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With use of the first-principles, density-functional, full-potential, linear muffin-tin orbital (LMTO)
method for helical polymers, calculations on carbon chains have been carried through. The results
are used in providing parameters for model Hamiltonians related to the well-known Su-Schrieffer-

Heeger model for sp -bonded conjugated polymers. However, the lattice part (H ) is found to con-
tain strong anharmonic contributions. Using the models solitons, polarons, and "twistons" are ex-
amined. Due to the anharmonicity, polaronic states are energetically favored compared with soli-

tonic states. Moreover, a rich variety of (meta)stable polarons is found. It is argued that the ground
state of the charged system is a polaron lattice. Finally, twistons are found to be unstable when in-

terchain couplings are neglected.

I. INTRODUCTION

Since it was discovered' that upon doping trans-
polyacetylene increases its conductivity by very many or-
ders of magnitude, efforts for an understanding of this
phenomenon and the search for other conjugated poly-
mers with similar properties have increased enormously
(see, e.g., Refs. 2 —4). Almost all the polymers that in this
context have been considered contain a (almost) planar
carbon backbone. The bonds between neighboring car-
bon atoms are formed by o. orbitals constructed from sp
hybrids and by m orbitals from p orbitals perpendicular to
the plane of the carbon nuclei. For most of these systems
the ground state has alternating single and double
carbon-carbon bonds. The two structures with different
patterns of alternating bond orders have comparable total
energy, and for certain conjugated polymers with high
symmetry they become degenerate. The doping-induced
conducting properties of these polymers are often as-
cribed solitons which are domain walls separating parts
of the polymer chain with different bond order patterns
or polarons which separate similar bond order patterns
(see, e.g., Refs. 2 —7).

The starting point of many theoretical examinations of
both the ground state and the low-energy excited states is
the Su-Schrieffer-Heeger (SSH) model Hamiltonian. ' In
the static version of this model (i.e., neglecting kinetic-
energy terms of the nuclei) it is assumed that the total en-

ergy can be written as a tight-binding part of the carbon
~ electrons plus a remaining repulsive term. The latter is
to lowest order in the carbon-carbon interatomic dis-
tances written as a sum of harmonic terms, and an
electron-phonon coupling is included in the tight-binding

part by making the hopping integrals depend on the bond
lengths. The model —developed for trans-polyacetylene
but often applied also on other conjugated polymers—
includes only the carbon tr electrons explicitly and as-
sumes all other occupied electronic levels to have such
low energies that the effects of those can be incorporated
in the harmonic terms. The positions of the carbon
atoms are described by the parameters Iu„I. u„ is the
position of the nth carbon atom on an axis perpendicular
to the bisector of the carbon bond angle for this atom rel-
ative to its position in the perfect undimerized polymer.
For the perfect dimerized polymer, u„=(—I ) uo and the
ground state is found for a certain value of uo =—u ~0~%0.

The simplest conjugated polymer one can think of is a
linear carbon chain. The existence of such chains has
been reported both by Kasatochkin et al. ' and by Akagi
et al." although it has been argued' that because of its
much smaller valence-band width compared with that of
two- and three-dimensional carbon (graphite and dia-
mond, respectively) one should expect it to be only meta-
stable. This compound has the advantage that it can be
considered a simple and highly symmetric prototype of
conjugated polymers and it has therefore been the subject
of some recent attention. " ' Moreover, Akagi et al."
have reported a doping-induced enhancement of the elec-
trical conductivity of 7 orders of magnitude similar to
that reported for other conjugated polymers.

In contrast to most other conjugated polymers, the un-
dirnerized chain consists of carbon-carbon double bonds
whereas the dimerized chain has alternating single and
triple bonds. Due to the full rotational symmetry of the
chains, the effective internal ~ electron degeneracy is 4
not 2 as for most other conjugated polymers, when in-
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eluding spin degeneracy. Hence, a remarkably rich
variety of nonlinear excited states including solitons, po-
larons, polarexcitons, and breathers has been predicted
by Rice et al. ' However, all quantities were examined
using the simplest SSH model and because of the lack of
proper parameter values those of trans-polyacetylene
were used. It is therefore one purpose of the present pa-
per to consider explicitly the carbon chains. From self-
consistent first-principles calculations on the ground state
of a number of geometries we will derive parameters for a
model Hamiltonian and afterwards apply the model
Hamiltonian to examine some symmetry-breaking soli-
tonic and polaronic distortions.

The existence of so-called "twistons" in sp -bonded
conjugated polymers has recently been proposed. ' A
twiston is a distortion for which a smaller part of the po-
lymer backbone is lifted out of the common plane, and it
can thus qualitatively be considered a distortion where
the two dimensionality of the nuclear backbone locally
has been changed into true three dimensionality. Due to
the one dimensionality of the carbon chains the
equivalent "twistonic" excitations would lead to a local
two-dimensionality of the backbone. Here, more types of
geometries can be proposed of which the two simplest
ones are one with a local zigzag arrangement and one
with a local bent arrangement (for more precise
definitions, see later). These excitations will split the dou-

bly degenerate m states into singly degenerate o and m

states. It is interesting to notice that when keeping all
bond lengths constant the energies of these excitations
are expected to be small, since they will mainly be deter-
mined from small variations in the nearest-neighbor and
next-nearest-neighbor interactions. Although the stabili-

ty of twistons is assumed caused by interchain cou-
plings, ' we will here analyze a twistonic defect in a sin-

gle, isolated carbon chain, believing that vrithout under-
standing this it is not possible to understand the twistonic
defects in a multichain environment. From first-
principles calculations on zigzag carbon chains we will

therefore derive a model Hamiltonian, which we will use
in examining the twistons.

The paper is organized as follows. In Sec. II we give a
brief account of the first-principles method for calculat-
ing the electronic ground state of a single polymer. For a
more detailed description the reader is referred to Refs.
19 and 20. Section III contains the results of the first-
principles calculations, and in Sec. IV we examine the
solitonic, polaronic, and twistonic defects. We conclude
in Sec. V.

