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We devetop a semiclassical theory for the magnetoresistance oscillations recently observed in
two-dimensional systems with periodically modulated potentials. We show that these oscillations
may be thought of as oscillations in the probability of magnetic breakdown. Our theory demon-
strates a connection between the magnitude of the oscillations and the size of the positive magne-

toresistance at weak magnetic fields.

I. INTRODUCTION

Recent observations"? of magnetoresistance oscilla-
tions in periodically modulated two-dimensional electron
systems (2D ES) have generated much interest> " (The
literature on this phenomenon has recently been reviewed
by Weiss.?) The oscillations are periodic in the ratio of
the diameter of the cyclotron orbit to the modulation
period. The origin of the oscillations has been under-
stood since the original work."? The modulation poten-
tial causes the cyclotron orbit to drift in the direction
perpendicular to the direction of modulation at a rate
which depends on the position of the orbit center relative
to the modulation potential. The rate of drift also de-
pends on an average of the modulation potential over its
orbit and this tends to be larger when the number of
periods of modulation inside the orbit diameter is half an
odd integer. The resulting magnetoresistance oscillations
have been described both by a physically appealing semi-
classical theory in which the oscillations are associated
directly with oscillation in the average over orbit centers
of the square of the drift velocity® and by more-detailed
fully-quantum-mechanical theories.>%*

The modulated 2D ES’s which show the resistance os-
cillations also show an unusually large positive magne-
toresistance at fields weaker than those at which the osci-
lations first appear. The large positive magnetoresistance
cannot be explained by existing theories of magnetotrans-
port in modulated 2D systems which are valid only in the
limit where the Landau level separation exceeds the dis-
order broadening of Landau levels. In this paper we re-
port on a semiclassical theory of the novel magnetoresis-
tance oscillations in which they appear as a consequence
of oscillations in the probability of magnetic breakdown.’
Our theory is an application of the ideas developed in
describing magnetic breakdown in bulk metals to periodi-
cally modulated 2D ES’s.

In the presence of a weak magnetic field applied per-
pendicular to the 2D ES (taken to lie in the X-y plane) the
dynamics of the electronic motion, when treated semi-
classically, is governed by the following equation:
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where E and BZ are the external electric and magnetic
fields, respectively, and v, is the velocity expectation
value of the electronic state defined by wave vector k:
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where €(k) is the energy of the Bloch state at wave vector
k. In this paper we will restrict ourselves to the limit of
weak modulation so that we can assume a nearly-free-
electron description of the Bloch minibands in the modu-
lated system and use an extended-zone scheme to level
the electronic eigenstates. At zero electric field the elec-
tron trajectories in two-dimensional k space are thus
defined by constant energy contours. Since we are in-
terested in transport properties only trajectories at ener-
gies close to the Fermi energy, Er, need to be considered.
For the case of a periodic potential which depends only
on the x coordinate, the trajectories at the Fermi energy
are sketched'® in Fig. 1. The corresponding electron tra-
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FIG. 1. Constant-energy contours at the Fermi energy for a
modulated two-dimensional electron system shown in the ex-
tended minizone scheme. The open-orbit motion is along the X
direction in k space and along the § direction in r space.
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jectories in r space are equal to those in k space after a
rotation by /2 and multiplication by /*=#ic /eB. (I is
known as the magnetic length.) As illustrated in Fig. 1,
in the limit of very weak magnetic fields the electrons
move along two types of trajectories: open orbits, for
which the real space motion is unbounded, and closed or-
bits. With increasing magnetic field this semiclassical
description of electron dynamics fails. The description
can be generalized, however, so that it captures much of
the additional high-field physics in a physically appealing
way. The generalization’ is to acknowledge that elec-
trons approaching Brillouin-zone edges have a finite
probability for tunneling through the barrier and moving
from one orbit to another. This effect is known as mag-
netic breakdown. It changes the topology of electron tra-
jectories and has a drastic effect on all physical proper-
ties, especially the magnetoresistance.

