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First-principles linear augmented-Slater-type-orbital (LASTO) calculations have been carried out
for the 5d transition metals Hf through Au. Among the various topics discussed are the stability of
the hcp, fcc, and bee phases, lattice volumes, and cohesion. Effects of the full versus the muffin-tin
potential are also examined; in particular the ground state of Au is now correctly predicted to be fcc
with use of the full potential. The hcp-fce energy differences are a factor of 5 smaller than the cor-
responding fcc-bee energy differences along the row.

I. INTRODUCTION

It is now common practice for first-principles
electronic-structure calculations, based on the local-
density approximation (LDA), to yield the total energy of
the system for which the calculation was done. This,
then, allows the exploration of the relative stabilities of
different phases, including metastable phases which may
be inaccessible experimentally. Normally one takes
differences of total energies, as in the case of the heat of
formation of a compound where the difference is between
the calculated total energy of the compound and those of
the elemental reference materials. Experience! shows
that accurate heats of formation are obtained when both
the compound and the reference systems are well-packed
structures for then the total energies are obtained to a
common accuracy (or error). The situation is quite
different when dealing with the cohesive energy of an ele-
mental solid where the energy difference is between the
solid and the free atom. It appears that the local-density
approximation does a poorer job on the free atom (i.e.,
the calculated heats are too large) in part because of the
LDA'’s inadequate treatment of multiplet effects. Recent-
ly the full-potential scheme has been incorporated? into
our linear augmented-Slater-type-orbital (LASTO)
method and this will be used to peruse full potential esti-
mates of the cohesive energies across the 5d transition-
metal row. To our knowledge this is the first time that
such a sequence has been dealt with in the full-potential
scheme. There are several ways in which one can at-
tempt to account for multiplet effects when applying
local-density theory to the total energy of an atom (the
simplest one being to ignore them), and the consequences
of these choices on the resulting calculated cohesive ener-
gy of the solid will be inspected. Also, there has been a
long-standing controversy>* over the relative stabilities
of the elemental transition metals in the bcc, versus the
fcc, versus the hcp structures. These stability energies
enter phase diagram constructs: for the most part they
are not directly accessible from experiment and for 25
years band theory has yielded® values which are not con-
venient to phase-diagram constructs as they are normally
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done. This issue is revisted here with full-potential calcu-
lations, and while the results do not differ significantly
from earlier results,>® there does appear to be some
agreement between the predictions for the fcc-bee energy
differences and what phase-diagram constructs can live
with.* Some essential disagreements remain for the fcc-
hcep lattice stabilities.

The LASTO scheme’ employs Slater-type orbitals as a
basis set in the interstitial region between atoms and aug-
ments these with explicit solutions of the single-particle
equation within nonoverlapping atomic spheres centered
on the atomic sites. The full-potential version? of the
scheme employs aspherical terms in the potential both
within and outside the spheres. ‘“Mulffin-tin”-potential
results will also be reported where only spherical terms
are kept inside the spheres and a constant potential is
used outside. Some results will be reported where a sin-
gle s, p, and d Slater orbital is used per atomic site, result-
ing in a 9X9 matrix to be diagonalized that is not only
small, but also has the structure of a tight-binding matrix
(from which tight-binding matrix elements might be de-
rived). Larger, “double-§” basis sets have also been used
where two s, two p, two d, and a single f-like “polariza-
tion” Slater orbital(s) are used. The resulting total ener-
gies are in essential agreement with linear augmented-
plane-wave (LAPW) calculations with their much larger
basis sets and larger matrices to diagonalize. The
double-£ basis-set calculations are measurably more cost-
ly in computer time than the single-§ results and we will
compare total-energy results obtained with the two sets.
LASTO depends on a choice of basis sets; this choice and
some other features of the calculations are described in
the Appendix.

