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The magnetocrystalline anisotropy energies of the elements iron, cobalt, and nickel have been cal-
culated by means of the linear muffin-tin orbital (LMTO) method in the atomic-sphere approxima-
tion (ASA) within the framework of the local-spin-density approximation (LSDA). The so-called
"force theorem" is used to express the total-energy difference, when spin-orbit coupling is included,
as a difference in sums of Kohn-Sham single-particle eigenvalues. The results depend strongly on
the location and dispersion of degenerate energy bands near the Fermi surface, and particular atten-
tion must be paid to the convergence of the Brillouin-zone integral of the single-particle eigenval-

ues. The calculated values of the anisotropy energy are too small by comparison with experiment,
and we do not predict the correct easy axis for cobalt and nickel. We find that the variation of the
anisotropy energy with changes in strain, in the magnitude of the spin-orbit coupling, for different
choices of the exchange-correlation potential and for varying numbers of valence electrons are not
capable of explaining these incorrect results. By comparing our calculated energy bands with those
obtained by a full-potential linear augmented plane wave (FLAPW) method we conclude that the
discrepancy is not attributable to terms in the potential that are neglected in the ASA.

I. INTRODUCTION
A long-standing problem which has recently received

much attention is that of describing the magnetocrystal-
line anisotropy energy (MAE) of magnetic materials con-
taining transition-metal elements. Thin layers of iron on

copper are found to have their magnetic moments orient-
ed perpendicular to the plane of the monolayer. ' In our
own laboratory it has been found that in Pd/Co superlat-
tices a switch of the easy (-magnetization) axis from in

plane to out of plane occurs as a function of the Co thick-
ness. A detailed understanding of the mechanisms re-
sponsible for these phenomena is still lacking. It would

be very useful if theory could offer some guidelines as to
what determines the anisotropy of a particular material.
At the same time it should be realized that the MAE of
even iron, cobalt, and nickel is not well understood, part-
ly because it is so small. At low temperatures (T =4.2 K)
it is of the order of 60 peV/atom for (uniaxial) hcp co-
balt and for cubic iron and nickel it is a factor of 50
smaller. " It is the purpose of this paper to investigate the
possibility of calculating magnetocrystalline anisotropy
energies from first principles. Because of the large nurn-

ber of experimental and theoretical studies of Fe, Co, and

Ni we choose them as a test for our method.
The theory of MAE in the 3d transition metals has a

long history. In the earliest attempts to understand the
MAE of iron, cobalt, and nickel the magnetic moments
were considered ta be localized on the atoms comprising
the solid. As described by van Vleck, the MAE is elec-
trostatic in origin, the mutual electrostatic energy be-
tween two atoms depending on the orientation of the lo-
calized spin and orbital moments relative to one another
and relative to the axis joining them. The corresponding
Hamiltonian is replaced by a spin Harniltonian incor-

porating a molecular field term as well as dipole-dipole
and quadrupole-quadrupole coupling terms which are
electrostatic in origin. The coupling constants are then
larger than if they were due to purely magnetostatic
forces. The anisotropy energy is found by the application
of perturbation theory.

Brooks, and later Fletcher, used an itinerant-electron
model to explain the MAE and the quenching of orbital
angular momentum in cubic crystals. A broadening of
crystal-field-split states smaller than the crystal-field sep-
aration was assumed to occur for the d electrons. Treat-
ing the spin-orbit coupling as a perturbation, fourth-
order perturbation theory was used to obtain the cubic
anisotropy. Most subsequent work has been concerned
with extending this model. One line of investigation has
concentrated on explaining the MAE of Fe, Co, and Ni
by using more realistic band structures than those origi-
nally employed by Brooks and Fletcher. ' A second
line of investigation has been to examine the effect of
symmetry reduction on the anisotropy energy. Most of
this work, which was concerned with the possibility of
finding large MAE's at the surfaces of magnetic
transition-metal elements, was of a qualitative nature. '

More recently attempts have been made to calculate
MAE's from first principles for bulk crystalline Fe, Co,
and Ni (Refs. 15—17) as well as for Ni and Fe films. '

Because the MAE is a ground-state property it can, at
least in principle, be determined within Hohenberg-Kohn
density-functional theory ' in which the many-electron
problem is reduced to an effective independent-particle
problem. Although the local-spin-density approx&-
mation (LSDA) (Ref. 27) to the exchange-correlation en-

ergy has been remarkably successful in describing many
ground-state properties of solids, there have been some

41 11 919 1990 The American Physical Society



11 920 G. H. O. DAALDEROP, P. J. KELLY, AND M. F. H. SCHUURMANS 41

exceptions, ' particularly in relation to the ferromag-
netic 3d transition-metal elements. The incorrect struc-
ture found for the ground state of Fe (Ref. 28) indicates
errors in total-energy differences which are of the order
of tens of meV's. Within the simplifying framework of
the LSDA it is still not a trivial matter to compute ener-

gy differences which are only of the order of peV. All
calculations of the MAE which we are aware of approxi-
mate the total-energy difference as the difference in the
sums of single-particle eigenvalues occurring in the
Kohn-Sham equations. No attempt has been made to es-
tablish the realm of validity of this approximation.

In the case of a free-standing monolayer of (001) Fe,
the anisotropy energy has been calculated to be of the or-
der of 1 rneV and because the Brillouin-zone integration
must only be performed in two dimensions it is possible
to study the convergence of the integral with respect to
the number of sampling points. However Gay and
Richter' predict the easy axis to be perpendicular to the
plane of the monolayer and find an anisotropy energy of
—0.4 meV/atom whereas Karas et al. calculate a value
of 3.4 meV/atom with the easy direction of magnetiza-
tion lying in the plane of the monolayer. ' Both LSDA
calculations appear to be adequately converged. A direct
comparison with experiment is not possible because it is
believed that the interaction of the magnetic rnonolayer
with the substrate can change the value of the anisotropy
energy substantially. In the case of Fe and Ni where
the anisotropy energy is experimentally we11 known, ' it
is still not clear what the final LSDA prediction is and
there are substantial discrepancies between the values
which have been reported. ' ' This is related to the
difficulty of calculating the very small energy difFerences
involved sufficiently reliably.

Some of these issues will be addressed in this publica-
tion. Because we are interested in understanding the ex-
perirnental results for metallic superlattices, where little
or nothing is known about the underlying electronic
structure, we have chosen to use an ab initio method. It
will be necessary to diagonalize a Hamiltonian at a large
number of k vectors (-500000 for Ni), so it is important
to use an eIIlcient method to solve the band-structure
problem. We have chosen to use the linear muffin-tin or-
bital (LMTO) method in the atomic-sphere approxima-
tion (ASA). ' We will see that our calculations raise
considerable doubt as to the possibility of calculating the
MAE correctly on a scale of & 100 peV using the approx-
imations made at present. Before attributing the failure
to the LSDA, an attempt must be made to improve upon
the approximation of the total-energy difference as a
difference of single-particle eigenvalue sums.

The paper is organized as follows. In Sec. II the
method used to calculate the MAE and the nature of the
approximations made are discussed. In Sec. III we
present numerical results relating to the issue of the con-
vergence of the single-particle eigenvalue sum for iron,
cobalt, and nickel. We compare these results with experi-
ment in Sec. IV and consider several possible explana-
tions for the disagreement. In Sec. V we discuss previous
calculations in light of our findings, and finally in Sec. VI
we draw some conclusions.

II. METHOD

In this section the various approximations we make in
order to calculate the MAE will be outlined. Because the
spin-orbit interaction responsible for the rnagnetocrystal-
line anisotropy is small compared to the exchange-
splitting and the band dispersion, we will adopt the
simplified but transparent procedure of treating it as a
perturbation with respect to those other effects. ' ' In
Sec. II A we describe this in more detail. This approach
has the advantage that the problem of calculating the
difference in total energy for two directions of magnetiza-
tion may be approximated as the difference of two single-
particle eigenvalue sums (Sec. II 8). Whether one makes
these approximations or not, an integral of the eigenval-
ues over the occupied part of the Brillouin zone must be
performed with peV precision. Technical aspects of the
Brillouin-zone integration are discussed in Sec. IIC. In
order to solve the band-structure problem we use the
LMTO-ASA method. Some of the approximations in-
herent in this method which are relevant to the calcula-
tion of the MAE are discussed in Sec. II D. Finally we
discuss in Sec. II E the magnetostatic contribution to the
MAE of iron, cobalt, and nickel.

6E„, 6E„,
&p p(r) 5p(r)

where v (r) is given by

p(r') &&xc
v(r)=u, „,(r)+2f dr' „+

(2)

(3)

A. Form of the Hamiltonian

For the 3d electrons in Fe, Co, and Ni, the spin-orbit
coupling parameter gd is -70 meV. The mass-velocity
and Darwin shifts, which are also relativistic effects of or-
der u2/c2 (where c is the velocity of light and u a typical
conduction-electron velocity), give rise to a shift of the 4s
band relative to the 3d band of the order of 150 meV. By
comparison, the 3d bandwidth is -4 eV and the ex-
change splitting is approximately mI„„where m is the
magnetic moment per atom and I„„the Stoner parame-
ter, is -1 eV for Fe, Co, and Ni.