The probability p of magnetic breakdown at a
Brillouin-zone edge has been calculated using several
different approaches which are valid either for the
strong-field or the weak-field limits.!' Amazingly, all
approaches lead to the same expression in the nearly-
free-electron limit:
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where ¥V, is the width of the energy gap at the Brillouin-
zone edge at zero magnetic field, w,=eB/m*c denotes
the cyclotron frequency, and 20 is the scattering angle
under Bragg reflection. (See Fig. 1.) Note that p goes to
zero rapidly at weak fields, justifying the neglect of mag-
netic breakdown, and approaches 1 at strong fields. The
crossover field is proportional to the square of the modu-
lation potential and inversely proportional to the Fermi
energy. For GaAs, modulation potentials on the order of
0.1 meV and Fermi energies on the order of 10 meV lead
to crossover fields on the order of 0.1 T. This is precisely
the range of field strengths? in which the magnetoresis-
tance oscillations have been observed.

In Sec. II of this paper we apply the semiclassical ap-
proach to transport, allowing for the possibility of mag-
netic breakdown, to a nearly-free-electron 2D ES. For
this purpose we adopt a relaxation-time approximation
which allows us to use Chambers’s convenient '? solution
to the Boltzmann equation. We find that this approach is
able to explain the shape of the smooth background on
top of which the magnetoresistance oscillations appear.
In Sec. III we reexamine the expression for the break-
down probability in the strong-magnetic-field limit and
find that, provided that the disorder potential is not too
strong, p should be replaced by a breakdown probability
which exhibits oscillations as a function of field strength.
We are able to provide a criterion for the minimum field
strength necessary for these oscillations to appear. Final-
ly, in Sec. IV we return to a discussion of the magne-
toresistance oscillations which are now seen to result
from the oscillations in breakdown probability. We con-
clude in Sec. V with a brief summary of our results.
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II. SEMICLASSICAL CONDUCTIVITY TENSOR

As a first approximation when studying electronic
transport properties, all quantum phase coherence effects
can be neglected. The electrons are considered to be clas-
sical particles with well-defined trajectories which satisfy
the equation of motion, Eq. (1). Transport phenomena
can be interpreted in terms of the electron distribution
function f(r,k) which satisfies Boltzmann’s equations. If
we also assume that the scattering can be treated in the
uniform relaxation time approximation, linearizing the
Boltzmann equation with respect to an external electric

field leads to the following expression, due to
Chambers,? for the conductivity tensor:
2 df
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where f, is the equilibrium Fermi-Dirac distribution
function, 7 is the relaxation time, and v(k,?) is the time-
dependent velocity for a trajectory which at time ¢, is at
wave vector k. [The trajectories are calculated using Eq.
(1) in the absence of an electric field.] At low tempera-
tures we may replace df,/dE by —6(E —Ey) and conse-
quently only constant energy trajectories at the Fermi en-
ergy contribute to transport phenomena.

In the absence of a periodic potential we can use the
free-electron expression for the electron velocity,
v(k,t)=*#k(t)/m*. The position on the circular trajecto-
ry at the Fermi energy can then be specified by a polar
angle so that

Ve =~ Hy My =COSP, (5)
m
and
fikg .
V=l M, =sing, (6)
m

where u,(a=x,y) are the velocity components in units of
Fermi velocity, vp=#kp/m*. (Isotropy is assumed in
taking a circular Fermi line and in using a single effective
mass.) Making use of the substitutions

b=ow,t, dk=kdk d¢=’:—2d15d¢ (7)

the components of the conductivity tensor, Eq. (4), can be
expressed in terms of Chambers’s path integrals 14 as
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Here,
156,6)= [ gd’yﬁtqw exp(d' /w,7)dd’ 9)

go=e>N7/m* denotes the zero magnetic field conduc-
tivity, and N is the areal electron density. Evaluating
these integrals yields the familiar Drude-Zener result for
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the conductivity tensor:

o =0 =0y/(1+elr), (10)
a&?}’,=—a(yf’;=—a)cfa(x?l . (11)

The main consequence of a periodic potential is that it
produces Bragg reflections whenever the trajectory
reaches a Brillouin-zone edge. In order to be able to
derive explicit expressions for the conductivity tensor, we
limit ourselves to the case of a weak periodic potential,

V(x,y)=V,cos(K,x)+V,cos(K,y) . (12)

It is assumed that the pseudopotential at the Fermi level
is weak enough to permit neglect of Fermi line distortion
away from zone edges. For sufficiently weak potentials
we can assume that gaps appear only at the points illus-
trated in Fig. 2.

