band states trans-
form as I 5 of the OI, group, ' the shear deformation-
potential constant b' is zero because of inversion symme-
try.

In the eight-dimensional spinor basis u, the orbital
part of the strain interaction matrix in Eq. (24),
( u ~Dp+Dg.

& ~ uj ) is given by

r6
Q 1/2

rs
Q

ls
Q

rs
Q 1/2

rs
Q 3/2

a'e

~3{t +v )

v 2(w +u)

W +Q

+2(t —u)

a'e

v 2(w +u)

~3{t—v)

+U

—"1/2(t + v )

v 2(w+u)

(
3 )1/2
2

—&Zq

0
—'{/3(t *—v )

1

V'2

—+3(t +v)

1

V'2

~sr

&2(u +u)
t+v

—p+q

&Zq

( —)' s
2

W+Q
—+2(t + u)

(
3 )1/2$

1

V'2

~Zq

—ae

"{/2(t*—v )

W Q

—&2q

1

V'2

&Zr'

(
3 )1/2
2

—ae

(28)

where

tv =i b' e„„, p =a (e„„+e„+e„),1

3

t = —b'(e„, +ie, ), q =b[e„——,'(e„„+e~~)],1

6

u = Pp g e, k. , r = b(e„„—e ) ide„—(29)

I

the spin-orbit interaction, are small. Since typical values
of interest for )rt~k~ are 2 orders of magnitude smaller
than the momentum matrix elements, we expect that the
matrix elements of D,', are 2 orders of magnitude smal1-

er than the elements of D, , Consequently we neglect
the matrix (u, )D,', ~u, ) in Eq. (24). The operator D, ,
can be written as

(31}

v = —Pp g(e„. ie )k,—s = —d(e„, ie, ), —= 1
p xj H J& xs Jlz

e =e«+e»+e« .

The deformation-potential constants a, b, d, a', and b'

contained in (28} couple the energy bands to the strain.
The constants a' and b' are defined by the matrix ele-

ments given in Eq. (26). The Pikus-Bir deformation-
potential constants a, b, and d are related to the matrix
elements I, m, and n in Eq. (26) by

a =—'(I +2m),
b =

—,'(I —m), (30)

d= —n .
1

3
These constants can be calculated from their definitions
or they can be determined from experiments. The linear
k terms, u and v, in Eq. (28) come from the interaction

D), , see Eq. (24).
The strain interactions D, , and D,', , coming from

( u, iD,".' +D,".' iu, &
=

r, r, r7
0 0 0
0 Ni Nq

0 N~ N3

(32)

where the 4X4 matrix N&, the 4X2 matrix N&, and the
2 X 2 matrix N3 are given by

where the three terms in (31) are defined in the order
given in Eq. (9c). The operator D,',' is Hermitian, while
each of the operators D,",' and D,',' are separately not
Hermitian, however the sum D,",' +D,',' is a Hermitian
operator. Rough estimates of the matrix elements among
class-A states lead to the conclusion that D,",' and D,','

are of the same order of magnitude, but that D,',' is 4 or-
ders of magnitude smaller. Consequently, we will

neglect the interaction D,','. The matrix elements of
D,",' +D', ,' are given by [with basis functions arranged
in the same order as in Eqs. (15) and (28)]
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N =—
1

2
(e„,—ie, )

M3

. 2
Xg

2—(e„,+ie» )
3

. 2
l ~ ex'

3

~ 2
X)I

2
(e„, ie—» )v'3

. 2
XP

(e„,+ie»)2

3

(33)

—(e„,—ie, )

—(e„,+ie»)1

3

(3e —e}
1

3 2

1 (e„„—e~~+i 2&2e„~ )XX

N =—
2 3

(3e —e}1

3 2

1
(e„, ie,—)

V3
1 (e„„—e —i 2&2e„~ )

&6

—(e„,+ie, )

(34)

—2e
N =—

3 3 0 2e
(35)

A

u„„(x)= g BJ"'(k,e)u, (x ex), —
j=1

(36)

where n = 1, . . . , 8 labels the energy bands and B~"'(k,e)
is the jth component of the nth eigenvector of

We therefore find that in first order of perturbation
theory the spin-orbit interactions D,",' and D,',' lead to
matrix elements which couple the valence bands to both
uniaxial and shear strains, through the spin-orbit split-
ting parameter b. Also, these interactions mix the light-
and heavy-hole bands with the spin-orbit split-off bands
by the matrix N2. However, these interactions have no
effect on the conduction bands because they do not cou-
ple them to the valence bands.