The spin-orbit interaction and the mass-velocity and
Darwin shifts are taken into account most simply by solv-
ing the two-component Pauli equation

(JV +JV )e(r) =ee(r),
where the Hamiltonian has been split into a spin-
polarized scalar-relativistic part which will be treated ful-
ly self-consistently and the spin-orbit interaction which
will be added in the last iteration of the self-consistent
field procedure. In the atomic-sphere approximation, the
potential is taken to have spherical symmetry inside
atomic spheres which replace the atomic Wigner-Seitz
cell. Inside an atomic sphere W has a particularly sim-
ple form:

—V +v(r) — (e—u(r)) +R 2 1 Bu(r) 8
aP

C
2 Br Br
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E„,[p&,p&]= fdrp(r)e„, (p&,p&) . (4)

The eigenstates of W" have pure spin character so that
in the absence of spin-orbit coupling the last two terms in
(2) may be written as b(r) cr in terms of the exchange
field,

and Rydberg atomic units are used. v,„, is the external
(ionic) potential and the electron density p(r) =Trp(r),
where p(r) is the density matrix with components

p &(r)=g;. i,'[gati (r)]'4"' (r). The summation is over all
occupied bands, s;(k) (eF, where i is the band index and
k is the Bloch vector [omitted for simplicity in (2)]. The
trace is taken over the spin indices. For a homogeneous
spin-polarized electron gas with only two nonzero com-
ponents of the spin density, p& and p&, the exchange-
correlation energy per particle is s„,(p &,p i ). In the
local-spin-density approximation (LSDA) (Refs. 22 and
27) the exchange-correlation energy for an inhomogene-
ous electron gas, E„„is approximated by

states to the anisotropy energy is negligible and making
the frozen-core approximation, the total conduction
electron energy is of the order of 500 eV and the anisotro-

py energy is only —10 of this amount. We shall not at-
tempt to calculate the total energy with this accuracy.
Instead, we take advantage of the variational character of
the total energy to express the change in total energy
upon rotation of the magnetization direction as the
difference in two sums of single-particle energies. Such a
single-particle eigenvalue sum is of order 10 eV and we
shall find that a calculation to 1 peV precision is just
feasible.

In our treatment of MAE, we start from a self-
consistent spin-polarized scalar-relativistic calculation
where the input density matrix to the last iteration is
denoted p'. Because it has been constructed from eigen-
states with pure spin character there is a single r-
independent transformation which diagonalizes p'(r }
with eigenvalues p&(r) and p&(r). A variational expres-
sion for the total energy is

E[p p ]=~[p p ]+UH[p"]+E-[p"]+E-i[p"] .

E„,
b(r) =n

5m r

where n is an arbitrarily chosen magnetization direction.
The electron density p(r) =pt(r)+pi(r) and the spin den-
sity m(r)=p&(r) —p&(r). When the spin-orbit interac-
tion

T, UH, E„„and E,„, are, respectively, the kinetic energy,
electron-electron Coulomb interaction energy, exchange-
correlation energy, and the sum of the electron-ion and
ion-ion Coulomb interaction energies. The density ma-
trix obtained on output from the last iteration (after ap-
plying XP") is denoted p". Specifically,

T[p,p"]= g s;(k) —2fdr fdr'
i, k

21 Bu(r)
,'((r)l —~=c (6) —Tr fdr p"(r)v„,[p'(r)]

coupling the spin-up and spin-down equations is includ-
ed, the density matrix p(r) is in general nondiagonal.
The electron density is then p(r) =Trp(r) and the spin
density m(r)=Trj~(r)].

There is some ambiguity about whether or not the po-
tential used to calculate the mass-velocity and Darwin
shifts and the spin-orbit coupling parameter should in-
clude the contribution from the exchange field. However,
in practice the consequences of doing this are negligible
and we use the average of the spin-up and spin-down po-
tentials, as indicated in Eqs. (2) and (6). Other relativistic
terms of order v /c or higher have been shown to give
rise to negligible changes in the electronic energy
bands. ' The formal incorporation of relativistic effects
into density-functional theory has been discussed in Ref.
25 and reviewed in Ref. 26.

B. Total-energy calculation

Magnetocrystalline anisotropy energies are of the order
of 1 peV/atom for iron and nickel, and approximately 60
peV/atom for cobalt. This should be compared with the
total energy per atom which is of the order of 40000
eV/atom. Assuming that the contribution of the core

—fdrp"(r)v, „,(r),

where

5E„,[p(r)]u„i'(r)=
5p ti(r)

(9)

U [p]=f dr f dr' (10}

and

E,„([p]=fdrp(r)u, „,(r)+E;,„;,„.
In case of complete self-consistency p'=p", but this is
only ever approximately true in practice.

On adding W to W, and solving the corresponding
Kohn-Sham equations (1) non self-consistently, t-he slight-
ly different total energy E (n), energy eigenvalues s;(n, k),
and density matrix p'" are obtained. Because the spin-
orbit interaction is small compared to the bandwidth and
the exchange splitting, we expect the change in the total
energy to be small. It can be expressed as
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bE(n) =E(n) —E

= QE;(n, k) —ge;(k) —2f dr fdr', +2f drf dr P '
i, k i, k

T' f«u-[P']5P"(r) +E-(P"+5P"} E—,.[P"]+o[(5p"}'],

where 5p"=p'" —p". Omitting terms of order (5p") and rearranging yields

OCC OCC
, bp(r')5p"(r)bE(n)= ps;(n, k) —g s, (k}+2fdr fdr', +Tr fdr bu„, (r) 5p"(r)

i, k i,k

(12)

(13)

EE(n) = g e, (n, k) —g e;(k) . (14)
l, k i, k

This relation has been called the force theorem and pro-
vides a formal justification for using single-particle eigen-
value sums to obtain total-energy differences. We note
that in order for the total energy to be variational, the
full density-matrix p", and p'", including nonspherical
and nondiagonal terms, shourd, in principle, be used. To
be able to use the standard local-density forms for
E„,[pt, p}] in this case, the spin density would have to be
determined at every point r by diagonalizing the density
matrix p"(r). Subtraction of two total energies, deter-
mined From two self-consistent calculations, but using
spherically symmetric charge densities or diagonal densi-
ty matrices in the total-energy calculation, will not neces-
sarily yield a more accurate answer than the force
theorem.

How well does AE approximate the change in total en-

ergy on including spin-orbit coupling which would be ob-
tained by solving (1) exactly? The calculated change in
the sum of the single-particle energies is 9 meV/atom for
nickel, 8 meV/atom for cobalt, and 6 meV/atom for iron.
A self-consistent calculation is expected to differ from
this amount by a factor of order -g(l ~)/2mI„, . Tak-
ing /=70 meV, (1)=0.1, (m ) =(~), and I„,=950
meV, we expect the first-order approximation to be accu-
rate to about a half percent. A calculation where %, in-
cluding the spin-orbit coupling, was iterated to self-
consistency but p'" was taken to be spherically symmetric
and diagonal in the total-energy expression (7), showed

We have defined

b,p= Tr(p" —p')

and

b,u„, =u„,[p"]—u„,[p'] .

We will now assume that the self-consistent calculation
with W was so close to self-consistency that the last
two terms in (13) involving bp and hu„, may be neglect-
ed. However, this condition has not been fulfilled in a11

other first-principles calculations of the MAE and we will
return to this point in Sec. V A.

Due to the variational character of the expression for
the total energy, (7), the change in total energy is in first
order in 5p" given by the change in the sum over the oc-
cupied single-particle energies:

that for iron, cobalt, and nickel the second-order correc-
tion {in 5p") to the change in total energy was not larger
than 2% of the first-order approximation bE(n) (14), in
agreement with the above estimate. However, we see
that the second-order correction may be large compared
to the MAE unless there is a systematic cancelation of
contributions to the second-order terms for two different
magnetization directions. That this may happen is at
least plausible since such a systematic cancelation does
occur for the first-order term. Before discussing the
problem of the second-order terms the difference in
single-particle eigenvalue sums must be calculated reli-
ably and we address this problem next.

= g e;(n„k)—ps;(n, , k) (15)
i,k i, k

with the required accuracy. A rough estimate of the
number of k points required may be obtained as follows.
A typical value for the d-band density of states at the
Fermi level, sF, is D(EF }-10/4 states/eV. If one were
to assume that only the states at the Fermi level con-
tributed to the MAE, then the number of electrons in-
volved in contributing to EE would be
be =D(s~)bE-2. 5X10 electrons Thus for. Fe or
Ni a sampling density of approximately (100) points per
BZ would be required.

On rotating the magnetization direction n, there is a
redistribution of the occupied energy bands in the Bril-
louin zone. This leads to a change in the value of the
Fermi energy sF(n} (to ensure particle conservation)
which is small, but in view of the size of the MAE not
negligible. The difference in the Fermi energy between
the [0001] and [1010]directions in cobalt is of order 10

C. Aspects of the Brillouin-zone integration

In principle the force theorem establishes a simple in-
tuitive relation between the density-functional theory
band structure and the MAE. Within this framework the
origin of the anisotropy energy may be understood in
terms of the behavior of the energy bands in the Brillouin
zone (BZ). In Sec. IV we will consider this in a detailed
manner. Here we examine how densely s;(k) and s;(n, k)
must be sampled in order to calculate

bE:—bE(n„n2)
= b,E(n, )

—b E(nz)
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eV, and between the [001] and [111]directions in iron
and nickel of order 10 eV. If a common Fermi energy
for the two directions of magnetization were assumed,
this would imply a difference in the number of particles,
b X, between the two directions of magnetization of order
10 for cobalt and of order 10 for iron and nickel, er-
roneously contributing (EN)s~ to the calculated MAE.
From these considerations it is clear that the assumption
of common Fermi energies for both magnetization direc-
tions, which is sometimes made in calculations where the
shift in total energy is calculated through perturbation
theory on the single-particle energies, is not justified.

In terms of the density of states D (s, n), the number of
states N(s, n)= f 'D(e', n)de' and the energy function

E(s,n)= —f 'N(e', n)de', the sum of single-particle en-

ergies U(n) may be written as

cF(n)
U(n)= J de s 'D'(e n', )

=eN(e~(n), n)+F(s, n)+ —,'(e~(n) —s) D(e, n}

(16)

for an energy e close to the Fermi energy ez(n). The
difference in energy, U(ni) —U(n2) can, to an excellent
approximation, be replaced by the difference
F(e,n&) —F(s,n2) evaluated at a common energy s close
to e~(n, ) and e~(nz), as the error involved is of order
(e~(n, ) —e~(n2))(e~(n, )+e~(n2) —2e)D (c, ). This has
been verified by explicit calculation. Relationship (16}is
useful in combination with the linear analytic tetrahed-
ron integration scheme. Using this method the in-
tegrals over a single tetrahedron for the density of states,
the number of states, as well as for the function F(E,n)
may be obtained analytically. This is more accurate than
numerical integration and eliminates the energy mesh
step de as a convergence parameter, ' which would have
to be adjusted corresponding to the sampling density in
the Brillouin zone.