With these approximations the expressions, Egs. (8)
and (9), for the conductivity remain formally unchanged.
The presence of a periodic potential affects only the in-
tegration path of I5(— w,¢). The Fermi circle is divided
into eight regions by its intersections with the Bragg lines
which we retain. We specify the intersection points by a
set of angles, {6;}. For partial magnetic breakdown the
integration paths are not uniquely defined; there are an
infinite number of possible paths, each of which has a
probability which depends on the breakdown probability,
p. For example, an electron in the interval (8,,6;) has
probability p, defined by Eq. (3), of having arrived there
after tunneling from the open-orbit interval (6,,0,) and a
probability ¢ =1—p of having arrived directly from the
closed-orbit interval (6,,6,). Thus,

15(—0,0)=1407,6)+pI5(—=,67)
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FIG. 2. Points along the Fermi circle where Bragg reflection
occurs with probability ¢=1—p and magnetic breakdown
occurs with probability p.
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where §=60,—6, and I g is the generalized Chambers
path integral which includes the possibility of magnetic
breakdown. (The upper index on 8, when present, im-
plies that a positive or negative infinitesimal is to be add-
ed to the angle.) Similarly, an electron arriving at 8; has
probability p of having arrived at this point after tunnel-
ing through the barrier at 6, and moving along the inter-
val (6,,6,) and probability of 1 —p of arriving at this point
after having been Bragg reflected along the open orbit at
6, at least once. It follows that

IB(— 0,07 )=1Ip5(6,,6,)+pIf(—,0;)
+(1—plexp(—8/w NI j(— ,07) .
(14)

The exponential factor in Eq. (14) accounts for the proba-
bility of an electron being scattered while traversing the
interval (6,,0,) once. Equation (14) can be solved to ex-
press I5(—,0; ) in terms of I7(— ,0; ) with the re-
sult

15(6,,6,)+pIg(—,6;)

B(_ =
s ) = pexp(—8 /1) 15

Repeating this argument along the Fermi circle and
taking account of the periodicity of the velocities with
respect to angle allows us to obtain explicit, if unwieldy,
expressions for the generalized Chambers’s integrals in
terms of the breakdown probabilities and ideal integrals
along finite segments. These may be inserted into the ex-
pression for the conductivity, Eq. (8), to obtain an expres-
sion in which the conductivity tensor is expressed as the
sum of the Drude-Zener part and a contribution, Ao, g
due to the presence of the weak periodic potential. The
derivation of the expressions for Ao, g is outlined in the
Appendix. Here we quote only the results for the limit,
of relevance to present experiments, where & and
8'=6;—0, (see Fig. 2) are much smaller than 7:

S %%[aﬁﬁg'(a' )sin(8' /2)

—Q(8)sin*(8/2)], (16)

Aay,y=%?%[wfsz(6)sinz(S/2)
—Q'(8')sinX(8'/2)] , (17)

Ao, ,=—Ac,,

=%H%[Q(8)sinz(8/2)
+Q(8sinX6'/2)] . (18)
In these equations,
0(8)= ! 1 (19)

1—(1—plexp(—&/w.T) B

and Q’'(8') is defined similarly with both the angle and
the breakdown probability in the latter case referring to
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the Bragg line associated with the y-dependent term in
the potential. Note that Q and Q’, respectively, approach
the Bragg reflection probabilties g =1—p and ¢'=1—p’
in the strong magnetic field. These equations accurately
approximate the exact results given in the Appendix over
the entire range of magnetic field for parameters ap-
propriate to the samples in which magnetoresistance os-
cillations have been observed. We will return to these re-
sults after examining the high field limit of the expres-
sion, Eq. (3), for p.

III. BRAGG REFLECTION PROBABILITY

The probability of magnetic breakdown approaches
unity as the ratio of the zero-field electron gap, ¥V, to
fiw, approaches the ratio of E; to V,. As we remark
below, the magnetoresistance oscillations will occur only
when ¥V, /#iw, is not too much larger than 1. In this limit
the periodic potential can be treated as a small perturba-
tion to the Hamiltonian for a free electron in a magnetic
field. For simplicity we consider a potential of the form

V(r)=V,cos(K,x) , (20)

where K, =27 /a. In the Landau gauge, A=(—By,0,0),
the eigenfunctions of the unperturbed Hamiltonian,

2

1 , @1)

Ho= 2m*

e
+<A
P c

may be written as the product of a plane wave in the x
coordinate and a harmonic oscillator eigenfunction of the
y coordinate:

1/!y,,,(r)=7;=ﬂ7exp(in /1),y —Y) . 22)

The eigenvalues are degenerate with respect to Y and
form Landau levels at energies

e, =fw (n+1). (23)

n 2
For large n this wave function provides the quantum
description of a classical cyclotron orbit of radius
R,=k,I? where #k}/2m*=¢,. The y coordinate of
the orbit center is located at Y while the z coordinate is
quantum mechanically uncertain.