The plan of the paper is as follows. Total energies are
obtained for the 5d elemental metals Hf through Au and
the effects of going from single to double basis set and
from muffin tin to full potential are considered in Sec. II.
This is followed by estimates of the lattice stabilities,
which are seen to be little affected by going to larger basis
sets or more rigorous potentials since the total energies
for each of the two structures involved benefit similarly
from the improved calculations. When considering the
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hcp lattice stabilities it is necessary to treat their ¢ /a ra-
tios variationally: while the calculated ¢ /a are in reason-
able accord with experiment for those systems which
form in the hcp structure, quite different ¢ /a are ob-
tained for some of the other metals and the changes in to-
tal energies associated with these differences are
significant. Calculated bulk moduli and variationally
determined lattice volumes are reported for several of the
metals in Sec. IV and this is followed by inspection of the
full potential obtained for different directions in the crys-
tal for hcp Os (similar results were reported previously’
for bcc W and fcc Pt). The potential for this metal at the
observed c/a ratio will be compared with that of the
ideal ¢/a and this, in turn, with fcc Os. Finally the
cohesive energies are calculated using local-spin-density
approximation® (LSDA) calculations to estimate the
reference energy in the free atom for state of maximum
spin multiplicity for some given atomic configuration. It
has been traditional to take the result of lowest energy, to
declare this the ground-state configuration of the atom
within the local-density approximation, and to use this as
the reference energy in

E o, =E(metal)— E(free atom) (1)

to estimate cohesion. This will be done here. The prob-
lem is that this does not correspond to the experimental
situation where cohesion is measured with respect to the
atom in its ground state since the LSDA result usually in-
volves an average over a set of multiplet levels of some
given spin. One can use the experimental atomic spectra
to estimate the promotion energy from the atom’s ground
state to this average for different atomic configurations,
e.g.,d" d" s, d" %2 etc. In all cases the cohesive en-
ergy is overestimated, thus implying local-density theory
does better for the solid than the free atom.

II. THE EFFECTS OF BASIS-SET SIZE
AND CHOICE OF POTENTIAL

Figure 1 displays the changes in total energy (1) upon
going from the double basis set (with f-like polarization
term) with full potential to the single s, p plus d basis also
with full potential (the circles), and (2) taking the single
basis set, in turn, to calculations with a muffin-tin poten-
tial (the solid squares). The zero of the plot then corre-
sponds to the total energies of the double set with full po-
tential. It should be noted that these energies range from
~5X10° eV /atom for the lighter elements to ~10°
eV/atom for the heavier elements. The improvements as-
sociated with either full potential or better basis set,
while tiny on the scale of the overall energy, are neverthe-
less significant on the scale of binding energies. The sys-
tems of concern here are well packed, with high site sym-
metries, and the effect of going from the muffin tin to the
full potential should be measurably greater in ill-packed
systems such as occur for a few of the elements (e.g., As)
and for many compounds.

From Fig. 1 the full potential is seen to be most impor-
tant for describing elements in the middle of the
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FIG. 1. Differences in crystal total energies for the elemental
5d metals at their observed lattice constants. The zero, with
respect to which the other energies are measured, is the total en-
ergy of the calculation employing the full-potential and the dou-
ble Slater-type orbital (STO) basis set. The open circles are the
energies of the full-potential single STO calculations measured
with respect to the double set energies, while the squares are the
result of employing muffin-tin potentials and the single STO.

transition-metal series. Naively one expects the max-
imum effect at half-filling of the d bands, i.e., W. To ra-
tionalize the pronounced shift of the maximum towards
Os, we consider the nonspherical components of the
Coulomb full potential at the sphere boundaries, V,V(R ).

Since the sphere volumes have been chosen to be a con-
stant fraction of the unit-cell volume across the row, we
must scale V; (R) to account for variations in volume

among the elements. (The bare numbers for Hf,_Ta,+. H
are comparable to Os.) Scaling V,V(R) by R vV —

which can be argued is an appropriate scaling for the
contribution to the total energy assuming an approxi-
mately constant interstitial charge—will have a much
larger relative effect for Hf than Os. The total-energy
differences between the muffin-tin and full-potential re-

sults of Fig. 1 and R —””H)V,V(R) for the bee (1,=4), fce

(I,=4), and hcp (I,,=5) structures are shown in Fig. 2.
We have normalized all the values to those for Os. The
correlation of these quantities is surprisingly good. Fig-
ure 2 suggests that the small volume of Os (Os has the
smallest atomic volume in the 54 row) has a direct
influence on the nonspherical contributions to the total
energy. Smaller atomic volumes will have several direct
effects: the interatomic (Madelung) potential, which
scales as the inverse of the lattice constant, is larger; like-
wise, the tails of states centered on one site will have
larger nonspherical contributions on neighboring sites re-
sulting in larger nonspherical contributions to the total
energy.
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FIG. 2. Total-energy differences between the muffin-tin and .

full-potential results of Fig. 1 (—.—.—. ) and the nonspherical
component of the Cou}ognlb potential on the muffin-tin sphere of
radius R divided by R ¥ for the bee (1,=4; 0), fec (1,=4;0),
and hep (/,=5; A) structures. All values are normalized to uni-
ty at Os.