In view of the extremely small energy differences we
are interested in, attention must be given to the partition-
ing of the BZ. By using the point-group and translation
symmetry of the lattice, the star of a k point can be deter-
mined defining an irreducible wedge of the Brillouin zone
(IBZ). For a function with the symmetry of the lattice,
such as e(k), integration over the BZ is usually replaced
by an integration over the IBZ. This integration is com-
rnonly performed by subdividing the IBZ into small
tetrahedra. However, it has been pointed out that in-
tegration over all tetrahedra in the IBZ is not equivalent
to integration over the tetrahedra in the BZ. Individual
tetrahedra from the full BZ can be reduced using point-
group and translation symmetry, but cannot, in general,
be reduced to lie in the traditional IBZ. The use of that
IBZ filled with tetrahedra mis weights the boundary
planes of the IBZ where the spin-orbit coupling has the
largest effect, and thus we expect important deviations in
the anisotropy energy obtained by this method if a
sufficiently dense grid is not used. The convergence of
the anisotropy energy may be affected by contributions
from the boundaries of the IBZ. We have therefore used

the procedure suggested in Refs. 42 and 43. Integrating
over all tetrahedra in the zone can be exactly reduced to
a weighted summation of integrations over irreducible
tetrahedra. Filled bands are then integrated by the tra-
pezoidal rule, which is known to be very efficient for
functions which may be represented by a rapidly conver-
gent Fourier series. In Sec. III A we compare the two in-
tegration methods. The accuracy needed can only be ob-
tained if the mesh points used for the energy calculation
of each field direction are equivalent, i.e., can be obtained
from each other by one of the single group operations
and thus are on the same lattice. Our calculational pro-
cedure results in vanishing anisotropy energies, if the ex-
change splitting or the spin-orbit coupling is set to zero
or if the Fermi energy is above all bands (because the
spin-orbit coupling operator is traceless).

D. LMTO-ASA implementation

By using the force theorem (14), the MAE can be ob-
tained with an accurate description of the band structures
e;(n, k). For the reasons mentioned earlier, we have
chosen the LMTO method in the atomic-sphere approxi-
mation to determine the band structure. This method
employs several approximations whose inhuence on the
single-particle energies must be checked.

Firstly, in a partial wave expansion of the wave func-
tions only a finite number, I,„, of angular-momentum
values is included. In transition metals augmenting a
(spd) basis with 1,„=2 so as to include f partial waves
leads to small changes in integrated quantities such as the
spin and orbital moments. This is illustrated in Table I
by our results for the magnetic moment and g factor.
The f radial wave function is much less localized than
the d radial wave function, and its inclusion provides for
a better description of the regions of space in between
atoms. The MAE was calculated both with /, „=2 andI,„=3. Although the convergence with respect to l,„
can be improved by using the combined correction
terms, we have chosen not to use them because of the
large number of structure constants required and because
the convergence of the reciprocal-lattice sums required in
their calculation is significantly slower than that required
for the calculation of the regular structure constants.

Secondly, in the ASA the input potential is taken to be
spherically symmetric within atomic spheres which re-
place the Wigner-Seitz cell. By means of a full-potential
implementation of the linear augmented plane wave
(LAPW) method we have checked the influence of non-
spherical terms in the potential on the location and
dispersion of the energy bands.

Thirdly, the energy-independent basis is only complete
(for an atomic-sphere potential) for the arbitrary but fixed
energy c. . The energies, c. I, used to calculate the
muffin-tin orbitals are usually chosen as the center of
gravity of the occupied bands. By choosing c I =a~ we
have checked that this has a negligible effect on the cal-
culated MAE.

Our LMTO basis states are the nearly orthogonal 8
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TABLE I. Spin and orbital magnetization (in pz/atom} of iron, cobalt, and nickel at experimental
volumes. The basis set consists of spd or spdf partial waves. The experimental data were taken from
Ref. 48.

Iron spd (theory)
spdf (theory}
expt.

2.21
2.16
2.13

0.047
0.048
0.09

m,

2.25
2.20
2.22

2.04
2.04
2.09

Cobalt spd (theory)
spdf (theory)
expt.

1.61
1.57
1.59

0.085
0.079
0.16

1.70
1.65
1.75

2.11
2.10
2.19

Nickel spd (theory)
spdf (theory)
expt.

0.63
0.60
0.56

0.054
0.051
0.05

0.69
0.66
0.62

2.17
2.17
2.18

functions devised by Andersen and Jepsen. ' They
have pure spin character, diagonalizing n o. The radial
wave functions are obtained by integration of the scalar-
relativistic Schrodinger equation (2) with spin-up and
spin-down potentials which are self-consistently calculat-
ed in the absence of spin-orbit coupling in a first step.
The spin-orbit coupling is added to the Hamiltonian in a
second step and the resulting generalized eigenvalue
problem is reduced to standard form by Cholesky decom-
position of the overlap matrix. The eigenvalues and
eigenstates are then obtained by matrix diagonalization.

With this choice of two-component basis the
exchange-field matrix is block-diagonal in spin, as is the
overlap matrix. The spin-orbit coupling matrix contains
the polar angles of the magnetization direction and the

spin-orbit interaction parameters P&, g „&, and g „I,
which are radial integrals of j(r) with $„1 and P„&, the
partial wave P& (E, r) and its energy derivative

P, (e, r)=OP, (e, r}/Be, respectively, evaluated at the en-

ergy E. I .29

E. Dipole-dipole anisotropy energy

An important contribution to the measured magnetic
anisotropy of a sample, which we have not mentioned so
far, is the shape anisotropy. This may be thought of as
resulting from a classical magnetic dipolar interaction be-
tween magnetic moment densities m(r) (in units of ps,
the Bohr magneton). The magnetostatic energy E ' ' is
(in a.u. )

(17)

In general, m(r) contains spin and orbital contributions. A multipole expansion of the magnetization density inside a
single atomic sphere can be made with multipole moments m, = f r I'I m(r)dr. The interatomic contribution to (17)

associated with the I =0 multipole moment of the density, moo=(4m )
' m„ is (per unit cell)

[(R+r—r') m, ][(R+r—r') m, .]
c „,~ IR+r —r'I'2

X' m, my —3
IR+r —r'II

(18)

where w denotes the atom positions within one unit cell
and I, is the total magnetic moment in an atomic sphere
around site ~.

Due to the long range of the magnetic dipole-dipole in-
teraction, the integral (17) depends on the shape of the
sample and this leads to shape anisotropy. The discrete
dipole sum in (18), which in three dimensions is only con-
ditionally convergent, may be treated by Ewald-
summation techniques. If the term with G=O in the
reciprocal space part of the summation is omitted, then
the remainder is absolutely convergent. The latter does

not give rise to any anisotropy energy in monatomic cu-
bic lattices, and the multipole expansion would have to be
carried out to higher order to obtain contributions to the
anisotropy energy. In Fig. 1, the variation of the anisot-
ropy energy [E ' '~(0001)—E ' '~(1010)] derived from
the dipole sum (18) for an hcp lattice as a function of the
c/a ratio at a constant volume, is shown. E ' '~(n) is
the dipole sum in (18) with a11 the dipoles oriented along
the n direction. The magnetic moment per site, Im, I, has
been taken to be 1.7ps (approximately the magnetic mo-

ment of cobalt) and the volume corresponds to the exper-
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b, m /m =7.8 X 10 and 18 X 10, respectively, and
this leads to very small contributions to the MAE as we11.
We conclude that the MAE of iron, cobalt, and nickel
does not have its origin in the magnetostatic energy.
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III. CALCULATIONS

The problem of calculating the single-particle eigenval-
ue sum to one part in 10 and the convergence of the
Brillouin-zone integral are discussed in Sec. IIIA. In
Sec. III B we investigate how the calculated AE depends
on the number of partial waves included in the angular-
momentum expansion of the wave functions.

A. Convergence of the Brillouin-zone integral

FIG. 1. Contribution of the dipole-dipole sum (18) to the
magnetocrystalline anisotropy energy in a hcp lattice as a func-
tion of the c/a ratio. The magnetic moment per site has been
taken to be 1.7p& and the volume corresponds to a Wigner-
Seitz sphere radius of 2.621 a.u. A vertical line marks the ideal
ratio c/a =Q-', .

imental volume of cobalt (Wigner-Seitz sphere radius
S =2.621 a.u. The unit of length in atomic units is the
Bohr radius, ao =0.529 A). It can be inferred from the
figure that the anisotropy energy arising from the dipo1e-
dipole sum (18) is almost completely a consequence of the
difference between the actual c/a ratio and its ideal value

Cobalt has a c/a ratio which deviates only
—0.67% from the ideal value and we retain a value of 0.4
iMeV/atom favoring the c axis.

The contribution of higher multipole moments m& to
the magnetostatic energy will be a factor -(m& /moo)
(m&. ./moo) smaller than the dipole-dipole energy (18).
The next nonzero moment in uniaxial cobalt is a quadru-
pole moment (I =2), and in cubic iron and nickel an oc-
tupole moment (I =4). A full potential calculation re-
sults in a quadrupole moment for cobalt such that
m2 /moo —10 ao and in an octupole moment for nickel
such that m 4 /m oo

—10 a o. These small moments
reAect the small deviation of the charge density in the
muffin-tin spheres from spherical symmetry. We expect
the contributions to the magnetostatic energy from
higher multipoles to be correspondingly smaller than the
value for the dipole-dipole sum calculated above and thus
entirely negligible.

Inclusion of spin-orbit coupling leads to anisotropy in
the magnetization and to a deviation of the local direc-
tion of the magnetization from the average (z) magnetiza-
tion direction, i.e., m (r) and m (r) are no longer zero.
The intra-atomic magnetostatic energy per atom is of or-
der E'"'"'=m /c 5 . With m = ~m, ~

=1.7pz and
S =2.6 a.u. this yields 30 peV in cobalt. As the magneti-
zation is anisotropic by an amount Am, the intra-atomic
magnetostatic energy is anisotropic by an amount
2(bm/m)E'""'. In cobalt, bm/m =4.5X10, and
this results in a contribution to the MAE which is less
than 1% of the measured value. In iron and nickel,

BE=E(001)-E(111) Nickel

0
U

160
0

80
40,—2

I
I
I
I

~ W

~l

I i I1 i I i I i I

9.6 9.8 10.0 10.2 10.4 10.6

Number of valence electrons q

FIG. 2. The magnetocrystalline anisotropy energy as a func-
tion of the number of valence electrons, AE "(q), calculated with
the band structure of Ni, n =10. q =n is indicated by an arrow.
The experimental value is indicated by the horizontal dashed
line; converged calculated values, as discussed in the text, are
denoted by a solid circle. The dotted, dashed, and solid curves
are obtained from calculations with 40, 80, and 160 divisions
along a reciprocal lattice vector, using an spd basis.