The perturbing potential, Eq. (20), has the effect of in-
ducing transitions which change the x component of the
wave vector by K and hence the y component of the or-
bit center by K, /% These transitions are the strong-field
limits of the Bragg reflections discussed in the previous
section. The probability per unit time for Bragg
reflections can be calculated using the golden rule

0= [ dE 5|V, o EYp(E+(n'—n o) ,

(24)

where we have added the rates of orbit shifts to the right
and to the left and we will use a Lorentzian to approxi-
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mate the spectral density, p(E), of a broadened Landau
level
r

1
—_—_ 25
T (E*+T?) (25)

p(E)=

We have averaged the transition rate over energies in the
broadened Landau level to take the limit where a semi-
classical analysis is valid. In Eq. (24), V, . is the matrix
element for orbit center transitions:'3

1 '
|V, 2=V, /2)2%“()312/2)” —n

Xexp(—K22/2)[L} ™KH*/2)]F.  (26)

In the limit where n >>R,, /a >>ak >>1 this reduces to

1 Vi

7 87Rg

|Vl ?= {1+cos[47Ry/a —7/4

—(n'=m)m/2)} . @D

Here, Ry is the classical cyclotron orbit radius and kg
the free-electron Fermi radius corresponding to energy
ep. We use this result to explain the magnetoresistance
oscillations.

Noting that for this potential four Bragg planes are en-
countered per cyclotron orbit, we see that the Bragg
reflection probability ¢ =1—p is given by

q=2mw /4o, . (28)

For the limit of weak magnetic fields, fiw, <<TI', the sum
over n' in Eq. (24) may be converted to an integral and w
may be evaluated analytically. The following result for
the reflection probability is obtained:

2
TV

C=
8%, Ej sin(8/2)

q

29)

where sin(8/2)=K, /2k;. Comparing with Eq. (3) we
see that this result is simply the strong-field limit of the
classical probability. We will interpolate between the
weak-field expression, Eq. (3), and the results obtained in
this section by taking

p=1—g=exp(—27w /40,) . (30)

In the strong-field limit the sum over n’ in Eq. (24) is
dominated by the n'=n term. In the quantum limit
where only the n’ =n term is retained we obtain

_ Vicos(2mRp/a—m/4)
B 8TEsin(5/2)

Q

q (31

In this limit the breakdown probability oscillates with
period 2R /a. The physics behind this oscillation is just
that described in the Introduction. We see in the next
section that it is the oscillation in the breakdown proba-
bility which is responsible for the magnetoresistance os-
cillations seen experimentally. In closing this section we
remark that in the limit of weak modulations potentials,
contributions to the modulation potential depending on
the x and y coordinates can be treated separately so that
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our results can be applied to the more general case of Eq.
(12) as well.

IV. RESISTANCE OSCILLATIONS

In this section we will restrict our attention to the case
where the modulation potential depends only on the x
coordinate. Inverting the conductivity tensor [Eqgs.
(16)—18)] we find that for § <<

Py =po=1/0¢, (32)
Pxy = —Pyx =@, Tpo=B /(ecN) , (33)
and
1+ w?m*C(8)
P =PO T C(a) (34)
where
c8)=2 -2 _0(5)sin%5/2) (35)
T 1+o027?

and Q(8) is defined in terms of the breakdown probabili-
ty in Eq. (19). Note that only the xx component of the
resistivity tensor is altered by the modulation potential in
our theory. (As emphasized by Gerhardts et al.,>® the
small oscillations which occur in p,, can only be ex-
plained by a fully quantum theory.) The results obtained
for p,, using Egs. (34), (35), and (30) are illustrated in
Fig. 3. In the strong-field limit we are able to compare

Pux

| il

B (Tesla)

FIG. 3. Magnetoresistance for current flow in the direction
of modulation. The solid lines show the results obtained using
the classical and quantum expressions for the breakdown proba-
bility. The dashed line shows the effect of using the quantum
expression for the breakdown probability when the oscillating
term is neglected. The electron density and the modulation
period for this calculation were taken from a sample studied by
Gerhardts et al. (Ref. 1); Ap=2i/ky;=44.88 nm, E=10.98
meV, and ¢ =382 nm. We evaluated Eq. (24) using 7/7=2,
where 7, is the lifetime associated with the Landau level width,
to account approximately for the importance of vertex correc-
tions to the transport relaxation time. The results shown in this
figure were calculated using ¥V, =0.27 meV and vpr=12 um
and are in excellent agreement with experiment.
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our theoretical results with those of earlier workers.>*%3
We find that up to first order in (V,/Ef)?