III. LATTICE STABILITIES

As has already been noted, the relative stabilities of the
elemental solids in the fcc versus bce versus hcp struc-
tures enter phase-diagram constructs. Consider bcc Mo
alloyed with fcc Ir: there is a bee phase with dilute Ir al-
loyed into bcc Mo and the leading energy term is taken to
be the energy to promote Ir from the fcc to the bec struc-
ture (and not to embed Ir in bec Mo). Similarly there is a
terminal Ir-based phase involving promoting Mo to the
fcc structure. Also, at intermediate concentrations the d
bands are, on average, filled to a point where the elemen-
tal transition metals have the hcp structure, and at these
concentrations Mo-Ir displays a hcp solution phase. Part
of the energetics associated with this phase is taken to be
the energy necessary to promote Mo and Ir separately to
the hep structure. Kaufman, using what thermodynamic
data were available, made the pioneering estimates>°® of
these promotion energies, which for years have been em-
ployed in phase-diagram constructs. Despite the lack of
any §ood band-theory estimates, Mott and Friedel ar-
gued”’ 25 years ago that Kaufman’s values were much
smaller in magnitude than what band theory would yield.
This is illustrated in Fig. 3, where our current estimates
of the fcc-bee energy differences are shown and compared
with Kaufman’s estimates (the solid triangles). There is
disagreement by an order of magnitude between his
values and the present results.

The two sets of full-potential results, with the single
and double basis sets, are essentially identical, while the
muffin-tin values lie below them. The muffin-tin results
are of the wrong sign for Pt and Au, which are fcc met-
als, and the result for Hf (an hcp metal) is arguably
wrong. It is to be noted that the calculations done here
were done with a common-sized sphere for the different
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FIG. 3. fcc-bee energy differences calculated (i) with full po-
tential and double STO (open circles), (ii) with full potential and
single STO (solid circles), and (iii) with muffin-tin potentials and
single STO (+ symbols). The solid triangles are Kaufman’s es-
timates (Refs. 3 and 9) and the open triangles are the estimates
of Saunders et al. (Ref. 4) of these promotion energies.

structures of a given metal (see the Appendix), although
the fcc lattice will accommodate larger nonoverlapping
spheres than will a bce lattice of equal atomic volume. If
muffin-tin calculations are done with touching atomic
spheres for both structures, i.e., larger ones for the fcc,
then the muffin-tin results shift upwards, are of the
correct sign for Hf, Pt, and Au, and are in good agree-
ment with the full-potential results.

The remaining, open-triangle curve of Fig. 3 is based
on recent estimates* by Saunders et al. They took the
available thermodynamic data and asked how far the
lattice-stability results could be pushed towards an
a priori theory without being inconsistent with the ther-
modynamic data, including the phase diagrams. Except
for Os and Ir there is accord between their results and the
full-potential band-theory estimates.

The situation is different for the fcc-hcp energy
differences, as is to be seen in Fig. 4. Note that these en-
ergy differences are typically a factor of 5 smaller than
was the case in Fig. 3. The smaller fcc-hcp energy
differences follow from the fact that the twelvefold
nearest-neighbor atomic positions are essentially the
same in the two structures. Here the muffin-tin and full-
potential results are in essential agreement.

The problem between the a priori calculations and the
phase-diagram estimates occurs with the sign of the lat-
tice term for Ta and W ( and for V, Cr, Nb, and Mo
which reside in the same columns of the Periodic Table).
If fcc Ta is to be stabler than its hcp counterpart, as the
band-theory calculations indicate, then there are prob-
lems modeling intermediate hcp phases, as is currently
done, when bcc metals, such as Mo or Ta, are alloyed
with the heavy fcc transition metals, such as Ir or Pd.
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FIG. 4. fcc-hcp energy differences: see Fig. 3 for the nota-
tion. Note the different energy scales of this and of Fig. 3.