II. THE FIRST-PRINCIPLES METHOD

The first-principles method has been described in detail
elsewhere, ' ' but we will give here a brief introduction.

Within the Hohenberg-Kohn density-functional for-
malism ' the problem of calculating the electronic
ground state of a given system with fixed nuclear posi-
tions is reduced to that of solving the single-particle
Kohn-Sham equations (in Rydberg atomic units),

[—V +V(r)]P, (r)=s, g, (r) .

V(r) is the sum of the Coulombic potential of the nuclei,

V~(r), that of the electronic density, V, (r), and the
remaining so-called exchange-correlation potential

V„,(r). The latter we approximate using the local ap-
proximation of von Barth and Hedin. Then, V, (r) and

V„,(r) are both simple functionals of the electron density

(2)

where the summation runs over all occupied orbitals.
Accordingly, Eqs. (l) and (2} are to be solved self-
consistently.

The single-particle eigenfunctions P, (r) are expanded
in linear muffin-tin orbitals (LMTO's) which are defined
as follows. Inside nonoverlapping (muffin-tin) spheres
centered on the nuclei, Eq. (l) with V(r) replaced by its
spherically symmetric component can be solved numeri-
cally for a reasonable choice of e, (i.e., in the middle of
the region for which that particular function is of impor-
tance). The resulting functions are matched smoothly to
spherical Hankel functions, hl"'(ar)I'I (r), a. (0. A
function centered on one site is inside any other sphere
augmented continuously and diff'erentiably with the nu-
merical functions of that sphere. The basis functions are
accordingly eigenfunctions to a muflin-tin potential, but
it should be stressed that everywhere else the full poten-
tial is considered. We use two subsets of basis functions,
each defined by one common x for all atoms and (l, m }'s.
The ~'s and the sphere radii are kept constant throughout
all sets of calculations.

In the present work we have applied the method on a
single, isolated, linear or zigzag, periodic, infinite carbon
chain with two atoms per unit cell. The radii of the
muffin-tin spheres were set to 1.1 a.u. and the two values
of the decay constants, ~, to 0.7i and 1.5i, respectively. s,
p, and d functions were included in the basis set but be-
cause of almost linear dependences of the basis functions
the set had to be contracted, and the size was then re-
duced from 36 to 32 functions per unit cell. The continu-
ous k variable was replaced by nk equidistant points in
the interval [O, rr/D], D being the length of the unit cell.
0 as well as m/D were included in the k set. Except
where otherwise mentioned, we used nk =6.

The method has earlier been applied successfully on
other systems including linear carbon chains' and the
most well-known conjugated polymer, polyace-
tylene. The purpose of the earlier paper on linear
carbon chains was to demonstrate the feasibility of the
first-principles method for helical polymers. According-
ly, the examined geometries in that work were character-
ized by large variations in the bond lengths, and from a
fairly crude mesh estimates of the optimum values of the
bond lengths for both the undimerized and the dimerized
isomers were obtained. In the present paper we will ex-
amine the dimerization in detail. Thus, we do not at-
tempt to optimize any bond length but will consider some
paths in the two-dimensional configuration space in detail
for the linear chains. It should, however, be pointed out
that compared with the previous report' the quality of
the calculations was improved (i.e., the numbers of neigh-
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bors and of basis functions were increased).
In order to obtain parameters for the model Harniltoni-

an for the twistons we have also considered zigzag
geometries where the bond angles deviated from 180'
keeping the bond lengths fixed.

We would like to point out that although there is no
formal correspondence between the single-particle ener-
gies c,; calculated within the density-functional formalism
and the electronic excitations energies, experience has
shown that it is a good approximation to neglect this for-
mal inconsistency, and this will accordingly be done here.

III. THE FIRST-PRINCIPLES RESULTS

A. Linear chains

%e performed three sets of first-principles calculations
for linear carbon chains. In the first set the unit-length
was kept fixed at D =5.06 a.u. , which is the average be-
tween the earlier reported' optimized values for undi-
merized and dimerized carbon chains. By varying the di-
merization (i.e., the difference of the lengths of the two
nearest-neighbor bonds b,d =d+, —d, ) we found [cf.
Fig. 1 (a)] the lowest total energy for b,d =0.34 a.u. , cor-
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FIG.1. The relative total energy E„„the m electron energy E„,defined as the integral over the Brillouin zone of the m. electron
single-particle valence energies, and the difFerence E =E, ,

—E . The energies are shown in eV per C2 unit for the linear chain for
various paths in the two-dimensional configuration space defined by the two bond lengths d

&
and d+, . In (a) and (b),

d+ g
+d g

=5.06 a.u. , in (c) we have d
&

—d+ &
=0.34 a.u. , whereas in (d) d+ l +d, =5.22 a.u. (a), (c), and (d) have been obtained us-

ing six k points in half part of the Brillouin zone, whereas (b} shows estimated curves in the limit of an infinite number of k points.
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responding to bond lengths d+, =2.70 a.u. and
d, =2.36 a.u. In the second set we kept this value of
the bond-length difference bd =0.34 a.u. and varied the
unit-cell length (D=d+i+d i). In this set the lowest
total energy was found [cf. Fig. 1(c)] for D =5.22 a.u. In
the last set we then fixed D at this value (5.22 a.u. ) and
varied b,d, obtaining an optimized value [cf. Fig. 1(d)] of
b,d =0.46 a.u. , i.e., d +, =2. 84 a.u. and d, =2. 38 a.u.

The three sets do not represent any attempt of optimiz-
ing the bond lengths but were merely carried through in
order to have detailed information about the band struc-
tures and the total energies for a number of realistic
geometries. It is nevertheless worthwhile to compare the
bond lengths with those obtained in a few other attempts
of calculating carbon-carbon bond lengths of conjugated
polymers.