Pxx — Po

Po
Choosing 2I"' =4 /7 this result may be seen to be identical
to that obtained by Beenakker® and to the limit reached
by the quantum theories when k3T >>I". We note that
the relative magnitude of the resistance oscillations is
proportional to the square of both the strength of the
modulation potential and the relaxation time or Landau
level width. It is worth remarking that in the low-
temperature limit, kz T <<TI', to which the semiclassical
approaches are not applicable, the quantum theories>*
imply relative magnitudes for the oscillations which are
proportional to (¥, 7)!. This regime has not yet been sys-
tematically studied experimentally and a study of the
crossover between these limits will provide a demanding
quantitative test of the quantum theories.

Previous theories fail when the probability of magnetic
breakdown is not close to 1 and cannot treat the limit of
weak magnetic fields. The modulated samples all show a
strong positive magnetoresistance at weak magnetic
fields. This behavior is characteristic of systems with
open orbits and is associated with an increase in the prob-
ability that electrons moving along open-orbit trajectories
in k space will reach a Bragg line and be Bragg reflected
before they are scattered. On the basis of our theory we
are able to predict that the size of this positive magne-
toresistance will be larger for samples with higher mobili-
ty and hence longer scattering times. Since the probabili-
ty of magnetic breakdown is smaller for a stronger modu-
lation potential, we are also able to predict that the
weak-field magnetoresistance will be larger and persist to
stronger magnetic fields when the modulation potential is
stronger. Furthermore, since the magnetoresistance os-
cillations will occur only when the dominant electron tra-
jectory is a simple cyclotron orbit, they will not occur un-
til the probability of magnetic breakdown becomes appre-
ciable. Comparing with Eq. (3) we are able to predict
that the resistance oscillations begin when

1l

Apy, = %wc 7q%in%(8/2) . (36)

fiwo, ~ V3 /[ Epsin(26)] . 37

Our thoeretical results actually show the oscillations per-
sisting to somewhat lower fields than found experimental-
ly. We attribute the differences to the effects of Bragg
reflection at the Bragg lines we have neglected, which
must occur at sufficiently low fields and, possibly, to inho-
mogeneity in the 2D ES samples.

We close with a final observation concerning the resis-
tance oscillations. The presence of the w(n —n')/2 fac-
tor in Eq. (27), which is of quantum origin, implies that
the magnetoresistance oscillations will be averaged out
when inter-Landau-level transitions become of compara-
ble importance to intra-Landau-level transitions. Thus
the oscillations can only occur for I' < #iw,.. This require-
ment is similar to the requirement for the occurrence of
Shubnikov—-de Haas oscillations. On the other hand,
while Shubnikov-de Haas oscillations will persist only
up to temperatures satisfying kzT ~#iw,., the magne-
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toresistance oscillations in modulated systems will persist
as long as the range of cyclotron orbit diameters which
occur for kinetic energies within k5 T of the Fermi level is
small compared to the modulation period. It follows that
the modulation-induced magnetoresistance oscillations
will persist until kg T ~ (fiw, ) kpa ) >>fiw,.

V. SUMMARY AND CONCLUSIONS

We have developed a semiclassical theory of the mag-
netoresistance oscillations in weakly periodically modu-
lated two-dimensional electron systems. Our picture
starts from a semiclassical description of electron dynam-
ics in the Bloch minizones created by the modulation.
Unlike earlier theories, our approach is able to treat the
weak-field limit. We predict that the positive magne-
toresistances seen at weak fields in modulated samples
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will strengthen with improvements in sample mobility
and with strengthening modulation and that the
minimum field at which the oscillations will occur will in-
crease with modulation potential strength and disorder.
We point that, unlike the case of Shubnikov—de Haas os-
cillations, the modulation-induced oscillations are much
more easily destroyed by increasing disorder than by in-
creasing temperature. Our theory is readily applied to
the case where the weak modulation occurs in both direc-
tions.
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APPENDIX