The energy difference bE=b, f eD(e)ds is calculated
as described in Sec. II. After diagonalizing the Hamil-
tonian including the spin-orbit coupling term, the bands
are filled with electrons up to the Fermi energy cF,
defined so that 1/Qaz f f azg;5(e —e;(k))d kde

cF= f D(c, )de=n, the number of valence electrons per
atom. Qzz is the Brillouin-zone volume. The single-

particle eigenvalue sum, f eD(a)dais , calculated using

this Fermi energy. To see how sensitive hE is to details
of the band structure, we also calculate AE for a range,
Bn, of noninteger fillings about n using the band structure
calculated self-consistently for n electrons. We denote
this auxiliary function as bE "(q), where q =n +5n We.
will use b,E:b,E"(n—).

The resulting function bE (q) is shown in Figs. 2—4
for Ni, Co, and Fe, respectively. For Ni the results of
calculations of bE "(q) with three different Brillouin-zone
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FIG. 3. hE "(q) for Co, n =9. q =n is indicated by an arrow.
The dashed curve was obtained from a band structure calculat-
ed with an spd basis. The solid curve was obtained from a band
structure calculated with an spdf basis. The experimental value
is shown as a horizontal dashed line. Converged calculated
values are shown as solid circles.

0
U

AEW(001)-E(111) It on

LLJa ) I I I I l—2
7.6 7.8 8.0 8.2 8.4

Number of valence electrons q

FIG. 4. AE"(q) for Fe, n =8. q =n is indicated by an arrow.
The experimental value is shown by the horizontal dashed line;
the converged calculated value is denoted by a solid circle. The
solid curve was obtained from calculations with 96 divisions
along a reciprocal lattice vector using an spd basis.

meshes corresponding to N =40, 80, and 160 divisions of
the reciprocal-lattice vectors are shown. Although the
form of hE "(q) may be obtained with a moderately fine

mesh, it is not at all clear from Fig. 2 that it is adequately
converged even with the mesh corresponding to 160
divisions. For bands whose dispersion within a tetrahed-
ron is quadratic in k, the linear analytic tetrahedron
method gives rise to an error in the single-particle eigen-
value sum which is proportional to U

~ . (u, the volume
of a single tetrahedron, is equal to Qazl6X .) Part of
this error comes from filled tetrahedra and part from
partially filled tetrahedra which the Fermi surface inter-
sects. Although it has been demonstrated in a few cases
that the error arising from the filled tetrahedra dominates
that arising from the partially filled tetrahedra on the
scale of millielectronvolts, it is not a priori obvious that
the latter error can be neglected in a calculation of AE on
a microelectronvolt scale.

The anisotropy energy b,E"(q) is plotted as a function
of v in Fig. 5 for a few representative values of
q =10.0, 10.2, 10.4, 10.58, and 10.61. For some values of

FIG. 5. Convergence of hE "(q) for n =10 and several select-
ed values of q as a function of the scaled tetrahedron surface
area 6'. h=(u/uo)' ', where u is the volume of a tetrahedron
and uo is the volume of a tetrahedron obtained by dividing the
reciprocal lattice vectors into 160 intervals. The number of
divisions of the reciprocal lattice vectors used in the calcula-
tions, X, is indicated at the top of the figure. The results ob-
tained with the adaptive integration scheme described in the
text are denoted by the solid symbols on the vertical axis.

q it seems to be possible to extrapolate the calculated
values of b,E"(q) to an infinitely dense mesh (U~O)
whereas for other values of q, and in particular for
q =10.0, the convergence is not very systematic. By ex-
amining the tetrahedra where the convergence is slow, we
have found that the origin of this problem lies in the band
crossings and anticrossings which occur near the Fermi
energy close to X (Fig. 6) along what were high symmetry
lines in the absence of spin-orbit coupling. These give
rise to the deviations from a straight line seen in Fig. 5.
(In particular, the d-hole pocket Fermi surface is sensi-
tive to the magnetization direction. ) In Fig. 6, mesh
points corresponding to 40, 80, and 160 divisions of the
reciprocal-lattice vectors are shown together with the
bands in the region close to the Fermi energy. It is clear
that 40 divisions do not resolve the band crossings at all
adequately while the 80 and 160 division meshes begin to
resolve individual band crossings of the five bands
which cross the Fermi energy within a distance of
0.025(2+/a)ao ' of each other. A mesh of (160) points
is the densest uniform mesh for which we were able to
perform a calculation for Ni. Even making full use of
symmetry, this required diagonalizing an 18X18 Ham-
iltonian at -550000 k points.

Because the integrand is, in general, not smooth (see
Fig. 6) we choose to subdivide our original mesh
{N~2N) rather than taking another mesh with a slightly
different interval N'. If we did this, or if we simply dis-
placed the original mesh by a fraction of an interval, then
we would obtain another value for AE and the variance
of these results would be a measure of the error in the in-
tegration. This is illustrated in Fig. 7 for Ni, where bE is
shown as a function of the tetrahedron volume for a large
range of volumes and using a uniform mesh. The corre-
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FIG. 6. Band structure of Ni along 6, =2m/a(0, 0, 1) and 6, =2m/a(1, 0,0) with the spin quantization axis in the (111) (dashed
lines) and (001) (solid lines) directions. Here 0.5 « l » 1.0. 1=1.0 corresponds to the X point. Division of the reciprocal lattice vec-
tors into 40, 80, and 160 intervals is indicated in the figure. The Fermi level corresponding to 10 electrons per atom is chosen as the
zero of energy.

sponding number of divisions, N, of the reciprocal-lattice
vectors is shown at the top of the figure.

For almost a11 of the meshes considered AE is seen to
be negative. If the irreducible wedges with incorrect
weighting are used, then the AE obtained is that shown

by the open diamonds in Fig. 7. It is evident that, for
such coarse meshes, the misweighting has a large effect
on the calculated values and that it is possible to find

60

I I I Ii I I I I I

40 2724 21 18 16 15 14 12

E ~o-0
~U

e 20

Nickel 0
0

~ ~

~ ~

LIJ
CI 0

-20

—40 I i t i & l

50 100 150
2

FIG. 7. MAE for Ni (n =10) obtained with coarse integra-
tion meshes. hE is plotted as a function of 6 where 6= 160/X
(see Fig. 5) and N, the number of intervals along the reciprocal
lattice vectors used in the Brillouin-zone integration, is shown
at the top of the figure. Results obtained by integration over ir-
reducible wedges (diamonds) are connected by a dashed line; re-
sults obtained by integration over the Brillouin zone of the fcc
lattice with correct weighting of sampling points (circles) are
connected by a solid line. The data in the small box at the ori-
gin are shown on an expanded scale in Fig. 5.

mesh densities where the calculated value for hE is in
(fortuitously) good agreement with experiment.

Because the convergence problems are associated with
band crossings and anticrossings near the Fermi energy, a
very dense uniform mesh is not necessary. (If the partner
bands involved in a crossing or anticrossing are either
both occupied or unoccupied, then the errors cancel and
no problem occurs. ) At a band crossing, e;(k) is not
differentiable so that the use of interpolation schemes to
generate the function on a dense mesh will in general not
be helpful. We have therefore developed an adaptive in-

tegration scheme which refines tetrahedra that are partic-
ularly difficult to converge at a chosen Fermi energy by
subdividing them into eight smaller tetrahedra. These
eight tetrahedra are themselves subdivided until the re-
quired aeeuracy is achieved. For those tetrahedra where
the convergence is smooth (i.e., ~u ~

) we use a local
quadratic expansion of the bands to extrapolate (analyti-
cally) the contribution to the anisotropy energy to zero
volume (infinitely dense mesh). A limit is set in practice
by the amount of inemory available on our computer (an
IBM model 3090 computer with 128 Mbytes of core
storage). The results obtained with this method are
marked as solid symbols along the vertical axis in Fig. 5

and as solid circles in Figs. 2 —4. These values represent
estimates for the results obtained by extrapolating the
values obtained with % =80 and 160 (open symbols) as-
suming a U dependence. The calculation was, howev-
er, a factor -6 faster than the calculation performed
with the uniform mesh of (160) points. This value of
hE, representing our best estimate for the anisotropy en-

ergy for Ni, is given in Table II. In order to make an esti-
mate of the error bar on this value, we performed calcula-
tions based on slightly different meshes which sample the
band crossings in Fig. 6 differently. From these other
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FIG. 8. Convergence of AE for Co as a function of 5'.
6=(U/Uo)' ', where v is the volume of a tetrahedron and vo is
the volume of a tetrahedron corresponding to 160 divisions of
the reciprocal lattice vectors in the (x,y) plane and 96 divisions
of the reciprocal lattice vector along the z axis.

sion of the wave functions at some l,„(Sec.II D). Self-
consistent spin-polarized calculations were first per-
formed with basis sets containing spd (1,„=2)and spdf
(!~,„=3)partial waves. For Co the resulting band struc-
tures are plotted along symmetry lines in the AHL plane
in Figs. 9(a) and 9(b), respectively. Including spin-orbit
coupling and with the field along the c axis the bands are
as shown in Fig. 9(c). hE was then determined for each
of the two basis sets using the adaptive integration
scheme described above. The results for Fe, Co, and Ni
(n =8, 9, and 10 electrons, respectively) are given in
Table III and for Co, hE"(q) as calculated with both
values of l,„ is shown in Fig. 3. The difference between
hE obtained with 1,„=2and 1,„=3is small for Fe and
Ni, but large for Co, where with the spd basis the c axis is
found to be the easy axis, in agreement with experi-
ment. ' With the spdf basis the easy axis is found to be
in the basal plane and the absolute value of the anisotro-

py energy is reduced to —15 peV/atom. Because of the

values we estimate the accuracy to be +0.5 peV for Fe
and Ni.