Ab initio Hartree-Fock calculations on carbon
chains ' have predicted bond-length differences of
b d =0.28 —0.50 a.u. , whereas recent semiempirical
Hartree-Fock calculations predicted 0.31 a.u. These
values agree well with the present ones as well as with the
earlier results (0.36 a.u. ; Ref. 12), and our present results
indicate therefore that we can describe the dimerization
of a conjugated polymer realistically. On the other hand,
the Hartree-Fock approach usually underestimates bond
lengths, thereby explaining the smaller values of D found
in the ab initio calculations (4.64—4.89 a.u. ' Refs 28—31.)
and in the semiempirical calculations (4.94 a.u. ; Ref. 32),
whereas our approach often overestimates the bond
lengths.

Density-functional calculations on trans-polyacetylene
have recently been reported by Ashkenazi et al. Based
upon their finding of an optimized structure with (almost)
vanishing dimerization, they suggested that a Peierls
mechanism cannot describe the dimerization of this sys-
tem. The carbon chains have so many properties in com-
mon with trans-polyacetylene that one might expect sirni-
lar effects to show up for the carbon chains. However,
the results of Ashkenazi et al. might be questioned, since
other density-functional calculations on trans-
polyacetylene ' ' ' have predicted nonvanishing
bond-length alternation. For later reference we mention
in particular the calculations by Mintmire and White.
They demonstrated that as a function of an increasing
number of equidistant k points (nj, ) used. in describing
the continuous k variable, the dimerization amplitude
will decrease, but also in the limit nk ~ ac it is found to
be nonvanishing.

The Hartree-Fock calculations on trans-poly-
acetylene have predicted dimerization amplitudes in
reasonable agreement with the experimental values.
Of most relevance here are the results of Suhai ' and of
Bredas et al. Suhai reported that when adding correla-
tion effects perturbatively to results of an ab initio
Hartree-Fock calculation the optimized dimerization am-
plitude will decrease. This decrease amounts to about
20%%uo when about 75% of the total correlation effects are
included. On the other hand, the semiempirical PPP
(Pariser-Parr-Pople) calculations by Bredas et a1. predict-
ed that the optimized dimerization amplitude would in-
crease upon inclusion of correlation effects.

In total, the surprising finding by Ashkenazi et al.
does not seem to be confirmed by any other parameter-
free approach. Neither other density-functional calcula-
tions with a local approximation for correlation effects,
nor Hartree-Fock calculations without correlation, nor
calculations with nonlocal treatments of correlation
effects have yielded vanishing dimerization amplitude.
Therefore, we consider the results of Fig. 1 to be
representative of those obtained using parameter-free
descriptions of conjugated polymers in contrast to those
of Ashkenazi et al. It should finally be mentioned that
Ashkenazi er al. find the total energy as a function of the
dimerization amplitude to have a nonzero slope for zero
dimerization. Although our curves in Fig. 1 might seem
to indicate a similar behavior we find it beyond our nu-
merical accuracy to confirm or disprove this.

The dimerization energies (i.e., the difference in the to-
tal energy for the undimerized and the dimerized chain)
are here found to be about 0.5 eV per C2 unit. Ab initio
Hartree-Fock calculations by Kertesz et al. have yield-
ed values larger than 1 eV per C2 unit, whereas those of
Karpfen gave 0.3 eV per Cz unit. Our values thus quali-
tatively agree with those reported earlier.

We now return to the first-principles results of Fig. 1

and relate them to a model Hamiltonian with which soli-
tons and polarons will be studied in the next section.

Since the band structures (see, e.g., Ref. 12) separate
completely into m bands closest to the Fermi level and 0.

bands more far away, it is a good approximation to only
describe the m electrons accurately, as is the case in the
SSH model. We will extend the SSH model by describing
the m electrons with a tight-binding Hamiltonian includ-
ing as well on-site terms as next-nearest-neighbor interac-
tions:

H~=g s„c„,c„,
n, s

n+mn( n m+s as+ ns n +ms)
rn =1

(3)

Here, c„, (c„,) creates (annihilates) a m electron on site n

of type s, where s labels both spin and p or p orbital.
The polymer is assumed parallel to the z axis.

The hopping integrals t are linearized in bond lengths:

0
n+m, n m m( n m, +n dm) & (4)

&n =so Pdn+in+—dn, n —i
—

, 2di) . (5)

where d is a typical mth-nearest-neighbor distance.
The on-site terms c.„are assumed being a sum of a con-

stant (which in the present context in unimportant) and
in "ionicity" term. The existence of the latter can be un-
derstood as follows: Each carbon atom prefers being
fourfold coordinated, which for the present linear chains
means that the sum of the bond orders of the two
nearest-neighbor bonds for any carbon atom should be
close to 4. Therefore, an atom for which the two
nearest-neighbor bonds are elongated (shortened) will at-
tract (repel) extra electrons. By linearizing in bond
lengths we arrive at
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In the first and third set of calculations we fixed D.
Choosing in each set d =md, and d, =D/2 we fitted
the first-principles m valence bands obtained in all calcu-
lations of a specific set with the energies predicted by Eq.
(3), thereby obtaining ti, a„and tz. We found t, =2.43
eV, a, =4.42 eV/A, and tz = —0. 12 eV in the first set,
and t, =2.19 eV, ai =3.88 eV/A, and tz = —0.09 eV in
the third set. The decrease in the values from the first set
to the third set is due to the increased unit-cell length.
The values of the nearest-neighbor hopping integrals are
comparable to those used for trans-polyacetylene by Su,
Schrieffer, and Heeger, ' and slightly smaller than those
obtained from first-principles calculations on polyace-
tylene. ' The next-nearest-neighbor interactions are,
on the other hand, considerably smaller than those for
trans-polyacetylene. ' This is due to large interatomic
distances and to a more complete "screening" from
nearest neighbors.