Following the procedure outline in Sec. II we find for the components of the conductivity tensor

X[RI(6,,0,)+ PR 15(64,03)+145(6,,04)+PI4(65,6,)] \

X[R'I5(64,05)+P'RI4(04,05)+145(65,6,)+ P'I4(05,6,)] ]

RI
1+PP'exp(—m/w,.7T)

X[R'I5(8,,05)+P'RI(6,05)+14(03,6,)+P'1465,6,)] ]

R
1+PP'exp(—m/w,T)

X [RI4(05,65)+ PR ’Iﬁ(68,07)+Iﬁ(65,94)+PIB(97,96)]\ :

(A1)

TW,TO o8 03 —p/o,T
—f 1% | —I4(g,09)+
20, fe, dppale) 5(¢:%%) 1+PP'exp(—m/w,T)
6, —@/o.T
- |-
f93 doupl Tolg, 020+ 1+PP'exp(—m/w,7)
6, —@/w 1) R’
+f04 dopy(@)l —IB(¢,93)+—p, 156,69+
+ [ 17 |~ 1,00 R 1,00, 0)+
fgz PulP) (@, 1);13( 261)
where
R P

- 1—(1—plexp(—&/w.T)

, P=pR +(1—plexp(6/w,7),

and the quantities R’, P’ have the same form but p and 8 must be replaced by p’ and &', respectively. In the case of
complete breakdown p =R =P =p’=R’=P’'=1 and the Drude-Zener expressions [Egs. (10) and (11)] can be obtained.
In the limit of small angles 8 and &' (§,8' << ) the dominant corrections due to the effect of Bragg reflection originate in
those terms that are multiplied by the ratio R /p or R’ /p’, and we get

R_,
p

20’0 —@/o.T

do | . (A2)

AO'aB=

91 —@/w. T
IB(Oz,Gl)foz,ua(cp)] T ot

R,
p

6
I5(04,6) [, wale)l

T T



11 898

IR. R. Gerhardts, D. Weiss, and K. Klitzing, Phys. Rev. Lett.
62, 1173 (1989).

2R. W. Winkler, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lett.
62, 1177 (1989).

3C. W. J. Beenakker, Phys. Rev. Lett. 62, 2020 (1989).

4P. Vasilopolis and F. M. Peeters, Phys. Rev. Lett. 63, 2120
(1989).

SRolf. R. Gerhardts and Chao Zhang, in Proceedings of the
Eighth International Conference on the Electronic Properties
of Two-Dimensional Systems, Grenoble, 1989 [Surf. Sci. (to
be published)]; Chao Zhang and Rolf. R. Gerhardts (unpub-
lished).

6The resistance oscillations and related Landau level width os-
cillations are discussed by R. R. Gerhardts, in Science and
Engineering of 1- and 0-Dimensional Semiconductors, edited
by S. P. Beaumont and C. M. Sotomayer Torres (Plenum,
London, 1990).

TH. L. Cui, V. Fessatidis, and N. J. M. Horing, Phys. Rev. Lett.

PAVEL STREDA AND A. H. MacDONALD 41

63, 2598 (1989).

8D. Weiss, in Electronic Properties of Multilayers and Low-
Dimensional Semiconductors Structures, NATO Advanced
Study Institute, Series B: Physics, edited by J. M. Chamber-
lain, L. Eaves, and J. C. Portal (Plenum, New York, 1990).

9R. W. Stark and L. M. Falicov, Progress Low-Temp. Phys. 5,
23 (1967) and work quoted therein.

10We assume that only the fundamental Fourier component of
the potential is large and that the potential is sufficiently
weak that the gaps at all other Bragg lines may be neglected.

11E, 1. Blount, Phys. Rev. 126, 1636 (1962); A. B. Pippard, Proc.
R. Soc. London, Ser. A 270, 1 (1962); J. R. Reitz, J. Phys.
Chem. Solids 25, 53 (1964).

12R. G. Chambers, Proc. R. Soc. London, Ser. A 81, 877 (1963).
See also N. W. Ashcroft and N. D. Mermin, Solid State Phys-
ics (Saunders College, Philadelphia, 1976).

13See, for example, A Perspective on the Quantum Hall Effect,
edited by A. H. MacDonald (Jaca, Milan, 1989).