For Co we found the convergence of b,E(q) to be very
regular for all values of q shown in Fig. 3. In Fig. 8,
AE[—:hE"(n)] is plotted as a function of v

~ for three
different meshes (open circles). These calculations were
performed with an spd basis set. The coarsest mesh has

N, =12 divisions of the reciprocal-lattice vector in the z
direction and N, =20 divisions of the reciprocal-lattice
vectors in the basal plane. We denote this mesh by
(20,20, 12). By doubling the number of divisions in each
direction the second (40,40,24) and third (80,80,48)
meshes are obtained. The iterative refinement scheme
leads to a value for bE of —29 peV (solid circle). The de-
viation of the open circles from a straight line indicates
an error bar of +2 peV. In order to test the sensitivity to
the details of the sampling, hE was calculated for several
other meshes similar in density to the (40,40,24) mesh.
The error bar derived from these calculations is con-
sistent with that just given. The values for hE given in
the tables were obtained from the iterative refinement cal-
culation.

r

r
4

(a)

A

A

H

B. Convergence with respect to the number of partial waves

Before discussing the results, we first consider the
effect on hE of truncating the angular-momentum expan-

Q)

LLJ

spd
spdf
expt.

Fe
Eoo& E I I 1

—0.4
—0.5
—1.4

Co
Eooo l E

1 o 1o

—29
16

—65

Ni

Eoo& E» 1

—0.6
—0.5

2.7

TABLE II. Magnetocrystalline anisotropy energy, hE, in
peV/atom for Fe, Co, and Ni. hE was calculated at the experi-
mental volume with two basis sets of LMTO's for which 1,„=2
and 1,„=3,respectively. The numerical uncertainty in the an-
isotropy energy is estimated to be 0.5 peV for Ni and Fe, and
about 2 peV for cobalt. The experimental values of the MAE
for Co were taken from Ref. 3 and for Fe and Ni from Ref. 4.

A

FIG. 9. Co band structure along symmetry lines in the AHL
plane. (a) Calculation performed without spin-orbit coupling
with an spd basis. (b) Calculation performed without spin-orbit
coupling with an spdf basis. Solid curves are majority bands,
dashed curves are minority bands. The zero of energy, chosen
to correspond to a 611ing of q =9 electrons per atom, is shown
as a horizontal line. The Fermi energy corresponding to a
filling of 8.8 valence electrons is denoted by the dashed horizon-
tal line. (c) Calculation performed including spin-orbit coupling
with an spdf basis with the spin quantization axis along (0001).
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small amplitude of the f partial wave near the nucleus,
the f-wave spin-orbit coupling parameter is 2 orders of
magnitude smaller than the spin-orbit coupling parame-
ter for the d partial waves. This is not the cause of the
change in hE. Examination of the local anisotropy ener-

gy in the Brillouin zone showed that the difference origi-
nates completely from a change in the electronic struc-
ture in a slab of total thickness 2vrl6c around the AHL
plane.

The most important difference between Figs. 9(a) and
9(b), which we identify as giving rise to the change in
AE"(q) seen in Fig. 3, is that the inclusion of f partial
waves leads to bands 17 and 18 being pushed downwards
(by 0.09 eV with respect to the Fermi energy at point H
and by 0.11 eV, three-quarters of the way along line AH)
decreasing the volume of the hole pocket around point L.

To determine whether the LMTO-ASA band structure
for Co was sensitive to further changes in the basis or to
details of the potential not captured by the ASA, we per-
formed spin-polarized full-potential LAPW (FLAPW)
calculations for Co. Compared with the band structure
shown in Fig. 9(b) we found that in the FLAPW calcula-
tion bands 17 and 18 lie at most 0.03 eV higher along line
AH. We therefore expect the MAE calculated with a
full-potential method to be intermediate between the spd
and spdf results shown in Fig. 3. hE will thus not be
changed by as much as is needed to bring it into agree-
ment with experiment.

IV. RESULTS

One of the aims of the present investigation was to
determine whether any trends in hE could be identified
as a function of the bandwidth, the strength of the spin-
orbit coupling, or of the band filling (number of valence
electrons). In a preliminary study based on canonical
bcc, fcc, and hcp bands, no simple trends were found
for reasonable values of the spin-orbit coupling parame-
ter, exchange-splitting, and 3d bandwidth. This may be
different if the bandwidth is of order of the spin-orbit
splitting. We found that there were contributions to the
anisotropy energy from both states near the Fermi level
(which in the absence of spin-orbit coupling were degen-
erate) giving rise to a Fermi-surface-dependent contribu-
tion as well as from states that are completely filled which
give rise to a Fermi-surface-independent contribution.
Both contributions may be of the same order of magni-
tude and may have opposite sign. This has previously
been discussed in detail for nickel. " The completely
filled states are relatively easy to understand. If they are
degenerate in the absence of the spin-orbit interaction,
they can be split by this interaction in first order. To first
order in g these splittings are of equal magnitude but op-
posite sign and hence make no contribution to AE. There
are noncanceling higher-order contributions to AE aris-
ing from interactions of the occupied with the unoccu-
pied states. The contribution to the anisotropy energy
left over after summing over all single-group symmetry-
related k points scales with g for hexagonal lattices, and

for cubic lattices. The expression for the anisotropy
energy thereby obtained is strictly only valid when, for
the band being considered, all k points related by single-

group symmetry are occupied. In that case the anisotro-
py energy scales with the expected power of (.M Howev-
er, close to the Fermi energy the simultaneous occupation
of all k points for a band is not guaranteed, especially not
if the band was degenerate, thereby destroying the simple
dependence on (. The trends that otherwise might be
present can be obscured by this Fermi-surface-dependent
contribution.

In Sec. IV A we discuss the origin of the calculated hE
and in Sec. IVB we show how hE depends on small
changes in the number of electrons. In Secs. IV C—IV E
the dependence of hE on the strength of the spin-orbit
coupling, the lattice strain, and the choice of exchange-
correlation potential, respectively, is examined.

A. Anisotropy energy of Fe, Co, and Ni

1. Nickel

Although the maximum splitting of the energy bands
when spin-orbit coupling is introduced is of the order of
—', (d (where gd is the free-atom spin-orbit coupling param-

eter), b,E is much smaller than this. One reason for this
is that the number of electrons whose energy is lowered
by the full spin-orbit splitting is very small because the
coupling is only effective around points and lines of high
symmetry. The other reason is that in reciprocal space
there is a partial cancelation of anisotropy contributions
from different regions in the Brillouin zone which would
be equivalent without spin-orbit coupling. To illustrate
this, part of the band structure of Ni along the lines
I -X(001) and I —X(100) near the X point is shown in
Fig. 6 for two different magnetization directions n~~[001]
and n~~[111]. As a rule of thumb, the spin-orbit splitting
is largest for k~~n and smallest for kin. ' By comparing
the (001) and (111)energy bands at both X points, we see
that compensating contributions can be expected. This is
indeed found in the detailed calculations. By plotting the
anisotropy energy density in reciprocal space we find that
the changes in b,E"(q) shown in Fig. 2 may be attributed
to bands close to cz whose degeneracy along lines of high
symmetry is lowered by the inclusion of spin-orbit cou-
pling, i.e., ddE "(q)ldq is a Fermi-surface-related effect.
To understand the absolute value of AE "(q), the contri-
bution from all the filled bands must be included (or, if
we work in terms of holes, all the unfilled bands). Be-
cause the spin-orbit operator is a traceless operator, the
anisotropy energy is zero once the Fermi level is above
the d-band complex. In nickel this has the consequence
that only states near points L and X contribute to the an-
isotropy.

From Fig. 2 it is clear that the calculated hE has the
wrong sign in nickel. It can also be seen that a maximum
occurs in the anisotropy energy at about 10.2 electrons.
For this occupation the Fermi level is near the top of
band 8 at point X. de Haas —van Alphen (dHvA) mea-
surements ' have failed to find any orbits with the ex-
tremal area predicted for this hole pocket by LSDA cal-
culations. In measurements of the magnetic anisotropy,
the large number of Fourier coefficients needed to de-
scribe the torque has been interpreted as being due to the
presence of a much smaller pocket than predicted by the
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LSDA, which is populated and depopulated when the
magnetization direction is changed and the top of band 8
moves through cF.

Our analysis of bE "(q) indicates that a shift of band 8

downwards such that the hole pocket is almost complete-
ly eliminated would lead to a positive bE"(q) around

q =10. It is tempting to speculate that the correction to
the LSDA necessary to bring the density-functional Fer-
mi surface into agreement with dHvA would also lead to
a hE in agreement with experiment. However, this as-
sumes that the true Fermi surface would be given by the
density-functional single-particle eigenvalues. Recently it
has been shown by counterexamples that this cannot be
expected to be true in general.

2. Cobalt

From Fig. 3 (solid curve, calculated with 1,„=3) jt
can be seen that, for cobalt, the calculation does not pre-
dict the correct easy axis. In the absence of spin-orbit
coupling, the whole AHL plane is doubly degenerate for
each spin due to the screw operation in the hcp lattice.
Depending on the direction of the magnetization this
double degeneracy may be removed when spin-orbit cou-
pling is added. From group theory one finds that the
bands in the AHL plane remain doubly degenerate with
n perpendicular to the c axis. This degeneracy is re-
moved if n is parallel to the c axis (except along the line
AL which remains doubly degenerate). This group-
theoretical result was confirmed in the numerical calcula-
tion. The resulting band structure along symmetry lines
in the AHL plane is shown in Fig. 9(c). The Fermi sur-
faces in the AHL plane using the bands calculated with

1,„=3 are shown in Figs. 10 and 11 for n parallel and

perpendicular to the c axis, respectively.
From these symmetry considerations a large contribu-

tion to b,E might be expected from a region around the
whole two-dimensional AHL plane. In particular, we ex-
pect a large anisotropy if there are doubly degenerate
bands with little dispersion at the Fermi level so that the
spin-orbit coupling can cause one of the bands to become
completely filled and the other to become completely
empty. This criterion is obviously fulfilled for the Fermi
energy corresponding to -8.75 electrons in Figs. 9(b)
and 9(c). (The dashed horizontal line shown in the figure
corresponds to a filling of 8.8 electrons). This structure
accounts for the very rapid change in bE "(q) at q =8.75
whose onset occurs at q -8.8 in Fig. 3.

