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We study the scattering properties of bends in two-dimensional electron waveguides. We focus
on a circular bend model in which the shape of the bend is determined by the bending angle and the
ratio between the internal radius and the width of the asymptotic perfect leads. Such a geometry is
assumed to be delimited by hard-wall boundaries. The transmission probability between the various
incoming and outgoing transverse modes is studied as a function of the electron energy and the bend
geometry. The total transmission probability is practically unity except at energies very close to the
mode propagation thresholds. The span of the energy intervals where reflection is finite increases
with the bend internal curvature. A circular bend can be a powerful mode convertor, as revealed by
the rich structure of the mode-resolved transmission probabilities, which are periodic or quasi-
periodic functions of the bending angle and display decaying oscillations as a function of the radius.
We also show that one or more bound states exist in a circular bend and calculate their binding en-
ergy for various bend geometries. A brief discussion of the analogy between electron and elec-
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tromagnetic waveguides is provided.

Recent progress in nanostructure technology has made
possible the fabrication of semiconductor structures
whose size is smaller than the carrier elastic and inelastic
mean free path.! In such a ballistic regime, the boun-
daries defining the geometry of the structure constitute
the only source of scattering. If the wavelength of the
Fermi electrons is comparable to the dimensions of the
sample and in particular to the width of the leads, it is
appropriate to view a quantum wire as an electron
waveguide in which the quantization of the transverse
motion plays an important role.>? The prospect of build-
ing devices based on electron waveguide properties is
opening an exciting area of research within the physics of
semiconductor devices.*® In this context, it is of interest
to understand various aspects of electron transport in
narrow wires. An understanding of the role of geometry
in nanostructures will be of increasing importance as
electron waveguide networks become a reality. This pa-
per addresses the problem of the role played by bends in
electron waveguides, which one expects to be ubiquitous
in ultrasmall semiconductor structures. The study we
present here complements previous work on scattering by
boundaries in electron waveguides.* ! We study the
hard-wall boundary geometry shown in the inset of Fig.
1, where two perfect leads aligned in different directions
are connected smoothly by a central region delimited by
concentric boundaries of constant curvature. While this
model for the bend probably tends to underestimate the
resistance to the current flow posed by real bends, it com-
plements models of bends formed by abrupt corners
which presumably overestimate such resistance. The cir-
cular bend model has the additional advantage of permit-
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ting a simple treatment of the bending angle and the ra-
dius of curvature as continuous variables.

Since the early work of Landauer,'! it has been known
that the contribution to the resistance by a given obstacle
is closely related to its electron scattering properties. In
recent years, this connection between the I-V response
and the scattering amplitudes has been refined and gen-
eralized to more arbitrary mesoscopic structures.'>” !> It
has been recognized that this relation between scattering
and resistance is not necessarily unique and may depend
on the experimental arrangement and the choice of volt-
age references. In the present work, we treat the bend as
an effective impurity and focus on the scattering problem
posed by the structure of Fig. 1. We do not enter here
into the more general discussion on the relation between
resistance and transmission probabilities.'>!> For a given
wire width W, the shape of the bend is determined by the
internal radius p, and the bending angle 8. We want to
calculate the transmission and reflection coefficients be-
tween various transverse modes (channels) as a function
of the electron energy E and the geometrical variables 0
and p,/W. We employ here a wave-function matching
method which is similar to that employed by Schult et
al.® to study electron scattering at crossed wires. Recent-
ly, Frohne et al.!® have developed a general matching
method to study the scattering by boundaries in arbitrary
geometries. In addition to the scattering calculation, we
show that one or more bound states nucleate at a bend
and calculate its binding energy for a number of cases.