According to the tight-binding model the gap between
n. valence and conduction bands varies linearly as a func-
tion of b,d with the coefficient 2a, , which becomes 8.8
eV/A in the first set and 7.8 eV/A in the third set. Ac-
cording to the first-principles calculations, the slope is
10.5 and 10.0 eV/A. It is surprising that the model pre-
dicts a smaller gap than the first-principles calculation,
since density-functional local-density calculations usually
underestimate the gap. Both the models and the first-
principles calculations predict a gap of about 2 eV for the
ground state, in good agreement with the data by Akagi
et al." These results taken together indicate that we
have overestimated the bond-length alternation, especial-
ly in the third set of calculations. It should be added that
compared with our earlier report' the calculations have
been improved by including more basis functions and in-
teractions with more distant neighbors. These improve-
ments have led to a reduction in the gap, and one might
speculate that even further improvements would lead to
further reductions. We have not examined this point in
detail, but we believe the effects to be relatively small.

The results of the second set of calculations can be
used in estimating a2 and g. By choosing half the unit-
cell length of the first set of calculations as typical
carbon-carbon bond lengths (i.e., d, =2. 53 a.u. ,
d =md, ), we found by fitting the ir valence bands
t, =3.12 eV, ai=3.85 eV/A, t2 = —0.34 eV, a2= —1.13
eV/A, and (=4.78 eV/A. Compared with the values of
the first set we notice some modifications, but the agree-
ment is reasonable. When fixing (=0 (i.e., neglecting the
"ionicity" terin) the fit became significantly worse.

In all fits the root mean squares of deviations were
smaller than 0.1 eV. This value should be compared
with, e.g., the ~ valence-band width, i.e., 4—5 eV.

By summing the single-particle m. valence energies of
the first-principles calculations over the same k points as
used in obtaining the tota1 energies E„,of Fig. 1, we ob-
tain the ~ energy, E„, shown in Fig. 1 The difference is
the so-called o. energy: E—:E„,—E, and this is also
shown in Fig. 1. In the first and third set of calculations
we see that E has a maximum for vanishing bond-length
alternation, as is also the case in the SSH mode. , but E

is not a parabola with minimum for Ad =0, as is assumed
in the SSH model. This means that a harmonic approxi-
mation for E is not justified and one has to use an
anharmonic potential. Since the variations in the ener-
gies of Fig. 1(c) are 1 order of magnitude smaller than
those of Figs 1(a) and 1(d), we will concentrate on
describing E of the latter. For these we may use

E =
—,'E[(—,'b,d —x, )

—x, ] . (6)

Reasonable values are K=80 eV/A and x, =0.05 A.
As mentioned above, Mintmire and White ' have ar-

gued that replacing the continuous k variable with a
finite equidistant mesh leads to an overestimate in the di-
merization energy and amplitude due to improper treat-
ment of the m bands. We repeated the calculations of the
first set for bd =0 and Ad =0.34 a.u. for nk =2, 3, 6, 11,
16, and 21 equally spaced k points in half part of the first
Brillouin zone. We then assumed that

E„(hd)—E„(0)=E„"(hd)+a,hd exp( nkb)— (7)
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FIG. 2. The integral over the Brillouin zone of the single-
particle energies separated in m and o. contributions for the
same geometries as in Fig. 1(a).

with E„being either the total energy (E„,) or the m. ener-

gy (E„). Thus, we assume the relative error due to finite

nk to depend linearly upon dimerization amplitude and
exponentially upon nk. These assumptions led to the
curves of Fig. 1(b) replacing those of Fig. 1(a) in the limit
nk ~~. We see that the optimized dimerization ampli-
tude is slightly decreased and the dimerization energy is
decreased more. In agreement with the findings of
Mintmire and White, E is only slightly affected. It
should finally be stressed that Fig. 1(b) merely represents
an attempt of estimating the results for nk ~~.

For trans-polyacetylene one of us has recently exam-
ined the effect of dimerization ' by following a special
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path in configuration space. In this path the length of the
unit cells was slightly increased as a function of increas-
ing bond-length difference. It turned out that both the
total energy and the sum of the quasiparticle energies of
the occupied (o as well as n.) valence orbitals possessed a
minimum for a nonzero dimerization. In Fig. 2 we depict
similarly the sum of the energies of the valence levels and
split it into a o and a m part for the calculations of the
first path [cf. Fig. 1(a)j. Comparing with the results of
trans-polyacetylene (Refs. 26 and 27) we see that the situ-
ation is different: the o and the m part have both extrema
for hd =0, and we therefore suggest that the results for
trans-polyacetylene were affected by the special path in
which the unit-cell length was not kept constant. There,
as a function of increasing bond-length alternation, the
shorter bond lengths decreased more slowly than the
longer bond lengths increased. In the present calcula-
tions the bond lengths change at the same rate.
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8. Zigzag chains

In the last set of calculations —which we will use later
when examining the twistons —we fixed the bond lengths
at the values for the minimum of the total energy in Fig.
1(d), i.e., d, =2.38 a.u. and d2=2. 84 a.u. We lowered the

symmetry of the chain by varying the bond angle 8 from
180' (the value for the linear chain) to 140'. In this case
the doubly degenerate m bands of the linear chains split

up into a cr and a m. band. The calculated valence-band
energies and total energies are shown in Fig. 3.

In the figure we notice a small tendency for the system
to leave the linear symmetry and possess a zigzag
geometry. However, the energy differences are so small

that we cannot conclude definitively that this is the case.
We furthermore notice that both integrated single-
particle energies possess a minimum for a bond angle
different from 180'. The minimum is around 155' for the
m. band and around 168 for the o. band. Compared with

Fig. 1 the energies of Fig. 3(a) as functions of the geome-
trical parameter show a more complicated dependence.