The exact location and dispersion of the degenerate
bands 17 and 18 in the AHL plane with respect to the
Fermi level thus influence the calculated hE very strong-
ly. At the L point of the zone these bands have almost
equal p-like and d-like character whereas at the H point
the character is almost completely d-like. Both the
dispersion and the location with respect to the Fermi lev-
el of these two bands can change upon inclusion of free-
electron-like f states in the basis (Fig. 9). As seen in Sec.
III B, bands 17 and 18 are shifted downwards at H by
0.09 eV with respect to cF and the Fermi-surface dimen-
sions of these bands in the AHL plane become smaller
upon inclusion off states in the basis.

FIG. 10. Fermi surface for Co in the AHL plane with the

field along (0001), corresponding to the band structure shown in

Fig. 9(c). The splitting of bands 17 and 18 around L is due to
the spin-orbit coupling and gives rise to the large variation of
EE"(q) around q

=8.75 electrons in Fig. 3.

3. Iron

In iron the correct sign is obtained for bE and the
function b,E"(q) (Fig. 4) is featureless for values of q -8.
However, in view of the results for Ni and Co this agree-
ment with experiment must be regarded as being fortui-
tous.

B. Number of valence electrons

By forming a very dilute alloy it should be possible to
probe the sensitivity of the anisotropy energy to the band
structure in the neighborhood of c,F for the elemental ma-

terials. In Ni a rapid decrease of anisotropy energy on al-

loying both with Cu, Rh, and Ru is experimentally ob-
served at low temperatures. At room temperature, al-
loying with Co and Fe also leads to a decrease. ' For Co
we have not found any low-temperature measurements.
A slight decrease in the anisotropy energy at 77 K has

A L

FIG. 11. Fermi surface for Co in the AHL plane with the
field along (1010), from a calculation performed with an spdf
basis. Bands 17 and 18 are not split by the spin-orbit interaction
if the spin quantization axis is perpendicular to the c axis.
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been reported on alloying Co with Ni. At room tem-

perature alloying Co with Fe also leads to a decrease in

the anisotropy.
Because we do not predict the correct easy axis for Co

or Ni, a detailed comparison with experiment is not pos-
sible. It is nevertheless of interest to know the range of
validity of the function b,E"(q). The large variations
found in AE "(q) for Ni and Co (Figs. 2 and 3) occurred
for values of q outside the range Iq n—

~ &g/I„, -0.05,
where db, E"(q)/dq may be considered reliable. Outside
this small range of 5n the exchange splitting b,e„, can no

longer be regarded as being constant. According to the
we11-known Slater-Pauling curve, the magnetic moment
decreases linearly with increasing number of valence elec-
trons and in general the exchange splitting is proportion-
al to the magnetic moment, At „,=mI„,. The Stoner pa-
rameter, I„„may be taken to be constant over the range
of 5n we are interested in. For a given number of valence
electrons q, the exchange splitting and the magnetic mo-
ment must be determined self-consistently. The simplest

way of doing this is within the virtual-crystal approxima-
tion (VCA). For dilute alloys formed with neighboring
elements in the common band regime, the VCA should be
a reasonable guide to the alloying behavior of the MAE.
For sufficiently high alloy concentration the effect of dis-
order will be to smear out the Fermi surface and the
VCA will break down. We have carried out self-

consistent spin-polarized calculations for noninteger
numbers of valence electrons, n +5n, such that n =9 or
10, corresponding to Co and Ni, respectively, and
5n = —0.2, —0. 1, 0.0, 0.1, and 0.2 electrons for Co and
5n =0.0, 0.1, 0.2, and 0.3 electrons for Ni. For these cal-
culations the experimental Co and Ni lattice constants
were used.

The values of bE =EE"+ "(n +5n) shown in Fig. 12
as solid symbols were calculated as previously for integer
values of n using the iterative refinement scheme. The
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FIG. 12. hE"+ "(q) calculated with an spd basis for
n +5n =10.0 (heavy solid line and circles), 10.1 (squares), 10.2
(downward-pointing triangles), and 10.3 (upward-pointing trian-

gles). The band structures for n +5n electrons were calculated
within the self-consistent virtual crystal approximation. Values
of bE"+ "(n+5n) are denoted by solid symbols. All values

denoted by symbols were calculated using the iterative
refinement scheme and the solid lines joining the symbols are
only a guide to the eye. The calculations were performed with

the experimental lattice constant for Ni in the fcc structure.
The experimental value for Ni is shown as a horizontal dashed
line.
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FIG. 13. AE" + "(n+6n) calculated with an spd basis in the
virtual crystal approximation for n +5n =8.8, 8.9, 9.0, 9.1, and
9.2 (circles). All values were calculated using the iterative
refinement scheme. The dashed line denotes hE "(q) for n =9 as
in Fig. 3. The experimental value for Co is shown as a horizon-
tal dashed line.

open symbols represent values of hE"+s"(q) also ob-
tained with the iterative refinement scheme but for
difFerent filling (quan +5n) of the self-consistently calcu-
lated (n +5n) band structure. The solid symbols follow
the trend indicated by the heavy line, b,E"(q), in Fig. 12.
There is a minimum in the anisotropy energy at q =10
electrons and a maximum around q =10.2 electrons.
However, there are quantitative differences, the most ob-
vious of which is that within the VCA the MAE corre-
sponding to 10.2 electrons is now larger than the experi-
mental value. The origin of this peak is related to the
band-8 hole pocket at point X and underlines the necessi-
ty to describe this feature correctly. The existence of
such a peak would provide a natural explanation for the
observed rapid decrease in MAE when Ni is alloyed with
either Cu, Rh, or Ru. Although the uncertainty related
to the existence of the X hole pocket discussed in the pre-
vious section remains, it seems highly likely that band 8
at point X will be shifted downwards with respect to the
other bands in a full density-functional calculation. The
results shown in Fig. 12 indicate that the function
hE"+ "(q) provides a good description of the MAE over
a range of Iq n~i &—0.05 electrons, in agreement with the
estimate given above.

For Co the VCA results, bE"+ "(n +5n), shown as
circles in Fig. 13, track the bE"(q) curve remarkably
faithfully and much better than we had expected. The
reason is simple. The majority-spin d bands are com-
pletely filled in Co (i.e., it is a strong ferromagnet) and the
exchange splitting is large compared to the spin-orbit in-
teraction parameter. There are therefore no majority-
spin bands close to the bands at the Fermi energy which
can be coupled to by the spin-orbit interaction. For a
small change in the number of valence electrons, the to-
pology of the minority bands around the Fermi energy
corresponding to a given filling of the energy bands does
not change nor can it change significantly when the spin-
orbit interaction is switched on. It is this topology which
determines the anisotropy energy. The large basal plane
anisotropy for q &8.8 electrons indicated by AE"(q) is
confirmed by the VCA calculation. However, we have
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not found experimental evidence in support of this
feature. Part of the reason for this is that when Co is al-
loyed with even very small amounts of Fe (-1%) in or-
der to reduce the average number of valence electrons, it
undergoes a structural phase transition.

C. Magnitude of the spin-orbit interaction

TABLE III. Calculated spin-orbit coupling parameters (in

meV) for the majority (f) and minority ($) d partial waves at the
center of the unhybridized d band, Cd, and at the Fermi ener-

gy, for Fe, Co, and Ni.

Iron
Cobalt
Nickel

gd(Cd&)

62
78
95

4«d i)

59
76
94

ddt(eF)

69
92

111

gg(eF)

54
79

105

For a partial wave P& (e, r) with energy s, the spin-orbit
coupling parameter P&(e) = f P& (s, r)g(r)r dr, where g(r)
is given by (6). In evaluating the integral, we have
checked that it does not make any difference whether we
use the minority- or majority-spin potential or their aver-
age (see Secs. II A and II D). The spin-orbit coupling pa-
rameters calculated for the d partial waves with energies
corresponding to the centers, ' Cd, of the majority
and minority d bands are given in Table III for Fe, Co,
and Ni. Because of the renormalization of the 3d wave
function in the solid, they are about 10% larger than the
values of 55, 70, and 88 meV calculated for the d" 's'
configurations of free Fe, Co, and Ni atoms, respectively.
The increase in gd(Cd ) going from Fe~Co~Ni is
roughly proportional ' to Z, where Z is the atomic
number.

The spin-orbit coupling parameters evaluated at the
Fermi energy, gd(e~) and gd(s~), are also given in Table
III. Because the partial wave P)(e, r) is normalized to
unity within the atomic Wigner-Seitz sphere, bonding
states with a large amplitude at the sphere boundary
(r =S) have a correspondingly smaller amplitude at the
nucleus. For antibonding states, the situation is reversed.
The magnitude of the relativistic effects increases from
the bottom to the top of the band, and for the transition-
metal d bands this increase is by almost a factor of 2.
The minority electrons at the Fermi energy are more
bonding in character than the majority electrons, so that
gd(s~) &gd(ez). As a result of the increasing exchange-
splitting, whereby the potential seen by the majority d
electrons is deeper than that seen by the minority d elec-
trons, the difference between gd(e„) and gd(s~) increases
on going from Ni —+Co~Fe and is almost 30% for Fe.

Our results for AE with spin-orbit coupling which is
90, 100, and 110% of the ab initio calculated value
(Table IV) indicate that for Ni and Co, respectively,
roughly fourth- and second-order power laws are fol-
lowed. The accuracy of the calculated MAE's does not
allow a determination of the exponent to better than
+0.5. We have encountered cases where Fermi surface
effects dominate b,E (and not just changes in b,E) and
lead to different dependences on g than g for cubic and

TABLE IV. Magnetocrystalline anisotropy energy, hE, in
peV/atom for different values, A, , of the strength of the spin-
orbit interaction, )(,((r). d E was calculated at the experimental
volume with I,„=2.

