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%'hen solid bodies contact and slide against each other, the frictional phenomenon occurs. The
origin of the related frictional force is studied by assuming the existence of two clean crystal sur-

faces, which follows the current experimental trends. This study theoretically clarifies the atomistic
origin of the frictional force intrinsically generated by the molecular interactions between the con-
stituent atoms of solids, but not the force extrinsically generated by surface asperities, the existence
of foreign atoms, etc. Furthermore, this study assumes that the constituent atoms of the two con-
tacting surfaces interact with each other due to the interaction potential. This study found that
there are two origins: atomistic locking and dynamic locking. Atomistic locking occurs when the
configuration of the atoms on a contact surface continuously changes with the sliding distance and
when the interatomic potentials have an arbitrary strength. In contrast, dynamic locking occurs
when the configuration discontinuously changes due to the dynamic process and if the interatomic
potential is stronger than a specific given value. A criterion is derived for the occurrence of dynam-

ic locking. From studying various systems, it can be seen that dynamic locking is unlikely to occur
in realistic systems. The frictional forces due to atomistic locking are calculated for a-iron. One
other important finding prior to the experiments is that certain unique cases exist where the fric-
tional force exactly vanishes if completely clean solid surfaces are prepared.

I. INTRODUCTION

When two solid bodies contact each other and one
body subsequently slides against the other, the frictional
phenomenon occurs. ' Enormous amounts of experimen-
tal data has shown that energy, i.e., frictional energy, is
necessary for sliding contacting bodies. This indicates
that a force (frictional force} parallel to the contacting in-
terfaces appears.

Several models (or views} have been proposed to ex-
plain the origin of this frictional force. Some relate to the
mechanical locking of surface asperities, and others to
the atomistic origin, i.e., the molecular interaction be-
tween the constituent atoms of solids. A solution to the
problems of coefficients of friction in real systems is
achieved from the viewpoint of phenomenology by a
priori assuming that the frictional force exists. In real
systems the data usually measured contain many un-
known factors: surface roughness, poisoning by contam-
inants such as 02, H2, and oil, etc. It is diScult, there-
fore, to study the origin of the frictional force from the
experiment data available at present. More recent experi-
mental studies, ' however, try to exclude many of the un-
known factors by preparing well-defined surfaces. The
purity and completion of such surfaces can be detected
by current surface-analysis techniques such as scanning
tunneling microscopy (STM}.

To understand the frictional-force mechanisms, this
paper theoretically considers the atomistic origin of the
frictional force on clean solid surfaces. It clarifies the ori-

gin of the frictional force that is generated by intrinsic
factors, such as molecular interactions between constitu-
ent atoms, not by extrinsic factors such as surface asperi-
ties or surface contaminants. The system studied consists
of two solid crystals: the upper and lower body. The
lower body is assumed to be rigid, and the upper body
slides against it. The atoms belonging to both bodies are
assumed to interact with each other by pairwise intera-
tomic potentials. The frictional properties are investigat-
ed for a quasistatic case where the upper body slides very
slowly against the lower one. Atoms are considered to
form the most favorable configuration by changing their
positions during quasistatic sliding. Thus the concept of
adiabatic potential is introduced to analyze the interac-
tion energy operating between all the constituent atoms
and the changes in their configurations. In general, the
configuration of the atoms changes either continuously or
discontinuously during sliding. The energy necessary for
these configurations of the atoms to change is the fric-
tional energy. This energy could dissipate into lattice vi-
brations, but the detailed mechanisms of such energy dis-
sipation are not investigated here.

The organization of this paper is as follows. Section II
defines the model for friction. The expressions for the
adiabatic potential, frictional energy, and frictional force
are obtained by assuming a rigid lower body. Section III
examines an unrelaxed upper-body case, in which both of
the upper and lower bodies are assumed to be rigid, by al-
lowing the interplanar distance between the two bodies to
vary during sliding. In this case, the configuration of the
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atoms continuously changes, resulting in one atomistic
origin called atomistic locking. Section IV analyzes a re-
laxed upper-body case, where the upper body is allowed
to relax during sliding, in relation to the strength of the
interaction potential existing between the two sliding bo-
dies. In this case, the configuration of the atoms changes
either continuously or discontinuously during sliding.
The discontinuous change of the configuration results in
the other atomistic origin called dynamic locking. In ad-
dition, friction transition is observed where frictional
force changes from vanishing to finite as the interaction
potential strengthens and a criterion for this occurrence
is derived. Section V discusses the frictional properties of
various systems in connection with the friction transition
analyzed in Sec. IV.

II. THEORETICAL PRELIMINARIES

A. Adiabatic potential

W(Q. {r,I) . (2.1)

Q stands for the displacement vector of the upper body
against the lower body. An r; coordinate set satisfies the
relationship

~Q N

Q=gr;/N" and 0=Jr;/N' . (2.2)

The adiabatic potential is defined by the total energy
when two contacting solid bodies slide against each oth-
er. This assumes that the upper body slides against a
fixed lower body. It is also assumed that the upper body
has N" atoms and the lower body N' atoms, and that the
constituent atoms belong to both bodies interact with
each other. The position coordinates of the atoms are
denoted by r;=(r;",rf, r,') where i =1,2, . . . , (N" +N').
The total energy is a function of the position vectors r; of
all the atoms:

B. Model

The model involves two contacting surfaces that have
some form of simple symmetry for simplification such as
fcc (face-centered cubic), bcc (body-centered cubic}, or
hcp (hexagonal closed packed) lattices. Each atom be-
longing to the upper (or lower) body is denoted by a (or
b)

V„(r}, V,&(r}, and V&&(r) . (2.7)

V,z(r) (c,d =a or b) describes the interaction between
atoms c and d (r denotes the interatomic distance be-
tween two atoms). V,&(0)=0 and V„(0)=0are used
throughout this paper. This assumption means the ex-
clusion of the self-energy part of the interactions between
constituent atoms from the expressions derived below.
This is equivalent to g'„where the summation when i =j
in Eq. (2.8), for example, is excluded. The relative posi-
tions for the primitive vectors of the two contact surfaces
are shown in Fig. 1. These primitive vectors are denoted
by g'„g2,g&, and g2 and qo is a misfit vector. The follow-
ing section studies frictional properties for when an upper
body moves quasistatically along a certain direction
parallel to the contacting surface against a stationary
lower body.

W(Qi Q2}=J —(~Q F(Q»; (2.5)
path

where (x, y); stands for an inner product between vectors
x and y; this notation will be used throughout this paper.
Frictional energy depends on the path. Average friction-
al force F,„(Q,,Q2) along a path from Qi to Q2 is

F.,(Qi Q2}=
W(Q„Q2}

(2.6)
I~QI

Equations (2.3)-(2.6) generally hold true when any two
bodies slide against each other.