The only case of accord between our (and earlier) results
and those of Saunders et al. occurs for Os. Our results
are in accord with experiment: the fcc metals are calcu-
lated to have the fcc phase stable and similarly the hcp
metals are predicted to be hcp. The problem remains
with the bcc metals. Are the hcp or fcc the stabler
among the metastable phases?
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FIG. 5. Full-potential, double-basis-set energies of Au, Os,
and Ta, in the bcc, fcc, and hep phases, as a function of atomic
volume measured with respect to the observe volume V,. Open
symbols indicate the lowest-lying point on any curve, and the
zero, for each element, has been taken to be its lowest calculated
total energy.

FIG. 6. hcp-fcc energy differences for Ta, W, Os, Ir, and Au
as a function of the hcp ¢ /a ratio employed in the calculation.
The circles are full-potential, double-basis-set results, while the
+ symbols indicate muffin-tin single-STO results. The open cir-
cles indicate the lowest-lying points on the curves.

The calculations of Figs. 1, 3, and 4 employed the ob-
served atomic volumes and for hcp Hf, Re, and Os the
observed ¢ /a ratios of 1.58, 1.61, and 1.58, respectively.
These ¢ /a ratios are almost the same and this provided
the basis of choice for the ¢ /a value in calculations where
the other metals were taken to be hcp. This raises the
question of what effect these choices have had on the
computed lattice stabilities. The total energies, measured
with respect to the lowest calculated energy, are plotted
for Au, Os, and Ta in Fig. 5 as a function of atomic
volume. The open symbols denote the lowest energy on
any given curve. Going to the variationally determined
minima has almost a zero effect on the calculated lattice
stabilities. The situation is quite different when it comes
to the c¢/a ratios. The full-potential, double-basis-set
hep-fec lattice stabilities are plotted in Fig. 6 for Ta, W,
Os, Ir, and Au, as a function of assumed hcp ¢ /a value.
Os is the one hcp metal and the variationally determined
¢ /a is in accord with its observed value of 1.58. Howev-
er, the metastable hcp phases of the other four metals
have optimum c¢/a that deviate in varying degree from
this. The minima for W and Ta are for ¢ /a well above
the ideal value although less than the observed c/a of
such hcp metals as Zn and Cd. Going to the optimized
c¢/a for Ta and W brings these lattice stabilities much
closer to zero but does not change their sign. Muffin-tin
results (the + symbols) are also shown for several of the
metals in Fig. 6. These are not always in accord with the
full-potential results and, perhaps most notably, one has
hcp Au more stable than the fcc in such a description.

The effect on the hcp-fcc lattice stabilities on going
from ‘“‘typical” c¢/a values to variationally determined
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FIG. 7. Full-potential double-basis-set results for the lattice
stability, Ey., — Eg., assuming typical transition-metal c/a ra-
tios as were used in Fig. 4 (open circles) and using the variation-
ally determined c/a ratios of Fig. 6 (open squares and dashed
line): values for Hf, Re, and Pt on this latter curve were simply
sketched in, based with an eye toward the other results. The
open triangles are the results of Saunders et al. (Ref. 4).

ones is summarized in Fig. 7 for calculations employing
the full potentials and double basis sets. It appears un-
likely that any further refinement of calculations, done
within the local-density approximation, will lead to a re-
versal in sign for the W and Ta stabilities. The disagree-
ment on this issue with Saunders et al.* remains.

IV. LATTICE VOLUMES AND BULK MODULI

The correct crystal structures lie lowest in Fig. 5 and
the lattice volumes, obtained variationally for these struc-
tures, are in reasonable accord with experiment. The cal-
culated volumes are smaller by 1%, 2%, and 4% for Os,
Au, and Ta, respectively. Generally the calculated
volumes for the metastable phases are also smaller than
the volumes observed for the stable phase by a few per-
cent, though this is not the case for hcp Au and bee Os.

Calculated bulk moduli are tabulated in Table I and
are in accord with experiment for Ta and Os while in but
fair agreement for Au. The recent calculations'® of

TABLE I. Comparison between calculated and experimental
bulk moduli for Ta, Os, and Au.