0.9
1.0
1.1

expt.

Co
+0001 +

&p&p

—25
—29
—35
—65

Ni

&ooi &» I

—0.4
—0.6
—0.8

2.7

g~ for uniaxial lattices, respectively. These results show
that a small uncertainty in the value used for the spin-
orbit coupling cannot account for the discrepancy be-
tween hE and the experimental MAE.

D. Exchange-correlation potential

All the calculations mentioned so far were carried out
using the parametrization of von Barth and Hedin for the
exchange-correlation potential. Because of the sensi-
tivity of hE to the details of the band structure at cz, we
investigated the influence of the choice of exchange-
correlation potential on the anisotropy energy. Using the
exchange-correlation potential of Ceperly and Alder, as
pararnetrized by either Perdew and Zunger or by Vosko,
Wilk, and Nusair, we found a change in AE of less than
3 peV/atom for cobalt. A large change is indeed not ex-
pected if the bands at the Fermi level do not change
significantly. This is because the remainder of the anisot-
ropy energy can be understood by means of perturbation
theory on the energy bands. The hE which results from
averaging over bands and k points is not sensitive to
changes in the location of the energy bands of the order
of 10 meV.

E. Influence of strain

All the calculations which we have discussed so far
were performed using the experimental lattice parame-
ters. It is well known that the LDA underestimates the
equilibrium lattice constants of transition metals by as
much as 3%.' Since it is not a priori clear whether one
should compare experimental quantities with the corre-
sponding quantities calculated at theoretical or experi-
mental volumes, we also investigated the effect of strain
on AE. For each value of the strain we performed a self-
consistent spin-polarized band-structure calculation and
eva1uated hE by means of the force theorem. The results
are given in Table V for Ni and Co. It can be seen im-
rnediately that using the theoretical volume does not lead
to a value for AE which is in better agreement with ex-
periment than the values calculated using the experimen-
tal volumes. We conclude that this is not the source of
the disagreement with experiment.

For Fe and Ni the strain dependence of the anisotropy
energies in Table V is smaller than our estimated error
bars. However, it proved to be systematic and linear for
Co and Ni but not for Fe. The structure in the energy
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TABLE V. Magnetocrystalline anisotropy energy, hE, in peV/atom for different values of strain
compared to experimental values of the MAE calculated using the experimental magnetostriction con-
stants and elastic constants. For Ni these constants were taken from Ref. 4. For Co the values given in
Ref. 58 were used. The strain components which are not given explicitly are zero. The numerical un-

certainty in the absolute value of the anisotropy energy is estimated to be 0.5 peV for Ni and Fe, and 2
peV for Co. Anisotropy energy differences are more reliable than this.

Eoo& E» i

Nickel

expt.

2.68
2.47
2.26

spdf

—0.52

spd

—0.56
—0.61
—0.68

strain (%)

e» =e» =e33 —1

&» =&» =&33=

E&0&0

Cobalt

expt.

—65
—38
—11
—92

spdf

16
19

10

spd

—29
—19
—11
—38

strain (%)

» 22 33

) =8» =833 = 2

e» =e» = —e33/2=+0. 33

bands is resolved sufficiently well with our k grid to be
able to derive an indication of the strain dependence.
The corresponding experimental values which are given
in Table V were obtained by expressing the strain depen-
dence of the anisotropy constants in terms of the magne-
tostriction constants and the elastic constants. The
change in the anisotropy constants upon straining,
b,E (e), can be deduced to be

bE, (e)= —9h3Be

for nickel and iron where only symmetry conserving
strains are considered, i.e., e» =e22 =e33 e and

12 23 31 0. For cobalt we consider 11 22 and
e12 =e23 =e31=0 and then find

bE„&(e», e33) I[(A,q+Aa)(C))+Ct3)+2k, ,Ct3]e, t

+[(A,„+As)C,3+C33X( ]e33I

Here, A, „ac and h3 are magnetostriction constants ' '

and B is the bulk modulus (C»+2C,2)/3. C," are elastic
constants and e; are components of the strain tensor.
From Table V it can be seen that the sign of the change
in the anisotropy energy on straining the lattice is given
correctly but the strain dependence is much smaller (a
factor 5) than what is found experimentally.

V. DISCUSSION

We have seen that there is considerable disagreement
between our first-order estimate hE for the anisotropy
energy and experiment; the easy axes are predicted in-
correctly for Ni and Co. Since the energies are so small,
it is natural to ask how the results of the calculation de-
pend on the various other approximations made, before
attributing the failure to the LSDA. We have demon-
strated that the sensitivity of the results to strain, choice
of exchange-correlation potential, the magnitude of the
spin-orbit coupling interaction, and to small changes in
the position of the Fermi level (both within a rigid band
model and within the virtual crystal approximation) is
insufficient to account for the discrepancies which we
have found. There are several other approximations
whose effect we must consider.

Foremost among these is the approximation of the an-
isotropy energy by the difference in the sum of single-
particle eigenvalues. In Sec. II B we showed by solving
(l) self-consistently that for a particular choice of the
magnetization direction the second-order change in the
total energy can be substantial compared to the MAE.
We could only argue that it is plausible that a systematic
cancelation of the second-order corrections for two
different magnetization directions will also occur. In or-
der to show that this is so would require a computational
effort which is much greater than that which is required
to calculate the difference in the sum of the single-
particle eigenvalues. To converge these sums reasonably
well already stretches the capacity of present-day com-
puters and we have made no attempt to go beyond the
first-order approximation to the MAE. We are not aware
of any attempts by others to do so. We believe that this
is the largest source of uncertainty in our examination of
the LSDA prediction for the MAE.

The second point which we must consider is the
neglect of nonspherical terms in the potential. This can
infiuence the value we obtain for the anisotropy energy in
two ways. First, the position and dispersion of the energy
bands (in the absence of spin-orbit coupling) will be
modified. For states whose occupation does not change,
we do not expect this effect to be important. However, if
there are degenerate states close to the Fermi level whose
occupation is modified, significant changes in the anisot-
ropy energy could occur which are difficult to predict. In
Co, we first identified those bands near the Fermi level
whose contribution to the anisotropy energy changes sub-
stantially when their occupation is altered. We then
compared those bands as calculated with (FLAPW) and
without (LMTO-ASA) nonspherical contributions to the
potential. The shift of these bands (17 and 18) was much
smaller than what is required to bring the calculated an-
isotropy energy into agreement with experiment.
Secondly, the spin-orbit interaction could, in principle, be
modified by the nonspherical terms in the potential so
that it no longer has a simple I-o dependence. Because
by far the major contribution to the spin-orbit coupling
comes from the core region where the potential varies
rapidly and where nonspherical corrections are small, we
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do not expect this effect to be significant. This is
confirmed by our finding that a 10% change in the
strength of the spin-orbit interaction leads to changes in

the calculated anisotropy energy which are not nearly
enough to bring it into agreement with experiment. It
seems unlikely that the nonspherical terms in the charge
density will remove much of the discrepancy between hE
and the experimental MAE.

In our calculations we have approximated the Dirac
equation by the Pauli equation. The neglected terms in
the Schrodinger equation are all 3 orders of magnitude
smaller than the spin-orbit coupling term. There have
been attempts to improve upon this treatment by solving
the radial Dirac equations including a spin-dependent po-
tential. Even for a central potential the even and odd
radial solutions of this Dirac equation are all coupled and
only an approximate solution is possible. In tests for Ni,
Ebert found essentially no difference between the results
of the improved scheme and the perturbative scheme out-
lined in Sec. IIA. However, problems may certainly
arise in applications of the perturbative scheme to
heavier elements where the spin-orbit coupling may no
longer be considered small. For example, the spin-orbit
splitting of the partially occupied 5f states in actinide
compounds is comparable to their exchange splitting and
dispersion.

The effects of exchange and correlation in the local-
density approximation are obtained from parametriza-
tions of the results of calculations performed for the in-
teracting homogeneous electron gas. By considering a
spin-polarized electron gas, spin-dependent exchange-
correlation energies and potentials have been derived
and these are found to describe the ground-state proper-
ties of 3d transition-metal magnets reasonably well.
The 5f electrons of the actinide elements are intermedi-
ate between the 3d electrons of the first row transition-
metal elements and the 4f electrons of the rare earths in
terms of their localization. When the LSDA is applied to
the actinide systems mentioned above, serious discrepan-
cies with experiment are found. Inclusion of relativistic
effects (mass-velocity and Darwin shifts as well as spin-
orbit coupling) leads to significant improvements includ-
ing the prediction of large orbital magnetic mo-
ments. ' ' ' ' Further improvements have been obtained
by introducing a dependence of the exchange-correlation
potential on the orbital angular momentum.

On the basis of his inability to obtain realistic values
for the MAE for Fe from a simple model, Jansen has con-
cluded that a dependence of the exchange-correlation po-
tential on the orbital angular momentum was necessary
in order to calculate the magnetic anisotropy of 3d
transition-meta1 elements. Although we do not disagree
with this conclusion, we do not believe that it may be
drawn on the basis of the calculations which he present-
ed. We have seen in Figs. 2 —4, 12, and 13 that values of
the MAE obtained with a realistic model (LSDA band
structure including relativistic effects) have the correct
order of magnitude compared with experiment. That the
correct values of hE "(n) are not predicted may be attri-
buted to relatively small errors in the description of the
electronic band structure. We ascribe the 2-orders-of-

magnitude discrepancy for the MAE found by Jansen to
his use of an oversimplified model.