Thus, the adiabatic potential spans a 3(N"+N' 1)-—
dimensional potential surface. A set of r; is determined
so as to minimize W(Q: I r, I ) for a given Q. The adiabat-
ic potential can then be denoted as W(Q), since r, is a
function of Q. In general, the configuration of the atoms
can change either continuously or discontinuously as Q
varies.

Suppose Q and Q' are very close. Frictional energy
W(Q, Q') is defined as the energy necessary for the
configuration at Q' to change into the one at Q. Thus,
the frictional force F(Q) and the critical frictional force
F„which are required to slide two contacting bodies
against each other, can be obtained by

and

F(Q)= lime-e Q —Q' (2.3)
9]

F, =maximum of F(Q) . (2.4}

Frictional energy W(Qi, Qz) is lost along the path from

Q, to Q2 and can be obtained by

FIG. 1. General configuration where the primitive cell is
spanned by primitive vectors: g', and g2 of the upper body and
contacts a primitive ce11 spanned by primitive vectors: g& and g2
of the lower body with misfit vector qo.
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C. Expression for adiabatic potential

The adiabatic potential is obtained by

N" N N" N"

W (Q ) =g Q V,b ( I r; —rj I ) + —,
' g V„(I r; —r .

I ) .

(2.8)

W(Q)=g fdrP, (r;g, ,g, )

Nr

X V'( r )+ -,
' g V„(I r —rr

I )

P(r gl g2} yP (r gl g2)

(2.15b)

(2.16)

Remember that V,b(0)=0 and V„(0)=0. Here, the
summation of j in the first term of the right-hand side is
expressed by

V'(r)=+ V b(lr —r, I) . (2.9)

rr =(pr, zr ) =(xrgi+y, g2+ hpr, zr. ) .

Here, hp~ is defined by

(2.10)

V'(r) is the interaction energy that the atoms of the
upper body receive from the atoms of the lower body.
The term Vbb(lr; —r~l) is dropped, since it has no Q
dependence. V'(r) has a periodicity characterized by the
primitive vectors of the top layer of the lower body.
Also, an upper body with a simple symmetry can be re-
garded as a stacked layered crystal. Equation (2.8) can be
rewritten by making use of these facts.

A new notation rr or (pf,z;r)'is introduced, where pr
stands for the components of the positional vectors on
the yth layer, which is referenced by counting y layers

up from the bottom layer of the upper body. z;r stands
for the z components of the positional vectors on the yth
layer. Notation r, =(r,",r~, r,*) is still used .in Sec. IV and
positional vector r~ can be expressed by using primitive
vectors g, and gz of the lower body:

P (r;g, , g )=+5(p hp—r)5(z —zr), (2.17)

where 5(z) is a 5 function.
Frictional properties are studied for two cases: a rigid

upper body and a relaxed upper body. In the first case,
the frictional properties can be easily analyzed, and the
first important result of this paper is based on this
analysis. In the second, the configuration of the atoms
changes either continuously or discontinuously according
to displacement Q.

III. THE CASE OF AN UNRELAXED UPPER BODY

A. Adiabatic potential

W(Q) =g fdr Pr(r;g, , g2}V'(r),
r

Pr(r;g, , g2)=5(z —h )P (p),

(3.1)

(3.2)

(3.3)

It is assumed that the atoms of the upper body do not
change their position coordinates due to sliding friction
and that the configuration of the atoms of the upper body
does not change with Q. Therefore, the first term in the
right-hand side of Eq. (2.15b) is focused on, since only Q
dependence of W(Q) is of interest. The equations to be
solved are

b,xrg, +by, rg2 (0&6,xr byr&1,(2.11)

hp~= bx;rg, +4y;rg2, (3.4)
xr and yr are integers that define bp fin Eq'. (2.11). x;r,
y;, b,x r, and hy;r are obtained from a given vector pr as

and

x; =[X,r] and yr=[F;r], (2.12)

gxr=gr [Xr] and Qy,r [yr] (2.13)

X;r and Y,r are defined by

Pi~Sr i r Pt&82 t(r, ) (r )
and Y;r =

Igil
'

Ig~l
(2.14)

N", N"
W(Q)= JdrP(r;g„g2)V'(r)+ —,

' g Y„(lrr—rr. I),

where [x] is Gauss notation and stands for a maximum
integer that is equal to or smaller than x. Accordingly,
Eq. (2.8) is rewritten as

where z;r=hr can designate all atoms belonging to the
yth layer of the upper body, since the upper body is rigid.
Equation (2.17) is then rewritten as Eq. (3.2) and h is
determined so as to minimize the W(Q} for a given Q.

The frictional properties appear as the Q dependence
of P (p) throughout Eqs. (3.1)—(3.4). If, for example,
Pr(p) is independent on Q, a given set of h is also in-

dependent on Q, since the functional form of W(Q) for
hr does not change. Accordingly, Pr(p) and W(Q) are
invariant for any displacement Q and the corresponding
frictional force exactly vanishes. If P (p) changes with

Q, then W(Q) depends on Q, and the frictional force
does not vanish. Thus, the Q dependence of Pr(p) deter-
mines the Q dependence of W(Q), i.e., it determines
whether or not the frictional force vanishes. This proper-
ty is crucial in the unrelaxed case, but not so important
to the relaxed case where the configuration of the atoms
can discontinuously change with Q.

B. Q dependence of P„(p)

or

(2.15a)
This section examines the conditions that determine

whether or not P (p) is invariant for Q. To calculate
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(a) (b) (b)

(c}

b,x,r and by, r in Eq. (3.4), it is necessary to specify posi-
tional vector p~. If the upper body is rigid, the positional
vectors of the atoms belonging to the yth layer of the
upper body (see Fig. 1) are

pr=i' g' +i& gz+qtI+Q,

where q$ is a misfit vector of the yth layer. Then,

Pi~St i
(}', )

lg)l

iI'(gI gi) +iF(g2 gi};+(qII+Q gi);

Igg I

(3.5)

(3.6a)

FIG. 2. Schematic illustrations of possible nonvanishing re-
gions where the atoms of the upper body are projected onto a
two-dimensional space spanned by g] and g, when P~(p) is
variant with Q. [(g'„g,) /I g) I, (g~, g( ), /I g) I, ( g(, g2); /I g~l,
(gq, gq), /Igzl)]=(r, r, r, r) for (a), (r, r, ir, r) or (r, r, r, ir) for (b)
(r,ir, r, r) or (ir, r, r, r) for (c), and (r, ir, r, ir) or (ir, r, r, ir) or
(r, ir, ir, r) or (ir, r, ir, r) for (d) where r represents rationality and
ir irrationality.