For each of the two upper valence bands we assume a
tight-binding description. By leaving the linear symme-
try, the characters of the electronic levels change. For
the band which becomes of a character for the zigzag
structure the s-component increases continuously from 0
for 8=180'. This change will be related to a change in
the on-site matrix elements and can be estimated from
the relative position of the 0. band as a function of 0.
This (defined as the average of the top and the bottom of
the band) is shown in Fig. 3(b) together with the band-
width for both the 0. and the m band. As is seen also, the
position of the m band changes as a function of 0. %'e no-
tice that the relative positions of the bands closely follow
the integrated energies. By neglecting next-nearest-
neighbor interactions (which were found to be small in
the previous sets of calculations) the width and the posi-
tion of the valence band is 2XmaxI It+, I, It, I I and

minI I&+ & I, Ir, I I, respectively Amodel th. at qualitative

ly describes the tendencies of Fig. 3 is then (assuming
Ir+gf&lr &I)
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FIG. 3. (a) The relative total energy E„„the m electron ener-

gies E and E, and the remainder E for a zigzag carbon chain
as functions of the carbon bond angle a for a varying from 180'
(corresponding to the linear structure) to 140'. E„"and E„are
defined as the integral over the Brillouin zone of the m energy
band and the uppermost (vr-derived) cr band, respectively. E is
defined as the di8'erence E„,—E —E„. The energies are in eV

per C2 unit and have been obtained with six k points in half part
of the Brillouin zone. (b) The relative widths and the relative

positions of the electronic energy bands as a function of a. The
latter is defined as the average of the position of the top and the
bottom of the valence band. The solid (dashed) curves corre-
spond to the m(0. ) band.
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whereas the next-nearest-neighbor interactions are set to
zero:

t+2=t~2=0 .

For small deviations of the bond angle from 180 we can
write the rest of the total energy approximately as

sumed harmonic and here we will only give the equations
to be solved in the present anharmonic case.

We define

a)
(un+& "n) ~

t]

E =5 X 10 (8—180') eV/deg (10)

We would like to point out that the parameters just de-
scribed are to be considered very approximative. On the
other hand, for the purpose of examining the properties
of the symmetry-breaking excitations where the bond an-
gles are assumed deviate from 180 in a smaller region the
parameters are acceptable.

v, =a,x, /t, ,

f ( n)=P +~ +a(P +2+P +~ ~)

a az/a (

OCC

(14)

IV. THE MODEL CALCULATIONS

A. Linear chains

Here, %„(n) is the coeScient of the pth eigenfunction to
the basis function on site n.

The self-consistent conditions are then

In the model calculations for the linear chains we as-
sume the chain to have fixed length. As Su, Schrieffer,
and Heeger, we introduce configuration coordinates u„
such that u„ is the displacement parallel to the polymer
axis of the nth carbon atom relative to the position for
the perfect, periodic, undimerized chain. The lowest to-
tal energy for the neutral chain is then found for
u„=(—1)"u~0~. We will describe the n electrons with H„
of Eq. (3) and the bond lengths in Eqs. (4) and (5) are re-
placed by

Qi
v„=v,sgn(v„)+ {A—2 Re[f(n)]j,

Kti
(15)

gv„=0 (16)

and has the form

where the Lagrange multiplier A has been introduced in
order to fulfill the fixed-length constraint

dn+m n m n+m n

The o energy is included via

2 N sKt)A= —g Re[f (n)] — g sgn(v„) .
a)N

(17)

H =
—,'Kg(iu„+, —u„i —x, ) (12)

such that the total Hamiltonian becomes

H=H +H (13)

The parameters were chosen according to the third set
of calculations of Sec. III A. This includes the approxi-
mation of neglecting az and g. Although other realistic
parameter sets might be chosen (e.g., as obtained for
another fixed unit-cell length), the results of Fig. 1 indi-
cate that the modifications in the results will be minor.

We have modeled the infinite polymer by a ring of
N =200 atoms thereby imposing periodic boundary con-
ditions and avoiding end effects. In performing the mod-
el calculations we used two different approaches. In
the first "variational" approach we make a simple
ansatz of the configuration coordinates [e.g.,
u„=(—1)"

~ ~tuoh(an/Ln) for a soliton] and by varying
certain parameters describing the functional form of the
ansatz (L in the example) the structure with the lowest
total energy is found.

The second "self-consistent" approach has been de-
scribed in some detail in Ref. 15. In this approach the
configuration coordinates u„are automatically found for
structures with local extrema in the total energy once the
population of the electronic levels is defined. In Ref. 15
the method was described in detail when H was as-

It should be stressed that the variational and the self-
consistent approach need not give identical results. The
variational approach requires an ansatz of the
configuration coordinates, and only when a realistic one
is used is this approach useful. For example, for a soliton
one would assume a hyperbolic-tangent shape as is the
exact solution in the continuum limit (i.e., when the
width of the soliton is much larger that the interatomic
spacing) and when H is assumed harmonic. Thereby
the deviations from hyperbolic-tangent shape will give in-
formation on discrete-lattice and anharrnonic effects in
this case.

1. The perfect chain

In the first set of calculations we fixed the
configuration coordinates as

u„=(—1)"u,

using the variational approach. By varying uo we found
the lowest total energy for the neutral polymer for
uo =u~o] =0.0481 A, and by comparing the total energy
for this value with that for uo the dimerization energy
was found to be Ed; = 0.23 eV per C atom. Both values
fit well with those of the first-principles calculations.

The self-consistent approach gives for the
configuration coordinates of Eq. (18)
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y =v, +A.,ayD [( 1 —y )
' ],

2(x )
up

0.1

(a)

So

(19)

D (x)= [K (x) E—(x)]/x
Sti

Ed; = IE[(1—y )'~ ]—1 j+2Kuo(x, —zo),
-0.1

—17 17

where K (x) and E (x) denote the complete elliptical in-
tegral of first and second kind, respectively. With our pa-
rameters we get up=u[p]=0. 048 A and Ed; =0.223 eV
per C atom in good agreement with the values of the vari-
ational approach.

Rice et al."' have examined in two papers a similar
model, which, however, did not contain next-nearest-
neighbor interactions in H or the anharmonic part of
H . Lacking proper values for the remaining parameters
they used typical values for trans-~olyacetylene, i.e.,
t& =3 eV, a&=8 eV/A, K =68 eV/A, and x, =0. This
gave an optimum value of uo for the perfect undistorted

0
chain of u~o~ =0.078 A in the continuum limit, whereas a
numerical treatment of a finite large discrete chain led to
u{o~=0.093 A. The optical gap was in the two ap-
proaches calculated to be 5 and 5.88 eV, respectively.
However, using their parameters extended with next-
nearest-neighbor interactions (t2=0. 3 eV and a2=0. 8

0
eV/A; these do not influence the gap or the optimal value
of uo) and for a discrete chain two of us have obtained
slightly larger values; i.e., a gap of 6.07 eV and an opti-
mized value of up of u[p~ =0.0948 A. It should be point-
ed out that these values of the gap are 3 to 4 times larger
than that reported by Akagi et al." and than that of the
present study.