The strain interaction matrix in Eq. (24),
( ~uD(k, e)~ )u, is then approximately given by the sum
of the matrices in Eqs. (28) and (32).

Due to time reversal symmetry the eigenvalues of U „
satisfy E„(k)=E„(—k). However, because of a lack of
inversion symmetry the eigenvalues are not in general
doubly degenerate (except along high-symmetry direc-
tions).

Transforming from the deformed coordinate system
back to the original coordinate system, the Bloch func-
tions of the deformed crystal are given by [see Eq. (8)]

8 =0, and taking the band gap, Eg —=E,—E„, and the
spin-orbit splitting, 6, to be arbitrarily large. The central
4 X4 block of U,, in Eq. (38}decouples and we must diag-
onalize the Luttinger (1 s) piece of the interaction matrix,

HLutt 0 strain-orb+ Hstrain-s. o.

where

(39)

P —Q S'
S P+Q

P+Q —S"
—S P —

Q

(40)

Hstrain-orb

p —
q s' —r 0

s p+q 0 —r
—r' 0 p+q —s'

0 —r* —s p —
q

(41)

and H„„;„,, =N„where N, is given in Eq. (33). The
parameters p, q, r, and s that enter into Eq. (41) are
defined in Eq. (29). However, the parameters P, Q, R,
and S in Eq. (40) are not the same as those given in Eq.
(16). The parameters P, Q, R, and S that enter in Eq. (40)
are defined by

A

g (U;, E5;, )B,=O, —
n=1

where

U,, =(u, ~H(k)+D(k, e)lu, ) .

III. THK LUTTINGKR MODEL WITH STRAIN

(37)

(38}

P= —'y (k +k +k )

Q = —
—,'y2 (2k, —k„ky), —

m0

R [y2(k ky) 2iy3k k ]2 m0

(42)

The Luttinger four-band model is found from the
eight-band model by taking the asymmetry parameter

S =/3y~ k,(k„i'}, —
m0
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where we have set the energy of the edge of the valence
band, E„ to zero. These parameters contain the Lut-
tinger parameters, y, , y2, y3, and not the modified Lut-
tinger parameters, y„y2, y3, see Eq. (18).

IV. CONCLUSION

We have used Lowdin perturbation theory to calculate
the interaction matrices for an eight-band k p model of
strained zinc-blende crystals. Our main results are given
by Eqs. (28}and (32) which describe the strain-dependent
coupling between the conduction and valence bands. The
strain-dependent band structure near the I point can be
calculated by diagonalizing the sum of the matrices in
Eqs. (15), (20), (28), and (32). By including the conduc-
tion band on an equal footing with the valence bands we
have found that in zinc-blende crystals two deformation-
potentia1 constants, a' and b', describe the coupling of
the conduction band to strain. The constant a' is the
coupling to hydrostatic deformations while the constant
b' results from the lack of inversion symmetry in zinc
blende and couples the conduction band to shear defor-
mations. Large shear deformations are expected to exist
in (111} growth-axis heterostructures. Additionally,
strain breaks the crystal symmetry which leads to addi-
tional mixing of the conduction and valence bands by
terms that are linear in strain, in wave vector, and in the
momentum matrix elements between conduction and
valence bands [see the terms u and U in Eqs. (28) and
(29)]. The interaction matrices derived above can be used
within an effective-mass picture to study strained-layer
heterostructures. This work is currently in progress.
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APPENDIX A: BASIS FUNCTIONS

U~= lx &mt, U6= lx &gg,

U3=ly&y&, U7=ly&x~,

U ~z )gt, U —~z )gt

(A2)

will form the Lowdin class-A states. All other states of
the form ~nl j)y& and ~nI'j)gt, which are not included
in Eq. (A2), are class-8 states. Using the Clebsch-Gordan
coupling coeScients, we make a unitary transformation
within the class-A states to basis functions for the I 6 I 7,
and I 8 irreducible representations of the Td double
group:

r,—1/2

u —3/2 —' ( Ix & +i ly & )gt +i & ,
' Iz &y—t

6

18 —(lx)+ily &)yt,
2

Isu„', = -(I &xily&)yt,
2

(A3)

u„', = (~x &
—

i~y &)y, +i+,'~z &yg,
6

I7 l
u '&/2= —(~x & i~y &)y—t+ —~z &y~,

3 3
—i l

u, /z
= —(Ix &+ily &)yt —Iz &g& .