A. Comparison with previous work

There have been few attempts to calculate the MAE of
Fe, Co, or Ni from first principles. ' ' The calculations
by Fritsche et al. yield an easy axis for nickel which is in
agreement with experiment. ' Their calculated value of
10 peV is almost a factor of 4 larger than the experimen-
tal value of 2.7 peV. In the case of iron the incorrect
easy axis is predicted. The procedure adopted by
Fritsche et al. is in many respects similar to our own.
They use an atomic-sphere approximation for the crystal
potential and they also use the variationality of the ener-

gy to express total-energy differences as differences in
sums of single-particle eigenvalues (albeit not within the
Hohenberg-Kohn-Sham framework). The principal
difference between the two calculations is that these au-
thors do not use one of the standard LSDA potentials.
This has as a consequence that their calculated spin mo-
ment for Ni is 10% smaller than our own (Table I). In
their Brillouin-zone integral Fritsche et al. use a max-
imum sampling of —(30) k points in the full zone com-
pared to our maximum sampling of (160) k points. Al-
though it is impossible to say for sure what the origin is
of the difference between their results and ours, we be-
lieve that a large part of it can be explained by their using
a coarse BZ sampling which is far from what is necessary
to obtain convergence (Figs. 5 and 7). Because no details
are given as to how the BZ integral was performed, it is
not clear whether or not they incur another large error
because of the misweighting problem discussed in Secs.
IIC and IIIA. For Fe, Fritsche et al. calculate the
MAE to be 7.4 peV compared to the experimental value
of —1.3 peV. A coarse BZ sampling was also used in
this calculation.

More recently, Strange et al. have also reported a cal-
culation of the MAE for Ni where the correct easy axis
was found, albeit with a large uncertainty in the numeri-
cal value. ' Their calculation was based on the KKR
method, which assumes a spherically symmetrical poten-
tial around the atoms. The exchange splitting was treat-
ed on the same footing as the spin-orbit coupling which
is, in principle, a procedure superior to ours. However,
as noted by Ebert in his comparison of the two
methods, it leads in practice to no significant difference
in the energy band dispersion and certainly none which in
our experience would account for the discrepancy be-
tween their result and our own. These authors also ap-
proximated the MAE as the difference in sums of single-
particle eigenvalues but unfortunately they do not give
su%cient details about their k-space integration to enable
us to evaluate it. [Assuming that they use 250 sampling
points along each ray in their prism integration method,
then we estimate that they have a maximum sampling of
—(76) points —more than a factor 8 smaller than our
maximum sampling. In addition, they do not seem to be
aware of the problem of misweighting when using IBZ's
(Ref. 42).] Other differences between their calculation
and those presented in this publication are that they use a
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complex contour integration method to simplify the BZ
integration. In our experience with complex contour in-
tegration schemes this will not make the integration
much simpler because in order to close the contour at the
Fermi energy a very dense sampling of points about the
Fermi surface is required in order to reduce the broaden-
ing of the eigenvalue spectrum.

Similar reservations must be expressed about a calcula-
tion of the MAE as a function of c/a for Fe on a simple
tetragonal lattice by the same authors. Results were
presented for the MAE for a very large range of axial ra-
tios, l. 10 & c /a & l.35. These results were based on a po-
tential calculated for bcc Fe in the absence of spin-orbit
coupling. It is very doubtful whether this potential may
be transferred to the open simple tetragonal structure for
the large values of c /a examined. Because a self-
consistent calculation was not performed for each value
of c/a, it follows from the discussion of the force
theorem in Sec. II B that an error proportional to hp [Eq.
(13)] is incurred in such a procedure. In our own calcula-
tions for Co we found a difference of 100% in the change
of MAE between zero and —1% strain depending on
whether the zero-strain potential was used for the —

l%%uo

MAE calculation or whether a self-consistent calculation
was performed for —1% strain.

Calculations have recently been performed for free-
standing monolayers of 3d transition-metal elements. ' '
These serve as a model for overlayers of 3d transition
metals on Cu, Ag, or Au substrates which are therefore
assumed not to affect the anisotropy energy. The MAE
was found to be much larger for the free-standing two-
dimensional monolayers than for the three-dimensional
crystals discussed so far and it was possible to obtain
reasonable convergence of the (two-dimensional) recipro-
cal space sums. Unfortunately the two calculations cited
obtain different signs for the MAE and thus predict
different easy axes. A comparison of these calculations
with experiment is difficult because the importance of the
interaction with the substrate is not known a priori. By
performing calculations of the MAE for monolayers of
Fe on Ag substrates, it was shown that the interaction of
the overlayer with the substrate cannot be assumed to be
negligible and that indeed the prediction of an out-of-
plane easy axis for a free monolayer of Fe was reversed
on introducing the substrate. Because mass-velocity
and Darwin shifts, which are known to be important for
Ag, were neglected in this calculation, it remains unclear
what the final LSDA prediction is.

In the only other ab initio work on MAE we are aware
of, Brooks et al. have calculated the MAE for uranium
sulphide, a compound with a NaC1 structure which is fer-
romagnetic with a Curie temperature of 180 K. Experi-
mentally it is known that the easy axis is in the (111)
direction and the anisotropy energy has been estimated to
be between 7 and 70 meV/formula unit. By iterating
the Hamiltonian (1) to self-consistency, Brooks et al.
found a MAE of 204 meV/formula unit and predicted
the (111)direction correctly as the easy axis. Using the
force theorem (14), they found a value of b,E=182
meV/formula unit. The large value for AE has been at-
tributed to the large spin-orbit splitting of the uranium

5f states of —1 eV.
So far in this work we have been concerned with

evaluating the possibility of calculating MAE's ab initio.
It should perhaps not be surprising that the LSDA fails
to yield total-energy differences correctly at the 0.1-meV
level. Although we have not discussed in any detail
empirical schemes where the band structure is derived by
fitting to experiment, " one of the reasons for our at-
tempting to calculate energy differences at the level of
peV was the remarkable success of empirical methods, in
particular the work of Mori et al. , in reproducing the ex-
perimental MAE's. This work, ' which is based on
tight-binding band structures, supersedes the earlier ex-
tensions ' ' of Brook's model by using a realistic
band structure and performing the necessary integrals
numerically. Essentially perfect agreement with experi-
ment is achieved. In order to perform the BZ integral
Mori found that for sampling densities between (58) and
(78) points in the full BZ there was no significant change
in the calculated anisotropy constants (&10%%uo for E&).'

This is in contrast with our experience, where we find
large fluctuations in the MAE for different BZ sampling
densities in this range (Figs. 5 and 7). The Gilat-
Raubenheimer integration method used by Mori et al.
makes the same basic approximation of linearly interpo-
lating the energy bands between sampling points as does
the linear analytic tetrahedron method used by us. The
tetrahedron method has the advantage of providing
analytical expressions for the total energy, thus eliminat-
ing the energy mesh step, de, as a convergence parame-
ter. ' It is not clear in Mori's later work whether or not
an sp-like band is included in the band structure. Omis-
sion of this band may possibly make the numerical con-
vergence of the BZ integrals simpler by reducing the con-
siderable number of band crossings in the neighborhood
of the Fermi energy (Fig. 6). It is also unclear whether or
not the differences in the number of electrons for the two
field directions for a fixed Fermi energy, the so-called
"feeble differences, "are used as a disposable parameter in
order to fit the calculated MAE to experiment. ' The au-
thors note that unless they introduce these feeble
differences, they cannot obtain agreement with experi-
ment.

Finally we consider whether bands parametrized so as
to give a good fit to experimental Fermi surfaces will give
a better prediction of the anisotropy energy than ab initio
bands. Related to this is the question whether the
difference between the LSDA Fermi surfaces and the ex-
perimental Fermi surfaces is the origin of the discrepancy
in the results. For Ni, an indication that this is indeed
the case is found in the work of Kondorskii et al. , who
have calculated the MAE using a band structure con-
structed so as to reproduce the most important features
of the experimental Fermi surface. " In particular, the
X2-hole pocket was eliminated in the parametrized band
structure. These authors have made a detailed study of
the local contributions to the anisotropy taking account
of the deformation of the Fermi surface which was shown
to constitute a significant portion of the anisotropy ener-
gy. " The calculated anisotropy energy is approximately
a factor of 2 smaller than experiment but the correct easy
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axis was obtained. Unfortunately recent work demon-

strating that the density-functional Fermi surface need

not necessarily coincide with the real Fermi surface calls
this approach into question.

VI. CONCLUSIONS

Before attempting to perform ab initio calculations of
the MAE for systems which are not well characterized
experimentally, ' it is necessary to assess such schemes
by using them to study systems for which there is a con-
census about the experimental results. We have done this
by calculating the MAE for crystalline Fe, Co, and Ni
within the LSDA, the only method available at present
for performing such first-principles calculations. Our nu-
merical values for the anisotropy energy do not agree
with the experimental results. We find that the MAE de-'

pends in a complicated manner on the shape of the Fermi
surface, where a small number of electrons may make a
sizeable contribution. The large cancelation of contribu-
tions from different parts of the Brillouin zone and the
importance of the Fermi-level shifts for different magneti-
zation directions make an estimate of the MAE without a
detailed calculation very difficult. This had been found in
the earlier work of Kondorskii on Ni. " The anisotropy
energy as calculated via the Brillouin-zone sum of single-
particle eigenvalues is a delicate balance between compet-
ing contributions and the integral must be performed
with great care. Since other LSDA calculations have
restricted the calculation of the MAE to the difference in
sums of single-particle eigenvalues (the force theorem),
only the difference in the band structure and the handling
of the Brillouin-zone integral can explain the different re-

suits which have been reported. We believe that in other
studies of the MAE for Ni, convergence of this sum was

not achieved' ' and that our results are the best approx-
imation so far to the full LSDA result. There is sti11

room for improvement. By performing the Brillouin-
zone integral with sufficient numerical accuracy, we are
able to exclude this factor as the origin of the discrepancy
of our results with experiment. We identify the second-
order corrections to the total energy as the most pressing
issue to be addressed and not the inclusion of nonspheri-

cal corrections to the potential used to generate the band

structure. To perform a calculation of the total energy

including electrostatic and exchange-correlation contri-
butions at the peV level will not be simple. In order to
do so the single-particle eigenvalue sum will have to be
calculated to a comparable accuracy and we have demon-

strated how difficult this is.
In summary, we conclude that it is not possible at

present to calculate the MAE from first principles reli-

ably at the 0.1-meV level. In preliminary studies of
several ferromagnetic compounds where the anisotropy
energy is larger (MnAs, MnSb, and YCos) we still find

quantitative discrepancies with experiment when we use

the same approximations as we have used in this publica-

tion. However, the easy axes appear to be predicted
correctly.
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