FIG. 4. Schematic illustrations of possible nonvanishing re-
gions where the atoms of the upper body are projected onto a
two-dimensional space spanned by g] and g2 when P~(p) invari-
ance with Q is restricted. [(g~,g~);/Ig&l, (gz, g~);/lg&l
(g'„g2),/lgzl, (g2, g2), /Ig2I)]=(r, r, ir, ir) for (a), (r, ir, ir, ir) or
(ir, r, ir, ir) for (b), (ir, ir, r, r) for (c), and (ir, ir, ir, r) or (ir, ir, r, ir)
for (d), where r represents rationality and ir irrationality.

Pi ~Sz i
(}', )

Ig21

~ p(gI, gz);+ i2'(g2, g2);+ (q$+ Q, g2);

Ig21
(3.6b)

The two-dimensional distribution, Pr(p}, in Eq. (3.3} can
be obtained according to the Bohl-Sierpinski-Weyl
equipartition theorem. P (p) is specifically determined

by projecting hx,~ and hy;~ onto the two-dimensional
space spanned by vectors g, and g2 due to Eqs. (2.13},
(3.6a), and (3.6b). The equipartition theorem says that ra-
tional (g', g„);/Ig„l(m, n =1 or 2) results in a inhomo-
geneous Pr(p), but irrational (g', g„),/Ig„l (m, n =1 or
2) results in a homogeneous P (p). Thus, whether or not

(g~, g„);/g„l(m, n =1 or 2) is irrational or rational
determines P„(p). The possible combinations of
(g', g„);/Ig„lgenerate nine kinds of P (p), which are
classified into three cases in terms of the Q dependence of
P(p). The corresponding distributions of P(p) are
schematically illustrated in Figs. 2—4.

FIG. 3. Schematic illustrations of possible nonvanishing re-
gions where the atoms of the upper body are projected onto a
two-dimensional space spanned by g& and g2 when P~(p) is in-
variant with Q. [(g', ,g, ); /I g, I, (g,', g, ); /I g, I, ( g'„gz);/lg, l,

(g&, g2);/Igzl] =(ir,ir, ir, ir), where ir represents irrationality.

Variant P~(p) case

Figure 2 shows Pr(p) by lines and dots. For instance,
when the values for (g', g„);/Ig„l(m, n =1 or 2) are all
rational, Pz(p) consists of dots seen in Fig. 2(a), since
many atoms can occupy the same site in a two-
dimensional space. The large dots represent a relatively
high density of the projected atoms. When Q varies, the
dots relocate with Q and frictional force appears. The
occurrence of friction stems from the fact that the upper
body tnoves against the lower body in the (nonflat) poten-
tial surface. This is the same as the classical picture of
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friction; mechanical locking of surface asperities. This
potential surface, however, spans not on a large scale, but
on an atomistic scale and the related mechanism is called
atomistic locking, as an analogy for the mechanism for
the mechanical locking. [This situation is later referred
to as the invariant P, (r;g„gz)case.]

V'(r}=g V,&( ~r —r, ~ ),

V"(r)= g V„(~r—re~),
j,@&1

(4.2)

(4.3)

2. Invariant P„(p)case

In Fig. 3, P(p} involves only the domain. The domain
does not change for any direction of Q. As a result, the
frictional force always vanishes, since P(p) is invariant
for any Q. [This situation is referred to later as the in-
variant P, ( r; g„gz)case.]

3. Restricted invariant P„(p)case

(4.4)

Since V,b(r), i.e., V'(r) is weak r (a=x, y, or z) is ex-
pected to be very close to the position coordinate ob-
tained by assuming a rigid upper body. Putting
r,' =r, '0 +dr, (or r,'=r,'0+5,r;) into Eqs. (4.2)—(4.4),
and then expanding by a small hr (or hr; },we have

In Fig. 4, P(p) involves lines and domains. The
domains do not change for any Q. The lines, however, do
relocate if Q is across the lines, but do not relocate if Q is
along the lines. Thus, the frictional force will only vanish
for Q, which is along the lines, but otherwise appears.
[This situation is referred to later as the restricted invari-
ant P, (r;g„g2)case.]

av'(rI, )

g V'( r; ) =g V'( r; 0)+g &

'
b, r;

av"(r'
gV"(r, )=+V"(r; ~0++, '

br;

(4.5)

IV. A MORE REALISTIC CASE:
A RELAXED UPPER BODY

Only atoms belonging to the bottom layer of the upper
body can change their position coordinates when two bo-
dies slide against each other. This assumption is plausi-
ble, since the relaxation of atoms in the other layers, such
as the 2nd, 3rd, etc. would probably be small compared
to those of the bottom layer. Two extreme limits for
V'(r) (weak and strong) are studied to see what occurs
when V,b(r) becomes stronger.

A. Weak limit

U=QV„(~r,'0 —r'o~)+ —,
' g U, '~Sr; br&~,

where

a V'(r, o)yl, a,p
ar' ar'~ '

i, O i, O

a V"(r, o)

ar' ar'p '
i, O i, O

(4.6)

(4.7)

(4.8)

(4.9)

W(Q) =g V'(,')+g V"( )+ U, (4.1)

where

The three-dimensional distribution, P, (r;g„g2),in Eq.
(2.17) is studied instead of P (p) in Eq. (3.3). The adia-
batic potential consists of the following three interac-
tions: V'(r), V"(r), and U, which the atoms in the bot-
tom layer receive. V'(r) is the interaction from the atoms
of the lower body. V"(r) is the interaction from the
atoms of the 2nd, 3rd, etc., layers of the upper body. U is
the mutual interaction that occurs between atoms belong-
ing to the bottom layer of the upper body:

Ua, P
l, J

Ua, P
l, l

for i',
ar,,"oar,,'g

arj(, o arij, o

(4.10a)

(4.10b)

where r,"o =r, 'o —r'o. U; ' satisfies the relationship
U~ ~+gj.~»~U; j.~=o for a,P=x, y, or z. This is

equivalent to a condition where interaction U has transla-
tional invariance, that is, U is invariant for the uniform
displacements r;~r;+a (a denotes arbitrary constant
displacement vector) of all the atoms.