It is appropriate to make some remarks here on the ex-
tent of the analogy between the thoroughly studied elec-
tromagnetic waveguides!’ and the relatively unexplored
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electron waveguides. We are interested in their similarity
as problems in mathematical physics. The scattering by
discontinuities depends quantitatively on the set of avail-
able transverse modes, since in general all of them be-
come involved in the wave matching process. The pres-
ence of transverse-electric (TE) and transverse-magnetic
(TM) modes in electromagnetic waveguides precludes a
complete mathematical analogy between these and the
relatively simpler electron waveguides. However, in a
very flat rectangular electromagnetic waveguide (i.e., one
for which b <<a, where a and b are the dimensions of the
rectangular cross section) the high cutoff frequency of the
TM and TE,,, (with n50) modes leaves the TE,,, modes
as the only active modes in the propagation and scatter-
ing processes.!” The set of TE,,, modes in a waveguide
with perfectly conducting walls is isomorphic to the set
of transverse modes in a two-dimensional hard-wall elec-
tron waveguide (which in turn must also be viewed as a
limiting case of a very flat three-dimensional waveguide
in wich the electron motion in one direction is completely
frozen). It can therefore be said that two-dimensional
electron waveguides are mathematically equivalent to
very flat rectangular electromagnetic waveguides. Such a
limiting type of waveguide is, however, not particularly
interesting from the engineering viewpoint and, to the
best of our knowledge, it has not been studied in detail.
There is of course a general qualitative similarity between
electromagnetic waveguides and their new electron coun-
terparts. In this sense, the novel field of nanostructures
physics can benefit substantially from the already existing
experience in waveguide design.!’

We wish to solve the two-dimensional Schrodinger
equation for an electron moving in a potential which is
zero in regions I, II, and III of Fig. 1 (inset) and infinite
elsewhere (motion in the third dimension is assumed to be

osgf

0.96

E/E,

094+

0.92-

090 1 ! 1
o] 0.5 1.0 1.5 2.0 2.5 3.0

PO/W

FIG. 1. The energy threshold for propagation within the
bend in the fundamental mode (solid line) and the bound-state
energies for bends of 90° (dashed) and 180° (dotted) are plotted
as a function of the bend radius in reduced units. Inset:
schematic picture of the circular bend model studied in this pa-
per.
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completely frozen). In the perfect leads I and III, the
most general wave function for an electron with energy E
is of the form

W)= S xa0ae " +ee ), (1a)

n=1

bp)= 3 X bye e (1b)
n=1

where x,(»)=(2/W)"?sin(N7y /W) is the wave func-
tion for transverse motion in mode »n and
kl=(nm/W)*—2ME /#*. For evanescent modes (k? > 0),
we set k, =k, |, which requires e, =f,=0. For asymp-
totically propagating modes (k2<0), we have
k,=—ilk,|, so that e, and f, are the amplitudes of the
incoming waves while a,, and b,, are those of the outgoing
waves.

In region 11, the Schrodinger equation can be separated
when it is written in polar coordinates (see inset of Fig.
1): p is the distance to point O and ¢ is the angular coor-
dinate whose origin lies at the I-II interface and which
grows counterclockwise. For solutions of the type
é(p)=P(p)P(4), the Schrodinger equation becomes

2
D) _ ), 22
dé
2
p2d P(p)+de(p)+p2k2P(p)=—V2P(p), (2b)

dp’ dp

where k2=2ME /#*. Thus, the most general solution in
region II has the form
bup)= 3 Pyp)ce " +d,e %), 3)

n=1

where P,(p) and v, are solutions of the eigenvalue equa-
tion (2b) for a given energy E, subject to the hard-wall
boundary conditions P, (py)=P,(py+ W)=0. These solu-
tions define the possible modes of propagation within the
bend. In analogy to the convention for perfect leads, the
case v, =|v,| corresponds to an evanescent mode, while
v,=il|v,| yields a propagating mode with angular
momentum #|v,,|.

The matching conditions are determined by the re-
quirement of continuity of the wave function and its nor-
mal derivative at the interfaces I-II and II-III. If the
infinite sums in (1) and (3) are truncated at N terms, the
four continuity equations (two for each interface) become
a set of 4N coupled homogeneous linear equations in the
coefficients a,, b,, c,, d,, e,, and f,, after they are pro-
jected on the N transverse modes X, (y). Such a system of
equations can be written in the form M,;u;=v,, where u;
is a vector whose 4N components are the coefficients a,,
b,, ¢,, and d, for the outgoing and internal bend waves
[see Egs. (1) and (3)]. The 4N component vector v; con-
tains the amplitudes e, and f, of the incoming waves
(each coefficient appears twice). M;; is a 4N X4N matrix
that contains the information on the matching conditions
at the interfaces. For a bound state, all the modes are
evanescent in the perfect leads, so that e, = f, =0. Thus,
the energy of a bound state satisfies the equation
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detM =0. For the calculation of the S matrix (formed by
the transmission and reflection coefficients) one must in-
vert the matrix M, since the equation u =M ~'v yields
the amplitudes of the outgoing waves in terms of those of
the incoming waves (proper care has to be taken of the
velocity of propagation in the different transverse modes).