2. Solitons

In examining the solitons we used both approaches. In
the variational approach we assumed that u„would fol-
low a hyperbolic-tangent curve and considered, therefore,
configurations of the form

n+d f h
n+d—+f

(20)

which is the exact form in the harmonic continuum limit
of a soliton-antisoliton pair. ' By setting f=N/4 the
pair becomes well separated. Varying d from 0 to 1 and
for each value optimize L the mobility of the soliton can
be analyzed. It turned out that for fixed d the optimized
value of L was (almost) independent of the charge Q of
the polymer for ~Q~ &2. L was found to vary between
0.75 for d=0.0 and 1.25 for d=0.5.

With the self-consistent approach the lowest total ener-
gy for a polymer with a solitonlike defect was found for a
defect centered on a site; i.e., d =0.0 in the language of
Eq. (20). In Fig. 4(a) we show the calculated

pile I

0.5

0.4,

(b)

S+2

0.3

0.2

0.1

0.0

—0.1

1 I

—10 0
I i.
10

FIG. 4. (a) The relative displacements for a neutral antisoli-
ton So (dashed curve) together with that obtained using the
hyperbolic-tangent assumption (solid curve). (b) The internal
charge structure of a doubly charged soliton S&+.

configuration coordinates around the defect together with
the hyperbolic-tangent curve from the variational ap-
proach. The agreement is seen to be fair although some
modifications appear, which thus must be ascribed
discreteness and anharmonicity.

In Table I we have collected the calculated total ener-
gies using the two approaches for different charges of the
polymer together with those for the undistorted polymer
of the same charge. In agreement with the hyperbolic-
tangent form to be a reasonable approximation the ener-
gies of the first approach are only slightly larger than
those of the second approach.

Compared with the simplest SSH model for trans-
polyacetylene ' we notice the very important difference
that singly charged solitons have larger energies than the
similarly charged undistorted system. This is also found
in the harmonic model for polyyne, ' ' but in our ap-
proach the formation energy of a soliton is larger than in
the harmonic model. We can understand this as a result
of the anharmonic term in H: For a distortion in which

~ u„~ in a smaller region is decreased compared with the
optimal value ~u, o~~ the SSH model predicts that there
will be a competition between H which favors any value
of ~u„~ & ~u&o~~ and H which disfavors it. But for the
present anharmonic model both parts disfavor values of
~u„~ &0.02 A=0. 4u~o~, and singly charging the polymer
by simply adding an electron to the conduction bands or
removing it from the valence bands is accordingly ener-
getically favored . On the other hand, Table I shows that
doubly charged solitons are energetically favored com-
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TABLE I. Total energies (in eV} for a polymer of charge g~e . In the variational approach (labeled
"var.") a soliton is assumed being of hyperbolic-tangent form and d gives the center of the soliton. In
the self-consistent approach (labeled "scf") no assumption of the solitonic shape is made. For compar-
ison the last column (labeled "undist. ") gives the energies of the undistorted polymer of the same
charge. The numbers in parentheses are the binding energies of the soliton, i.e., the total energies of the
undistorted system of charge Q~e~ minus that of the soliton of the same charge. The binding energy is
positive (negative) for stable (metastable) solitons. In comparing solitons of di6'erent charges one
should compare the binding energies per charge.

d =0.00
(var. )

1.62
(0.23)
1.45

(
—0.53)

1.28
(
—1.28)

1.10
( —0.54)

0.93
(0.20)

d =0.25
(var. )

1.64
(0.21)
1.47

(
—0.55)

1.30
(
—1.30)

1.13
( —0.57)

0.95
(0.18)

d =0.50
(var. )

1.70
(0.15)
1.53

(
—0.61)

1.35
(
—1.35)

1.18
( —0.62)

1.01
(0.12)

scf

1.56
(0.29)
1.38

( —0.46)
1.21

( —1.21)
1.04

( —0.48)
0.86
(0.27)

undist.

1.85

0.92

0.00

0.56

1.13

pared with the undistorted system of the same charge.
Finally, as has been argued elsewhere, ' the soliton-
induced gap state does not appear exactly at midgap due
to the presence of the next-nearest-neighbor interactions,
although the shift away from midgap is very small
( (0.01 eV).

We show in Fig. 4(b) the internal charge structure
(defined as the charge density of the actual system minus
that of the neutral, undistorted, dimerized system) for a
doubly positively charged soliton. The next-nearest-
neighbor interactions cause small but finite (negative)
components to show up between the large (positive) com-
ponents on every second site. It is moreover seen that the
orbital is spread out over about 10-20 C units, whereas
the soliton-induced orbital for trans-polyacetylene typi-
cally extends over 20-40 CH units. Finally, some devi-
ations from the sech dependence (as the harmonic con-
tinuum approximation gives) are also noticed; due to the
small width of the soliton, a better description might be a
power law as has been suggested for solitons of vanishing
width.

Rice et al. ' ' have also used a hyperbolic-tangent an-
satz for the shape of solitons. However, due to their lack
of reasonable parameters they find a somewhat larger op-
timized value of L, around 2.4 in the continuum limit and
around 2.0 for a discrete chain.

Recently Williams' applied a semiempirical Hartree-
Fock method on finite HC„H molecules. Due to the
Hartree-Fock approximation the gap is found to be large
(5.5 —8.5 eV) but based on some additional semiempirical
CI (configuration-interaction) calculations he estimated
the correct value to be 2.5 eV. He examined neutral and
charged solitons by optimizing all internal coordinates.
His results indicate L =2—3 and u[p) =0.039 A, of which
especially the latter agrees well with our values. For un-
known reasons his soliton-induced gap state appears for
some of the solitons far from the midgap position.