When one chooses r, o so as to minimize g; V"(r, )+ U,
the adiabatic potential can be obtained by minimizing

a V'(r, 'o )
W(Q:Ihr; ] )=+V (r,'o)++V"(r,'o }+. QV„(~r,' o

r' 0~)+.g—. .
,

' br, + ,' g [e; (V . '~+ V;"' ~)+ U—, '~]br, br~. .
r. '

with respect to hr,-, where e;J=1 for i =j and e; j=O
otherwise. The atoms in the bottom layer feel a stronger
potential from the atoms in the upper layers (2nd, 3rd,
etc.) than from those in the same bottom layer for a first

(4.11)
I

approximation. The interaction from the bottom layer is
actually

&p
to

2
that from the upper layers of the fcc and

bcc lattices. The mutual interaction term U; 'p is neglect-
ed for the first approximation. The derivation of the po-



11 842 MOTOHISA HIRANO AND KAZUMASA SHINJO 41

sition coordinates for the atoms of the upper body can be
obtained from the Appendix by taking U; '~ into account.
Then it is set that V;",'"'"=co„)0, V;";"' =co & 0,
V;","'=co,)0, and U;;~=0 in Eq. (4.11) for surfaces such
as the (001) planes of the bcc lattices which have a square
symmetry. For other cyrstal planes, the results are
slightly modified. Displacement hr, . , as obtained from
Eq. (4.11), is

hr =—a V'(r, ,) /ar, ,
Vu, a, a

l, l

a V'(r; 0)/ar; 0
(4.12)

'/ /

critical atom

This expression tells us that Ar; continuously changes if
aV'(r,.)/ar; is a continuous function of r; In .the case
of a rigid upper body, P, (r;g, , g2) is obtained
as P, (r;g„g2)=5(z —h, )+,5(p —4p,'. )=5(z —h, )P, (p).
P, (r;g„g2)consists of nonvanishing regions that involve
the lines, dots, or domains shown in Figs. 2-4. For the
weak V (r},each point in the regions slightly shifts in ac-
cordance with Eq. (4.12},even though the lines, dots, or
domains do not change their topology when shifts occur
due to a weak V'(r). Thus, the frictional properties for a
weak V'(r) are essentially the same as those in the rigid
upper-body case, provided the first derivative of V (r) is a
continuous function of r.

As seen in Eq. (4.12), the density of P, (r;g„g2)gen-
erally decreases as one approaches the ridge lines of
V'(r) The di.rection along the ridge line is defined as
aV'(r)/ar =0 and a V'(r)/ar &0 as the direction per-
pendicular to it. These ridge lines play a crucial role in
deciding whether or not the frictional force vanishes and
they will be discussed later.

B. Strong limit

Atoms in the bottom layer of the upper body position
themselves at the lowest minima of potential V'(r) that is
the nearest to each atom. These lowest minima positions
are denoted by vectors i&g&+i2g2+r (i„i2=any in-

teger), where m denotes only one minimum when there
are several lowest minima in the primitive cell of the
lower body. For the (001) planes of simple crystals, such
as bcc lattices m = 1. Integers i

&
and i 2 in

iig&+i2g2+r nearest to P;=i', g', +izgz+qo+Q are
determined so as to minimize the distance

d, =l(iigi+i2g2+~ ) (p =iigi+i2g2+qo+Q)l

for a certain m . (4.13)

P, (r;g„g2) is invariant for any Q, since the atoms
definitely occupy the positions of the lowest minima of
V'( r).

Let us consider the frictional system shown in Fig. 5.
A small displacement of Q changes a few i, (or i2) into
i, +1 (or i2+1). A few corresponding atoms then jump
from site i,g&+i2g2+~ to the nearest-neighboring site.
Frictional energy is necessary for the atoms to change
beyond the potential barrier between site i, g&+i2g2+~
and its nearest-neighboring site. Frictional force then ap-
pears, identifying another origin of friction. The atoms

FIG. 5. Two contacting surfaces where P&(r;1&,N2) of the
frictional system is invariant for any Q. The upper-body sur-

face, shown by dashed lines, contacts the lower-body surface,
shown by solid lines. Atoms initially positioned at symbols (0 )

move symbols (), which correspond to the lowest minimum of
V'(r). The critical atom near the boundary line of a primitive
cell of the lower body is the one most likely to jurnp beyond the
potential barrier when Q is given.

discontinuously change. The appearance of the discon-
tinuity is ascribed to the failure of the adiabatic potential
description. This origin, therefore, cannot be described
within the framework of the adiabatic potential. The ori-
gin can be described only by taking the dynamic move-
ments of the atoms into account. Accordingly, this ori-
gin of frictional forces is referred to as dynamic locking
P, (r;g„g2) is still invariant in this displacement. Dy-
namic locking occurs for any arbitrarily small displace-
ment Q. Frictional force is, therefore, a complicated
function of Q.

In the invariant Pi(r;gi, g2) case, dynamic locking
occurs infrequently. When a certain Q is given, many of
the atoms throughout the entire system cooperatively
jump beyond the potential barrier, since (g', g„);/lg„l
(m, n =1 or 2) is rational. In the restricted invariant

P, (r;g„g2)case, dynamic locking frequently occurs only
in a direction along the lines in P, (r;g, , g2).

C. Intermediate regime: Friction transition

In the variant P, (r;g„g2)case, the nonvanishing re-
gions of P, (r;,g„g2)consist of many dots or lines (see
Fig. 2) for an arbitrary strength of V'(r). P, (r;g„g2)
varies for any Q and any V'(r). When Q varies, the
atoms in the upper body continuously change their posi-
tions. This leads to atomistic locking, resulting in non-
vanishing frictional force. The corresponding adiabatic
potential and frictional force is calculated by specifying
the functional form of interaction V,s(r) As V'(r) .be-
comes stronger, the vanishing region (where atoms can-
not stay) broadens in P, (r;g„g2)for any Q. Further in-
creases in V'(r) disconnect the pattern where P, (r;g„g2)
is tiled periodically, as shown in Fig. 6(a), depending on
the direction of Q. When Q in the disconnected direction
is given, the atoms only move by nonadiabatic jumping
over the vanishing regions in P, (r;g„g2). This leads to
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dynamic locking.
In the invariant P, (r; g, ,gz } case, the nonvanishing re-

gion in P, (r;g„g2)consists of only the domain (see Fig.
3) for a weak V'(r). P, (r;g„gz) is invariant for any Q
and for a small V(r), resulting in vanishing frictional
force. Atomistic locking never occurs under these cir-
cumstances. As V'(r) becomes stronger, the vanishing

region appears in Pi(r;gi, gi). Further increases in V'(r)
eventually disconnect the pattern where P, (r;gi, g2) is

periodically tiled, shown in Fig. 6(b}, depending on the
direction of Q. This results in dynamic locking due to a
strong V'(r) interaction. It can thus be concluded that
the transition where frictional force chan~es from vanish-
ing to finite occurs due to an increased V (r}. This transi-
tion is called friction transition

In the restricted invariant P, (r;g„gi)case, the non-
vanishing regions consist of lines and dots (see Fig. 4) if
V'(r) is weak. P, (r;g„gi)is invariant for a Q along the
lines in P, ( r; g, , gz ) and for a weak V'( r },which results in
the occurrence of vanishing frictional force only along
those lines. Increases in V'(r} will cause the pattern for
P, (r;g„g2)to disconnect, depending on the direction of
Q. After this disconnectedness, dynamic locking occurs.