It is interesting to note that the energy thresholds for
propagation are lower in the bend than they are in the
perfect leads. As an example, we show in Fig. 1 the ener-
gy threshold for propagation in the first angular mode,
which is obtained by setting vi=0. For large radius (flat
limit) this threshold tends asymptotically to
E,=#*7*/2MW?, which is the minimum energy for
propagation in the fundamental mode along the perfect
wires. A very similar curve is obtained for the thresholds
of higher angular modes if these are referred to the corre-
sponding straight wire values, E, =n’E,. Therefore, one
can view the bend as a resonator whose effective width is
slightly larger than that of the waveguide in which it is
introduced. The larger effective width accounts for the
lower minimum energy for propagation. The effective
length of the resonator is proportional to the bending an-
gle. This resonator analogy permits a qualitative under-
standing of some properties of circular bends. A good ex-
ample is the existence of a bound state, which one can ex-
pect to find at energies between the thresholds for propa-
gation in the bend and in the perfect lead. In Fig. 1, the
energy of the bound states at bends of angles 90° and
180° are plotted as a function of the internal radius (at
artificially large angles, more than one bound state may
develop). It is clear that the binding energy E, —Ejg, de-
creases with increasing radius and with decreasing angle.
This is consistent with what will be seen for the electron
transmission: the effective scattering strength of a circu-
lar bend tends to decrease for large radius and small an-
gle. These states are more weakly bound than the bound
state at an L-shaped bend with sharp right angle corners.
In that case Ezs=0.92E,,° to be compared with, e.g.,
Eps=0.97E, for p,=0.15W and 6=180°. (We have not
plotted the bound-state energies at smaller radii because
in that regime our numerical algorithm becomes less reli-
able; however for p,—0 we can expect Egg to tend to a
finite value which should be somewhat higher than the
corresponding level of an L-shaped bend).

In Fig. 2 we show several electron transmission proba-
bilities as a function of the electron energy for bending
angle 6=90° and internal radii p,/W =0.2 and 0.5. T,
is the probability that an incident electron in mode 7 is
transmitted into mode m (note that, due to the sym-
metries of time reversal and reflection around the axis
¢$=0/2,T,,=T,,). For the propagating modes con-
sidered, (n =1,2,3) the total transmission 7, =3, T,,, is
practically unity at all energies except very close to the
thresholds E,. The conclusion is that these ideal circular
bends introduce almost no additional resistance to the
current flow except in those cases where energy happens
to lie very close to one of the mode thresholds.

The transmission probabilities T, (E) undergo very
rapid variations just below the threshold energies E,.
This is a signature of the presence of resonances, whose
nature is similar to that of the bound state below E, men-

11 889

| T T T T T
r (a)
A

I
o6t ;o\ — =

Transmission Probability
SN 47
RN

] RN _
///’ \/ \-\ _________
/ / ‘ . |
0.2+ ,// i \ -
| _—
: - <
o/ b‘ -
(0] L t L I B | |
[¢] 2 4 6 8 10 12 7 |
E/E,

I . . . .
( { // N (b)
! \\
o8- 7~ . )
= NN
= N\
S oef- No A
S N\ .
a .
5 ~.
»w 04 A
5 e
S 7
= | J
azf e I, ya 1
i //
O 1 }‘ r’/’, 1 1 \\.I Joooueen [ -
(s 2 4 6 8 10 12 14 16
E/E,

FIG. 2. Transmission probabilities T,, between transverse
modes n and m plotted as a function of energy for a bend of 90°
and internal radius (a) po=0.2W and (b) 0.5W: T, (solid), T},
(short dashed), T',; (dotted), T,, (dot-dashed), T,; (long-dashed),
and T';; (double chain dotted). Note that T,,,=T,,,.

tioned above.”? They can be viewed as quasibound states
of the subband whose threshold lies just above them. The
finite width of these resonances comes from their cou-
pling to the continuum of states in lower subbands. The
effect of resonances on the transport properties of crossed
narrow conductors has been recently studied by
Kirczenow’ in connection with the quenching of the
quantum Hall effect. In the case of circular bends, we
have found that, for the ratio p,/W =0.2 [Fig. 2(a)],
there is a resonance of width =0.001 and binding energy
~0.006 (in units of E;) below the threshold for n =3.
Not shown in Fig. 2(a), T,, presents a dip of width
~0.005E, at a similar distance below E, in which the
transmission goes all the way to zero. Due to the exceed-
ingly small scale of energies, we do not expect these reso-
nances to be of experimental relevance in most practical
cases.