3. Polarons

Within the self-consistent approach we used as an ini-
tial ansatz

U =( 1 ) (60 Kg UFIt anh[Eg(lt+bpg)]

—tanh[E&(n by s)] I
)— (21)

with

Ap= 4' &Q [p]

2t)
ys= . tanh '[tan(0/2)],

pepsin 8

h+n m

2

(22)

Here, h (n) is the number of holes (electrons) in the lower
(upper) polaron-induced gap orbital (each being 0, 1, 2, 3,
or 4}. For Uf =2t, and b= 1, Eqs. (21) and (22) corre-
spond to the exact solutions in the harmonic continuum
limit, as demonstrated by Rice et a/. ' ' For other
values of vf and b the amplitude and the length, respec-
tively, of the polaron are varied.

Using different initial assumptions for vf and b we
found a variety of (meta)stable polarons for diff'erent spin
and/or charge. In Fig. 5 we depict schematically those
with the lowest total energies by showing the valence-
and conduction-band edges plus the polaron-induced
states together with the occupancies of the latter. Also
shown is the binding energy defined as the total energy of
the undistorted polymer minus that of the polaronic dis-
torted polymer both having the same charge and spin.
The binding energy is thus positive (negative) when the



41 ANHARMONIC MODEL FOR POLYYNE 11 963

Po -P.746 eo -1 480
I

I

W

Po -3.DSS

0.88e 1.824 P ) -2.020 P+1 O.B88 Pi) -1.B13 P+, -2.013

P ~ 0.734 P g 0.003
~I

P y -1.5S7 P~~ 0.740 P+~ 0.004
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FIG. 5. Various (meta)stable polarons in schematic form. For each diagram the lower and upper cross-hatched area represents the
valence- and conduction-band region, respectively, whereas the horizontal lines in the gap represent the polaron-induced levels (their
positions are drawn to scale) together with their occupation (one circle corresponds to one electron; each level can contain at most
four electrons). The label and the binding energy (in eV) are included in each diagram.

polaron has a lower (higher) total energy that the undis-
torted chain.

In discussing the results of Fig. 5 we first mention the
finding of three modifications for each type of polaron,
which we denote according to their binding energy (Eb)
as P, P', and P", respectively, such that
Eb(P) &Eb(P') & Eb(P"). In Fig. 5 we notice that other-
wise identical polarons but with opposite charges have

slightly different binding energies and positions of the in-
duced levels. This is due to the next-nearest-neighbor in-
teractions, which break the electron-hole symmetry. '

The formation energy (the negative of the binding ener-
gy) of a polarexciton (Po) is strongly reduced by the
anharmonicity (it becomes here roughly b,o whereas it is
1.816,o in the harmonic continuum limit). Hence, the
formation energy of two polarexcitons is
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ized as a bound state of a soliton and an antisoliton.
Compared with the polaron profiles as found within the
harmonic approximation both larger depths and larger
tails are here observed, whereas each half part of the po-
laron seems steeper.

In comparing our results for polarons with those of
Rice et al. ' ' the richness of the (meta)stable polarons
found in the anharmonic approximation is striking. All
types of polarons already present in the harmonic ap-
proach are favored by the anharmonicity. Moreover, the
present approach predicts two singly charged polarons to
have lower total energy than the doubly charged soliton
in contrast to the findings of Rice and co-workers. The
results of the semiempirical Hartree-Fock calculations by
Williams' are in qualitative agreement with those of
Rice et al. and we will not comment on them further.

2[ E—b(PO)]=1.49 eV (see Fig. 5) and is thus smaller
than that of a neutral soliton-antisoliton pair
[ 2—E&($ ) =2.42 eV; see Table I]. Accordingly, the de-

cay of two polarexcitons into a soliton-antisoliton pair is
here prevented, whereas in the simplest harmonic ap-
proximation it is possible. In contrast, two polarexcitons
of type Po or four polarexcitons can decay into a
soliton-antisoliton pair.

The most important result here is the stabilization of a
polaron lattice in comparison with a soliton lattice at
least in the dilute limit. The anharmonicity of H is the
reason for this difference. This leads to a local energy
maximum of E for u„=0 in contrast to a local energy
minimum in the harmonic approximation, and thus, all
structures with a larger number of sites with small values
of ~u„~ become less favored.

As an example of a weakly doped polymer chain we
consider a very long chain of charge +12~e ~. Using the
numbers of Fig. 5 and Table I it is now straightforward
to calculate that the total energy of twelve well-separated
singly charged polarons P+, is 8.3 eV below that of the
undistorted chain. Also six doubly charged polarons (4.4
eV) and four triply charged polarons (3.3 eV) have lower
total energies. These three configurations have further-
more all lower total energies than the lowest total energy
of a chain with solitons. This is, on the other hand,
found for three well-separated pairs of well-separated
quadruply charged soliton-antisoliton pairs and is lower
(1.3 eV) than the total energy of the undistorted chain.
Also configurations involving some of the excited meta-
stable polarons have lower total energies than the undis-
torted polymer as can be seen by examining Fig. 5. This
complexity of possible metastable states makes the dy-
namics of the localization process of injected charges
nontrivial.

The relative displacements (order parameter} and the
internal charge structure of some polarons are shown in
Fig. 6. As usual the polarons can to some extent be ideal-

B. Bending chains and pistons

Although the stability of twistons for "conventional"
sp -bonded conjugated polymers is believed to be due to
interchain interactions, ' we will examine here twistons
in an isolated chain of the "unconventional" sp-bonded
conjugated polyyne polymer. We believe the results to be
of relevance when understanding the nature of the twis-
tons. In analyzing the twistons we have only used the
variational approach.