There are two atomistic origins for solid sliding fric-
tion; atomistic locking and dynamic locking. One lock-
ing concept stems from the fact that all the atoms of a
contact surface will cooperatively move as seen in the
variant and the restricted invariant P, (r;g„g2) cases.
The other stems from the fact that atoms independently
jump beyond the nearest-neighboring potential barrier
due to nonadiabatic effects, as seen in all cases with a
strong V (r). It was then found that both the Q depen-
dence of P, (r;g„g2)and the changes in the topological
properties of the patterns made by Pi(r;g„g2)determine

Inv-P R- Inv-P V-P

~ ~
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0
CL
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(AKD)
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{ASD)
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(A)

O
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C
C0
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U
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5 dependence

FIG. 7. Schematic phase diagram representing whether or
not frictional force is finite or vanishing. Here, the invariant
P&(r;g&, g2) case is denoted as Inv-P, the restricted invariant

P&(r;g„g2)case as R-Inv-P, and the variant P&(r&,'g&, g2) case as
V-P. Atomistic locking is denoted as ( A), and dynamic 1ocking
as (D).

the frictional properties in both the unrelaxed and re-
laxed upper-body cases. A summarized diagram of this is
shown in Fig. 7 and forms the central results of this pa-
per.

Friction transition is the same as the transition of
analyticity breaking, often called Aubry transition. Au-
bry studied the Frenkel-Kontrowa model which is a one-
dirnensional system to describe the movement of defects
or dislocations. Analyticity breaking corresponds to the
discontinuous change of the relaxed particle positions.
For restricted invariant and invariant P, (r;gi, gz) the re-
laxed particle positions discontinuously change as Q
varies. The friction transition demonstrates the Aubry
transition for the two-dimensional system.

D. Friction transition: Criterion for its occurrence

connected

(aj

disconnected

connected

(b)

t

disconnected

FIG. 6. Disconnectedness of a pattern made by tiling
P&(r;g&, g&) periodically. (a) is the variant Pl(r;g&, g2) case, and
(b) is the invariant P&(r;g&, g2) case.

A condition needs to be derived to decide whether or
not friction transition occurs. Three interactions are con-
sidered for this condition: V'(r), V"(r), and
U=( —,')g; 1 V„(~r,' —r'i}. The first two can be regarded
as the external local fields that act on each atom belong-
ing to the bottom layer of the upper body. The last is the
mutual interaction term for the atoms belonging to the
bottom layer of the upper body. The (approximated) cri-
terion is obtained for a case where interaction V'(r) is
suSciently strong (cf. discussion in Sec. IV A) and the de-
rived criterion for a general case is shown in the Appen-
dix.

A simple case involving a one-dimensional system is
first studied, in which only V'(r) and V"(r) operate (see
Fig. 8). The results of that case are extended to our two-
dimensional system When V. '(r) =0, the atoms occupy
positions that correspond to the lowest minima of V"(r)
For a weak V'(r) limit, the atoms change their positions
slightly towards the minimum positions of V'(r). For a
strong V'(r) limit, the atoms occupy positions that corre-
spond to the lowest minima of V (r). When distribution
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9

V" (rI

Atoms are unable to occupy vanishing regions in P(r).
The potential is concave function at these positions.
Since Ar is a function of 6»', 5» =»;„—»,„+5»', and
the condition under which 6» or 6»' becomes unstable is

d V'(r,„) d V"(r;„)
d» m d» min

(4.14)

FIG. 8. A one-dimensional frictional system. V'(r) and
V"(r) have their periodicities characterized by lengths g and g'.
The atoms sit on the lowest minima () of V"(r), when
V'(r) =0. When V'(r) becomes a strong limit, the atoms occupy
the positions for the lowest minima (0 ) of V'(r).

P(r) is periodically arranged in a one-dimensional space,
the nonvanishing regions in P(r) connect with each other
for a weak V'(r}, but disconnect for a strong V'(r) The.

friction transition that then occurs is similar to the two-
dimensional case just previously mentioned and a cri-
terion for it can be derived.

The potential energy is V'(r)+ V"(r), when r is close to
the position of the extreme maxima of V'(r) and to that
of the lowest minima of V"(r) If r. =r,„+hr and
r =r;„+br',and V'(r)+ V"(r) is expanded by a small
6» and hr', then

V'(r)+ V"(r)= V'(r,„)+V"(r;„)

V'(r, )+ V(r ;m„) ++V' &(r, )br br~
a, P

++V" Is(r;„)br' br'~ .
a, P

(4.15)

If the relationship between (br", br ) and (br'", br'~) is
given as

When d V'(rm»)/dr, „+dV"(r;„)/dr;„)(or () 0,
frictional force vanishes (or appears}.

Let us extend this criterion to a two-dimensional sys-
tem. First, consider the case where U=O. r,„ofV'(r)
corresponds to a point satisfying 8 V'(r)/Br =0 and
8 V'(r)/Br (0 along lines that are perpendicular to the
ridge lines of V'(r) Fo.r basal planes such as the (001)
planes of bcc lattices, the ridge lines are obtained by con-
necting four points of a square spanned by the two primi-
tive vectors I& and g2. The position on the ride lines is
denoted as r, [or (r,', r~)]. r;„ofV"(r) corresponds to
the lowest minima of V"(r) The .potential energy ex-
panded by a small hr" and hr y, and hr'" and hr' are

+dr [d V'(r,„)/dr,„]
+ b, r ' [d V"(r;„)/dr; „].

br"=gT rAr",
r

then Eq. (4.15) becomes

(4.16)

V'(r, )+ V"(r;„)+g V' &(r, )+ g (r;„)Tr Tr & hr Ar~ .
~P. rr'

(4.17)

The condition that the potential energy is a concave func-
tion of r for a one-dimensional system is equivalent to the
condition that the potential energy is a concave function
in a direction that is perpendicular to the ridge lines for a
two-dimensional system. Denoting this direction perpen-
dicular to the ridge lines as vector s=(s„s), the corre-
sponding condition is

Vz +$& +2 Vz y$&$y + Vy y$y (0 (4.18)

where V &isdefinedby

V p=V' p(r, )+ g Vy ~ (r;„)T~ T~ p

+gU &(is—r™i). (4.19)

The effects introduced by mutual interaction U are taken
in account by adding the last term in the right-hand side
of Eq. (4.19)

V. FRICTIONAL PROPERTIES
FOR VARIOUS SYSTEMS

A. Quasistatic friction of a-iron

In this section, realistic calculations are demonstrated
that relate to the quasistatic sliding friction of a-iron.
The adiabatic potentials, calculated as a function of the
sliding distance, give the minimum energy necessary for
sliding friction to occur. Two types of frictional systems
are examined, characterized by the rationality of
(g', g„);/ig„i(m, n =1 or 2), where g' and g„areprim-
itive vectors of the upper and lower bodies.