Although there is total transmission in the vast majori-
ty of situations, Fig. 2 shows that there is a rich structure
in the conversion of modes. The probability that the
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electron changes mode increases with energy in most of
the cases considered, while the probability T,,(E) of
remaining in the same modes decreases after a rapid in-
crease just above E,. For a given energy the probability
of mode conversion is quite sensitive to the shape of the
bend. This can be appreciated in Fig. 3, where T';; and
T, are plotted as a function of p,/ W for several energies.
T, tends to decrease for large radii in a nonmonotonous
manner. The length scale of the decaying oscillations in-
creases with energy and (not shown here) decreases with
the bending angle. After some careful considerations,
this behavior can be understood in terms of the resonator
analogy. The lack of interference between propagating
modes gives rise to a poor structure of T,(p,) for
E/E;=1.05. The sharp rise of T, =T, at low p, is still
more pronounced at higher energies within the single
channel regime. Both the results on binding energies
(Fig. 1) and the results on transmission probabilities re-
veal a decrease of the bend effective scattering strength at
large radii. This trend can be understood in two comple-
mentary ways. As the bend radius increases, the struc-
ture of longitudinal and transverse modes becomes very
close to that of the modes in the perfect wire. Therefore,
at the perfect wire-bend interface, a given straight wire
transverse mode is mostly converted into its closely
resembling bend counterpart. On the other hand, one
can also note that at large radii the electron wave adapts
adiabatically to changes in the geometry that vary slowly
in the wavelength scale and thus the reflection and mode
conversion probabilities decrease. The importance of the
concept adiabatic propagation in electron waveguides has
been recognized in recent studies on the quenching of the
low-field Hall resistance in quasi-one-dimensional ballis-
tic microstructures.®

The interference patterns can best be observed in Fig.
4, where the transmission probabilities are plotted as a
function of the bending angle 6 for p,/W =0.2 and
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FIG. 3. Transmission probability T}, plotted as a function of
the internal radius for 6=90° and E/E,=1.05 (long dashed),
5.5 (solid), and 7.5 (dotted). T, is shown for E/E;=5.5 (short
dashed) and 7.5 (dashed dotted).
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FIG. 4. Transmission probabilities as a function of the bend-
ing angle for a bend of radius py=0.2W. (a) For E/E,=5.5
and 7.5, same convention as in Fig. 3. Here the long-dashed
line stands for E/E,=1.1. (b) For E/E, =12, same convention
as in Fig. 2.

E/E,=1.1,5.5,7.5, and 12 (of course the range 6> 180°
lacks physical relevance but we included it for greater
clarity). When more than one mode is available for prop-
agation within the bend, the mode conversion is mainly
determined by the interference between those propaga-
ting modes. This yields an oscillatory pattern in T,,,(6)
for E/E;=5.5 and 7.5. The fact that the period increases
with energy can be understood by noting that it is the
difference between angular momenta that determines the
interference and that this difference tends to decrease
with increasing energy. To make this plausible it is illus-
trative to consider the flat limit (p,/W — ), where
v (E)=m(py/WNE/E,—n*'? and (v, ,,—v,)<E "2
for E>>n’E,. For E/E,=1.1, T,,(0) has a period of
about 250°. Unlike the single and double channel cases
the presence of three propagating modes at E =12E,
gives rise to a more complex quasiperiodic structure in
T,,(0).

In conclusion, we have studied the scattering proper-
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ties of a circular bend in an electron waveguide as a func-
tion of the electron energy and the geometry of the bend.
We have found that the total transmission (summed over
outgoing transverse modes) is practically unity almost
everywhere in parameter space except at energies very
close to the thresholds. The span of these energy regions
with finite reflection increases with the internal curvature
of the bend. In contrast with these results for the total
transmission probability, we find that, for energies above
the single channel regime, the mode resolved transmis-
sion probabilities T,,, present a strong dependence on E,
0, and p,/W. The probability for mode conversion
displays periodic or quasiperiodic oscillation as a func-
tion of the bending angle, and present strong oscillations
as a function of the internal radius whose amplitude van-
ish at large radii. We have found that one or more bound
states nucleate at a circular bend. Their binding energy is
generally small except at strongly curved bends, in con-
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sistency with the effective scattering strength that is in-
ferred from the results for mode-averaged transmission
probabilities.

Note added in proof. We have recently learned that a
similar study based on a different method but leading to
the same main conclusions has been independently per-
formed by Lent.!8
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