First of all we define an arbitrary plane which as as-
sumed to contain the nuclei of the undistorted chain as
well as those of the distorted system. N is a normal to
this plane. We will let H„be the bond angle of the nth
carbon atom. 8„ is assumed positive (negative) when the
vector (r„&—r„)X(r„+I—r„) is parallel (antiparallel} to
N (we ignore the case of 8„=+180' for which the sign is
irrelevant). Here, r„ is the position of the nth carbon
atom. %e can then consider two different highly sym-
metric types of excitations; one where the chain is bend-
ing locally (i.e., all 8„%180'have the same sign), and one

(a)
( 1) (u +t —'+m) (A )

(b) (-1) (u~+t —uN ) (4)
(-~) (tt +t - ~ ) (A ) 0.X
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FIG. 6. The relative displacements for some selected polarons of Fig. 5: (a) P l, P'
&, and P"

&, (b) Po and Po ', and {c)P 2. In (a)
and (c) the internal charge structures of the polarons are also shown, and in (b) we show for reference a small scale showing the
length of 20 sites.
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where the chain has a local zigzag arrangement (i.e., the
8„%180'have alternating signs). We will model these by

n+dP„=asech (23)

in the first ("bent" ) case, and

n+d= ( —1 )"asechn I.

in the second ("zigzag") case. We have introduced

Q„=180'—8„. (25)

lp. +g I+ I&„ I

t+, =2.60 eV+0.01 cos . X180' —1 eV,

(27)

lp. +pl+ I(()„l
t+, =2.60 eV+0.03 cos . X 180 —1 eV,

which for P„=P const becomes identical to Eq. (8).
Next-nearest-neighbor interactions are neglected.

H is written as

H =(5X10 eV/deg )gP„. (28}

For the undistorted polymer the top of any of the
valence bands is at (t+, —t,—) and the bottom at

(t+, +t, ). Ass—uming all P„ to have the same value

( =P) we see from Eqs. (26) and (27) that for both the o.

and the n band t I (t+&) is an increasing (decreasing)
function of P for small values of P. Thus, both the top
and the bottom of the valence band are shifted towards
higher energies as a function of P. Therefore, both H„
and H favor the high-symmetry structure for the neu-
tral polymer. Interpreting the excitation of Eqs. (23) and
(24) as locally creating a part of the chain with an
effective /%0 the electronic orbitals of this region will in

general be above those of the rest of the chain. Similarly,

Many other related excitations can be proposed. For in-
stance, excitations where the sign of P„ is changing every
mth n value are possible. We point out that in our model
below we cannot distinguish between these different types
of excitations.

We write the total Hamiltonian as a sum of a tight-
binding term H =H +H describing the m orbitals and
the m-generated cr orbitals and a remainder H . In the
limit $„=0 the energies of the m. orbitals and the m-

generated o orbitals become degenerate. The hopping in-
tegrals of H„ for the longer carbon-carbon bonds be-
tween atom n and atom n —1 are modeled through

t, =1.78 eV+10 (lg„,l+ lg„l) eV/deg
(26)

I =1 78 eV+10 '( ly. i I+ IP„ I
)' eV/deg'

and those of the shorter carbon-carbon bonds between
atom n and atom n + 1 through

the orbitals derived from the conduction band will be
below those of the rest of the conduction band. There-
fore, compared with the undistorted system it will cost
less energy to remove electrons from or add electrons to
the distorted system. Accordingly, for both the positive-
ly and negatively charged polymer there will be a com-
petition between H which favors a distortion, and H,
which favors the undistorted structure.

Our calculations showed, however, that for all singly,
doubly, triply, and quadruply positively and negatively
charged polymers the undistorted chains have the lowest
total energy. As can be shown, a twiston does not lead
to (near-) midgap states, and the charged twistonic dis-
torted polymers are therefore not stabilized by their ap-
pearance as are some charged solitonic distorted poly-
mers. We believe this lack to be the reason for the insta-
bility of twistons. Furthermore, this lack makes the in-
teraction between solitons and twistons suggested by Bra-
zovsky and Kirova' only very weak.

V. CONCLUSIONS

We have reported results of first-principles calculations
on periodic carbon chains with alternating bond lengths.
The results were used in providing parameters for mode1
Hamiltonians with tight-binding descriptions (H ) of the
two uppermost valence bands and simple analytical forms
(H ) of the remaining parts of the total energy.

For linear chains we found such models to be adequate,
and the parameters to vary less than roughly 10% for
reasonable variations in the unit-cell lengths. It was ar-
gued that for larger variations in the unit-cell length
(which might be the case near defects) extra on-site terms
depending on nearest-neighbor bond lengths should be in-
cluded in H, although that was not done in the present
work.

Using two different approaches (a variational and a
self-consistent) we examined solitons and polarons. Due
to the existence of anharmonic terms in H, polarons
were favored compared with solitons. Moreover, the
ground state of a singly charged polymer corresponds to
a chain containing a polaron, and for a multiply charged
polymer the system prefers a structure of separated,
weakly interacting, singly charged polarons (a polaron
lattice). Therefore, the model predicts an increased ESR
signal upon doping. Furthermore, a very rich spectrum
of different (meta)stable polarons was predicted, also due
to the anharmonic terms in H .

Although the dimerization amplitude for sp-bonded
polyyne is larger than that for sp -bonded conjugated po-
lymers, we believe that anharmonic terms could be
present also for the latter. These could lead to larger di-
merization energies (see, e.g., Ref. 58). Moreover, they
can lead to a large number of gap states due to the ex-
istence of different (meta)stable polarons (cf. Fig. 5) and
make interpretations of optical-absorption spectra of
doped polymers more complicated than is usually as-
sumed. The existence of anharmonicities for polyyne
can, for instance, be examined by enhanced isotope
effects (' C versus ' C} in Raman and infrared modes.

By parametrizing results of calculations on zigzag
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chains, we suggested a model that could be used in quali-

tatively analyzing the analogues of the twistons which
have been proposed for planar conjugated polymers. '

The lack of (near) mid-gap states made the twistons un-

stable, and we predict therefore similar instabilities to
show up for other twistonic distorted conjugated poly-
mers. However, interchain interactions might stabilize
them as has been proposed. '
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