Case (a). The (001} plane of a-iron (bcc lattice) is
placed against another (001) plane, as shown in Fig. 9(a).
The upper body is then slid against the lower one in
direction x. The bcc lattices that have a unit vector of
T = (a, a, a) (a denotes a lattice constant of the bcc lattice)
for the upper body are placed on the same bcc lattices of
the lower body. This contact generates the variant
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P, (r;g, ,g2 } case [see Fig. 2(a}]: since both (gI, gI ); /~ g ~

and (gz, g2);/~g2( are rational, (gz, gI);/~gI)=0, and

(gI, gz);/~gz~=0. The upper-body lattice is then com-
mensurate with the lower-body lattice both in its sliding
direction x and vertical direction y.

Case (b). The (110) plane of a-iron is placed against a
(001}plane, as shown in Fig. 9(b). The upper body is slid
against the lower one in direction x. The fct (face-
centered tetragonal} lattices that have a unit vector of
T=(a, &2a, a) for the upper body are placed on the bcc
lattices that have a unit vector of T= (a, a, a ) for the
lower body. This contact generates the restricted invari-
ant PI(r;g„gz) case [see Fig. 4(c)]: since (g'„gI);/IgII
and (g'„g2);/(g2~ are rational, (gz, gz), /~g2( is irrational,
and (gz, gI};/~gI~=O. The upper-body lattice is then
commensurate with the lower-body lattice in sliding
direction x, while being incommensurate in vertical direc-
tion y.

Several kinds of interatomic potentials'o "have been
proposed for a-iron. The Johnson potential was chosen
from among them since it has been successfully used to
calculate such atomic displacements as the tensile defor-
mations of amorphous iron. '4 This potential is expressed
as three third-order polynomials:

ItI(r) = —2. 195 976(r —3.097 910)

+2.704060r —7.436448 eV

P(r) = —0.639230(r —3. 115829)3

+0.477 871r —1.581 570 eV

for 2.4 A&r &3.0 A (5.1b)

P(r) = —1.115035(r —3.066403)

+0.466 892r —1.547 967 eV
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for 3.0 A & r & 3.44 A . (5.1c)
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The a-iron lattice constant is taken as 2.86 A. The model
potential can yield reasonable surface energies for a-iron:

for 1.9 A&r &2.4 A, (5.1a} —63.6-
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FIG. 9. Atomic arrangements at the contact interfaces. The
upper body with atoms (o ) is slid over a stationary lower body
with atoms (+) in the x direction. PI (r;g„g2)is variant with Q
in any direction for (a). PI(r;gI, g2) is still variant with any Q
for (b).

FIG. 10. Calculated adiabatic potentials normalized by the
contact area. The (001) plane of o.-iron is slid over the same
(001) plane for (a), and a (110) plane over a (001) plane for (b).
Dashed lines represent the unrelaxed case and solid lines the re-
laxed one.
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1.31 J/m for the (001) plane and 1.21 J/m for the (110)
plane. These values are comparable to a measured sur-
face energy of 2.2 J/m .' The frictional properties of the
rigid upper-body case are compared with those of the re-
laxed upper-body case. To do this comparison, the sys-
tern used is assumed to be of a suSciently large, but finite
size. The size of the adopted system is (20X20X2) bcc
unit cells (2123 atoms) for the upper body and
(24X24X2) bcc unit cells (3027 atoms) for the lower
body in case (a), and (20X20X2) fct unit cells (4203
atoms) for the upper body and (24 X 32 X 2) bcc unit cells
(4011 atoms) for the lower body in case (b).

Figure 10 shows adiabatic potentials normalized by
contact area 3 as a function of sliding distance Q„in
cases (a) and (b). Potential barrier E» can be observed in
both cases. Eb changes only slightly after relaxation in
case (a), but it increases noticeably after relaxation in case
(b). Potential barrier E» in case (b) is smaller than that in
case (a), so less frictional force appears in case (b). Calcu-
lation shows that E» = 1. 1 J/m in case (a), and E» =0.53
J/m in case (b). The average frictional forces calculated
by Eq. (2.6) are F,„(Q&,Qz)=7. 6 GPa in case (a), and

F,„(Q„Qz)=3.7 GPa in case (b). Unfortunately, directly
comparable experimental data are not available. Current
experiments ' have shown highly resolved frictional
force distributions with a sensitivity ranging from
1X10 to 1X10 N by scanning very sharp 0.1 to 5

pm radius tips of diamond or tungsten over a sputtered
carbon film or a highly oriented polycrystalline graphite.
The frictional forces measured are normalized by the ap-
parent elastically contacting area and range from about
0.1 GPa to a few GPa. This suggests that the frictional
force resulting from atomistic locking is comparable to
the frictional force that will be measured in future experi-
ments.

Another finding is that the amount of adhesion force
has no relation to the frictional force amount. Frictional
force has often been ascribed to adhesion, i.e., chemical
bonding between the actual contact surfaces in phenome-
nological studies. In those studies, adhesion occurs at
the actual contact area where the external load is concen-
trated. This concentrated load moves surface contam-
inants from the contact area, thus possibly causing the
formation of adhered junctions. Accordingly, shearing
force has to be applied to rupture the adhered junctions
during subsequent sliding friction. Frictional force can,
therefore, depend on shear strength and on the actual
contact area where the adhered junctions are formed.
When plastic deformations are introduced into the
adhered junctions, the junction growth can actually be
observed. ' Our results, however, did not show a rela-
tionship between adhesion force and frictional force.

one atom (this atom is hereafter called the critical atom)
on the ridge line. The occurrence of friction transition
can, therefore, be decided by judging whether or not V &
in Eq. (4.19) is negative at the critical atom position.