3 3

The states in (A3) satisfy the convention that under the
time reversal operator

which form a basis for I 6. We form a basis for the dou-
blegroup from the products ~nI j)y& and ~nI j)y&. The
states

U, =Is&yt, U, =ls4g,

We build up a basis from purely spatial eigenfunctions
u„(x):—(x~nl j), that satisfy

0 —1
T

1 0 E (A4)

Hou„j(x) =E„ru„j(x),
where Ho is given by Eq. (2a) in the text. The label I
specifies the irreducible representation of the Td single
group, j labels the row to which the function belongs, and
n specifies the band. Because of time reversal symmetry
we are allowed to take these functions to be real ' ' and
we make use of this simplification. From the single group
states

~
n I j ), we take for the conduction band the s-like

spatial function, ~s ), as a basis for the identity represen-
tation I &, and for the valence band we take the p-like
functions ~x ), ~y ), and ~z ) as a basis for the irreducible
representation I ~. These states have the eigenenergies E,
and E,' for the conduction and valence bands, respective-
ly. In order to include electron spin we introduce the two
eigenspinors of the operator o.„

1
and g~ =

where K is complex conjugation, they transform as
Tu, =( —1)» 'u;, where q is the maximum value of i
for the irreducible representation I . In the text the spi-
nors in Eqs. (A2) and (A3) are denoted by U„and uj, re-
spectively, where the indices n, j = 1,2, . . . , 8, are used to
label these spinors in the sequence given in Eqs. (A2) and
(A3).

By construction, the spin-orbit interaction H, , is di-
agonal in the class-A states in Eq. (A3). However, H, ,
has nonzero matrix elements between the class- A and -B
states. One can choose a diff'erent basis (also labeled by
the I 6, I 8, and I 7 irreducible representations of the Td
double group) in which Ho+H, , is diagonal. In this
basis, the class-A states are mixtures of states given in
Eq. (A3) and higher-lying states. A convenient aspect of
this basis is that all the (strain-independent) linear k
terms (some of which were discussed by Kane ), occur in
the first order of perturbation theory from matrix ele-
ments of k.p and H,', . However, in this basis matrix
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elements of the momentum operator among the valence-
band states are no longer zero.

APPENDIX B: DEFINITIONS
OF THE CONSTANTS

2 mp
y, = —— (L +2M) —1,

3 $2

mp
y = —— (L —M), (B2)

/ & sfp„f n r sj' & f
'

&s~P„~n rsj & & n rsI'~P„~z &

mo~ „. (E,+E„)I2 E„r—

g2A'=
2

mp

The Kane parameters that enter into Eq. (16) are
defined by

L =F+26,
N =F—6+Hj —H~,

(B3)

~ mp
y3= ——

fi

The Dresselhaus parameters L, N, and F are related to
the Kane parameters by

I=H)+H~,
L'=F'+2G,
N'=F' —6 +Hi —Hz,

where

F=F'+
E,' —E,

Po = i —
& s~p„~x &,

mp

3 4m 2~2
i — &x~(VVo Xp) (z &,

p
p y

l&xfp„lnr3j& I'

E„—E„~

I &xlp„lnr, j & I'

E —E ~

)&xfp„fnrg &)'

1&xlp„lnr~ & I'

6
22mp

F'=
2

mp

$2
Hi=

2mp

g2
H~=

2m p nj

(Bl)

The sums in Eq. (Bl) are over all single group states,
~n l j &, of the specified irreducible representation, exclud-
ing the states in the four-dimensional manifold, ~s &, ~x &,

~y &, and ~z &.

The parameters that enter into the Luttinger model,

y, , yz, and y3, are related to the Dresselhaus parame-
ters L, M, and N, by

APPENDIX C: NOTATIONS FOR Tg
DOUBLE-GROUP IRREDUCIBLE

REPRESENTATIONS
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Dresselhaus '

Bir and PikusParmenter KDWS (Ref. 12)

I q

Iiz

Iz5

I ~

I3
I 4

r,

I i

I ~

I3
I'5
I"4

r6
I7
I8

I6
I7
I8

The Dresselhaus parameters di8'er from the related Kane
parameters L', N', and F' because Dresselhaus chose the
three states labeled by x, y, and z as a basis for his mani-
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