The model verifies this consists of two contacting bo-
dies, the (001) plane of a-iron (upper body) that faces
against the (110) plane of a-iron (lower body) at a 30' an-
gle as shown in Ftg. 11. The upper body is placed against
the lower body so that the critical atom is positioned at
the midpoint on the boundary line of the two-dimensional
primitive cell of the lower body, where the critical atom
feels the local minimum of the potential from the upper
body, V"(r;„),and the local maximum from the lower
body, V'( r,„}.The ~pp~~ body is takento ha
(20X20X2) bcc unit cells (4203 atoms} with a unit vec-
tor of T=(a,a, a) and the lower body (24X32X2) fct
unit cells (4011 atoms) with a unit vector of
T= (&2a,a, &2a ). At the beginning of the calculation,
the rigid upper body is placed so as to minimize the total
crystal energy by adjusting the interfacial separation.
Next, the atoms in the upper body, excluding the critical
atom, are relaxed three dimensionally, while all of the
atoms in the lower body are fixed. Two kinds of poten-
tials are used, the Morse potential and the Johnson po-
tential, as the interatomic potentials operating in the sys-
tem. The Morse potential expressed as V(r)—2a(r —ro) —a(r —ro)=D( e ' —2e ' )D,a, ro: potential parame-
ter), and is selectively applied to the atoms on the contact
interface. The Johnson potential is used for the other
atoms.

As seen in Sec. IV D, the critical atom is assumed to sit
on the local minimum of V"(r;„}.This assumption was
confirmed by actual calculation. The calculated second-
order derivatives of potential V & in Eq. (4.19}are shown
as a function of Morse potential parameter D in Fig. 12.
V & decreases as D increases, since negative contribution
V'(r,„)from the lower body increases. The friction

0

0
+

0 +

B. Validity of the criterion for friction transition 0
+ 0

The criterion for friction transition states that friction
transition occurs when second-order derivative V &, in a
direction perpendicular to a V (r) ridge line, is negative.
If distribution P, (r;g„g2) is considered just before the
friction transition occurs, the pattern is still connected by

FIG. 11. Model for friction transition. (0 ) symbols are
upper-body atoms, and (+) symbols are lower-body atoms. The
(~ ) symbol is the critical atom.
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FIG. 12. Calculated V ~ as a function of Morse potential
parameter D.

transition actually occurs when D is approximately 3S.
Figure 13 shows distribution P, (r;g, , gz ) before relaxa-
tion and after relaxation when D =10, 20, and 60. The
atoms initially move from the region around the corner
of P, (r;g„g2)[Fig. 13(b)], and gather toward the center
of P, (r;g„g2), where the lowest minima of potential
V'(r) exists. These movements result in the cross-shaped
pattern seen in Fig. 13(c). Just before friction transition
the pattern is connected by several atoms on the bound-
ary line in P, (r;g, , g2). After friction transition, the pat-
tern made by P, (r;g„gz),is completely disconnected, as
shown in Fig. 13(d}(cf. Fig. 6},thus confirming the validi-
ty of the friction transition criterion.

C. Friction transition for cubic metals

The main concern here is whether or not friction tran-
sition occurs in realistic frictional systems of several fcc
and bcc metals. The Morse potentials determined by
Girifalco and Wietzer' are used as the interatomic po-
tentials of frictional systems. The friction transition cal-
culation follows the same procedures as in the preceding
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FIG. 13. Representative distributions P& (r;g&, g~). (a) shows distribution before relaxation. (b), (c), and (d) show distributions after
relaxation when D = 10, 20, and 60.
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section. It is assumed that only the atoms of the upper
body are allowed to change their positions while the
atoms of the lower body remain 6xed. To satisfy this as-
sumption the closest packed crystal planes (hardest
planes), such as the (111) planes for fcc lattices and the
(110) planes for bcc lattices, are taken as the contact sur-
faces of the lower bodies. For fcc metals, planar atomic
density increases with the (110)&(001)&(111) planes.
The (110) and (001) planes are then faced against the
closest packed plane (111), as shown in Figs. 14(a) and
14(b). For the (110)-(111)contact, the upper body is com-
posed of (18X12X2)bct (body-centered tetra onal) unit
cells (173 atoms) with unit vector T=(a/ 2, a, a/W2)
and the lower body is composed of (29X28X2) mono-
clinic unit cells (5858 atoms} with unit vector
T=(a/&2, a/&2, a/~3). For the (001)-(111) contact,
the upper body is composed of (11X 11X 2) fcc units cells
(1323 atoms) with unit vector T=(a, a, a) and the lower
body is composed of the same monoclinic unit cells. For

bcc metals, planar atomic density increases with the
(111)&(001)&(110) planes. The (001) and (111) planes
are then faced against the closest packed plane (110), as
shown in Figs. 14(c) and 14(d). For the (111)-(110)con-
tact, the upper body is composed of (18X12X2) mono-
clinic unit cells (1605 atoms) with unit vector
T= (+2a, ~2a, a /2+3), and the lower body is composed
of (25 X 25 X 2) fct unit cells (6503 atoms) with unit vector
T=(~2@,o, ~2a). For the (001)-(110)contact, the upper
body is composed of (18X12X2}bcc unit cells (1173
atoms) with unit vector T=(a, a, a) and the lower body is
composed of (17X 23 X 2) fct unit cells (4113 atoms) with
unit vector T=(~2a, a, ~2a). The critical atom for each
contact is placed at the point satisfying 8 V'(r)/Br =0 and
3 V'(r)/Br &0 along lines perpendicular to the ridge
lines of V'(r), where the local minimum of potential
V"(r;„)from the upper body and the local maximum of
potential V'(r,„)from the lower body exists. In the cal-
culation, the atoms of the upper body, excluding the criti-
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FIG. 14. Model for friction transition in realistic systems of cubic metals. For the fcc metals, a (110)-(111)contact (a) and a
(001)-(111)contact (b) are examined. For the bcc metals, a (001)-(110)contact (c) and a (111)-(110)contact (d) are examined. The
( 0 ) symbols are upper-body atoms, and the (+) symbols are lower-body atoms. The () symbol is the critical atom.
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FIG. 15. Calculated V & as a function of Morse potential pa-
rameter D.

cal atoms, are three-dimensionally relaxed. After relaxa-
tion second-order derivative V & is calculated for the
direction perpendicular to the ridge line of each critical
atom.

Figure 15 shows the calculated V & as a function of
Morse potential parameter D. The calculated V

&
values

are positive for all of the examined metals. This shows
that friction transition does not occur in these frictional
systems. The V & sign is actually determined by com-
petition between a positive V (r;„)contribution from
the upper body and a negative V'(r,„)contribution from
the lower body as seen in Eq. (4.17). A positive V"(r;„}
always defeats a negative V'(r,„}in these frictional sys-
tems. Examining the value of V & shows how much the
frictional system is stable against friction transition. An
increase in D increases the positive V (rm;„)contribution
far more than the negative V'(r;„)contribution, thus
giving a more positive V & for the bcc metals than for
the fcc ones.

It is also shown in Fig. 15 that V &
is dependent on

the contact crystal plane. In bcc metals, for example,
V & for a (111)-(110)contact is larger than that for a
(001)-(110)contact. How much V & is dependent on the
contacting crystal planes depends mainly on the
differences between the positive V (r;„)contributions of
each contact. By separating mutual contribution U [see
Eq. (4.4}], the atoms obtained from the bottom layer of
the upper body for the total positive V"(r;„)contribu-
tion, the partial contribution of U, and its remainder in
V"(rm;„) can be selectively examined. Since the (111)
plane in the bcc metals has less atomic density than the
(001) plane, total V, & for the (111)-(110)contact is less
than for the (001)-(110)contact before relaxation. How-
ever, the final V

&
for the (111)-(110)contact is inversely

larger than for the (001)-(110}contact after relaxation, re-

suiting in a large increase in the positive contributions
from the upper layers (2nd, 3rd, etc.) of the upper body
by relaxation in the (111)-(110)contact. This is due to the
fact that the atoms of the upper layers (2nd, 3rd, etc. )

move toward the local lowest minima more easily in the
(111)-(110)contact, since the (111)plane has less density.
These situations also hold true for the fcc metals in the
same way.

VI. DISCUSSION AND CONCLUSION:
ATOMIC LOCKING

Frictional properties were characterized by both the Q
dependence of P, (r; g, , g2) and changes in the topological
property of P, (r;g„g2)that occurred due to the strength
of interatomic potentials. The topological property of
P, (r;g„g2) is revealed in a pattern made by tiling
P, (r;g„gz)in a two-dimensional space. Frictional force
vanishes when P, (r;g, , g2} is invariant with Q and its pat-
tern is connected, but frictional force appears when
P, (r;g„g2}is variant with Q or the pattern is disconnect-
ed.

There are two atomistic origins for solid sliding fric-
tion: atomistic locking and dynamic locking. In atomis-
tic locking, all the constituent atoms move continuously.
Atomistic locking can occur for an arbitrary strength of
potential V'(r). In the classical mechanical locking mod-
el, the (nonflat) potential surface that the upper body feels
from the lower body spans on a large scale. In atomistic
locking, the (nonflat} potential surface spans on an
atomistic scale. On the other hand, in dynamic locking,
the atoms discontinuously change their positions due to
dynamic movements of the atoms. In contrast to atornis-
tic locking, in dynamic locking the atoms nonadiabatical-
ly jurnp beyond potential barriers between neighboring
sites. This origin cannot be described within the frame-
work of the adiabatic potential. Dynamic locking follows
disconnectedness of the connected pattern of a tiled
P&(r;g&, g2) as V'(r) increases.

The criterion for the occurrence of friction transition
was obtained. From studying the frictional properties of
various systems, it can be concluded that friction transi-
tion may not appear for realistic systems, which suggests
that atomistic locking is responsible for the solid sliding
friction in these systems. The frictional force due to
atomistic locking was calculated for a-iron. Average
frictional force, as normalized by the contact area for a
(001)-(001) contact of a-iron, is estimated to be 7.6 GPa.
This frictional force will be comparable to the frictional
force that is measured in future. Another important con-
clusion is that a frictionless system is apparently possible
if clean solid surfaces are prepared. The performance of
the experiments to confirm this possibility will be a high-
ly desirable goal for the future.

A rnechanisrn for solid friction similar to ours was pro-
posed by Tomlinson. ' He explained that the origin of
solid sliding stems from dissipation of the elastic energy
introduced by the relative sliding motion of two contact-
ing solid bodies. This elastic energy is stored by an atom
and is transformed into vibrational (or kinetic) energy,
then is subsequently dissipated through the surrounding



11 850 MOTOHISA HIRANO AND KAZUMASA SHINJO 41

atoms. The sum of the independently lost elastic energy
stored by each atom is ascribed to the energy required to
slide two contacting surfaces. His idea is di6'erent from
ours, however, since he does not consider possible
cooperative movements by the constituent atoms.

Further investigations on the dynamical properties of
friction and frictional systems having noncrystalline sur-

faces, which has been experimentally observed for metals
and ceramics, will be presented in the future.
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APPENDIX

The frictional properties are considered by taking mutal interaction U into account. The adiabatic potential is ex-
pressed with an approximation that neglects the higher-order terms rather than the second-order term of hr, . :

(}V'(r; )
IV(Q)=gv'(r())+gv"(r o)+Qv„(lr,'o —rjpl)+g ' b;+ —,

' g [e;,(V,', ' +V;"; ' }+U;,' ]Dr, br, (Al)

By using the orthogonal transformation

~r =Xc;k,Ãk, ~
k

where

(A2)

and

Ci;k ACi'k' A,
' k, k' A, , A,

'
&

1

(A3)

Qci;k Acj.k A. 5i j
k, A,

which diagonalizes the last term on the right-hand side, giving

IV(Q Iqk) I)=gv'(rp)+gv"(r'o)+cavo (Ir'o rj pl)+Xrk ~+ 2+o)k kqk ~qk ~

(A4)

(A5}
k, A, k, A,

where yk & is defined by

(}V'(r)
rk

All eigenvalues (ok& must be positive. When V'(r)=0,
displacement qk &

=0 from Eq. (A6). So, from Eq. (A2),
b r; =0 for all i and a. For a nonvanishing V'(r), the dis-

placement is

(A7)

. „„aV(r)par,,c,'.„,
b, r, = —g

j,k, A.

1 (}V(r)
kri = g ci.k k cj~k

~p, k~ drjo

(A9}

hr =—
l

hr =—
)

aV(r)
(( )

1 (}V(r)
o)o (}r;p

(A 10)

by using the condition of normalization for c;.k k in (A2)

and (A3),

or

ci;k, A7k, A,

hr- =—
This completes the proof of Eq. (4.12).

Next the criterion for the friction transition is derived.
The ridge lines of V'(r) correspond to the lines satisfying
Ar; =0, or equivalently,

c, „„aV(r}waar...c,'.
b, r, = —g

j,k, A.

(A8} c, .k,a V(r, )sar, pc,*.k,0= —g
J,k, k COk g

(Al 1)

Below, the result in Eq. (4.12) is derived for a weak mu-
tual interaction U. When V"(r)» U, the dispersion of
(ok z is negligible. If (ok z =o)o for all It in (A8), we have

The criterion for the occurrence of friction transition is
to see if the pattern obtained by tiling P, (r;g„g2)is con-
nected or disconnected along the ridge lines.
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