Present
calc. Calc.? Expt.
(Mbar) (Mbar) (Mbar)
Ta 2.0 2.0
Os 4.0 4.2
Au 2.3 1.79 1.7

*Reference 10.
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Takeuchi, Chan, and Ho for Au, employing norm-
conserving pseudopotentials, yield a more accurate bulk
modulus and a lattice volume which is also within about
2% of experiment. However, as will be seen in Sec. VI,
they do more poorly with the cohesive energy.

V. THE FULL POTENTIALS: hcp Os

Os and Ir are the two heaviest known elements and
hence hep Os is one of the most closely packed elemental
solids. The observed phase of hcp Os has a smaller ¢ /a
ratio compared to the ideal one. Here we will consider
both the ideal and the observed hcp Os.

The full potentials, plotted for different directions off of
the atomic site, are shown for hcp Os with the ideal ¢ /a
ratio in Fig. 8. The different directions are indicated in
the inset in the figure. Most notable is the fact that the
potential differs by as much as 10 eV for different parts of
the interstitial region with the potential along the
nearest-neighbor line lying markedly lowest. Compare
Fig. 8 with Fig. 9, a plot of the potential along the
equivalent four directions for Os in the fcc structure.
These potentials look remarkably similar (to within a few
tenths of a volt) between fcc and hcp phases along these
four directions. This is not a surprising result since the
two phases closely resemble one another (they have iden-
tical nearest neighbors); however, it is an interesting one
since to our knowledge this has not been demonstrated
quantitatively as is done here.

Directions (a) and (b) (Fig. 8) for the ideal ¢ /a hcp case
indicate the difference between having an occupied site
above, i.e., along the c axis, and not having an occupied
site above. On the (0001) plane, this difference is not
significant.
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FIG. 8. Actual full crystal potential (double-basis-set run)
plotted, for hcp Os with the ideal c¢/a ratio, along the crystal
directions indicated. These have been shown up to slightly
beyond the halfway point between neighboring atoms along a
specified direction. The nearest-neighbor (NN) potential is the
deepest and shows variations of the order of 5 eV in the intersti-
tial compared to the potentials in other directions.
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FIG. 9. Actual full crystal potential plotted, for fcc Os at the
observed hcp atomic volume, along the crystal directions indi-
cated. These have been shown up to slightly beyond the half-
way point between neighboring atoms along a specified direc-
tion. When these potentials are compared with those in Fig. 8,
it is clear that they are very similar for the equivalent directions.
The only major difference is along the [111] direction, which has
a double-minimum structure in the fcc case before running into
the neighboring atom. In the hcp case there is only a single
minimum due to its different stacking.

Along the [111] direction in the fcc case (Fig. 9) there
is, as was discussed previous]y,2 a double-well potential
with minima at the empty 1 sites, while along the corre-
sponding z direction in the hcp case (Fig. 8) there is only
a single minimum. This is because the % site (in the pre-
vious fcc notation) is occupied in the hcp case. Now
compare the ideal ¢ /a results with those for the observed
¢ /a shown in Fig. 10. The nearest-neighbor (NN) poten-
tial is split in the nonideal hcp case. The direction of the
splitting depends on whether the neighbor in question lies
on the same (0001) plane or on the next plane. The mag-
nitude of the splitting near the sphere boundaries is about
2 eV which is due to an about 3% decrease in the ¢ /a ra-
tio. The deepest potential well shown here (in Figs.
8-10) is along (a) or (b) in the hcp case and along the
equivalent [211] direction in the fcc case. However,
note that this is actually a saddle point with a steep max-
imum in the [110] direction occurring exactly at this
point.

In fact, all the minima shown here in the interstitial re-
gion are actually saddle-point structures. For example,
the location of the minimum seen along the [111] (Fig. 8)
direction exactly corresponds to the location of the max-
imum seen along the [211] direction.

Also note that the potentials along various directions
show differences of about 5-10 eV in the interstitial re-
gion, again showing that a simple muffin-tin potential
may not be sufficient to describe subtle aspects of these
phases. The successes of the muffin-tin potentials are
surprising in view of this.

Individual harmonic terms, P, of the hcp Os charge
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FIG. 10. Actual full crystal potential plotted for hcp Os with
the observed lattice constants, along the directions indicated
with the potential along the nearest-neighbor line now split
since the ideal hcp nearest neighbors are no longer at a common
distance due to the nonideal c¢ /a ratio. The observed ¢ /a is less
than the ideal ratio (see Fig. 6) and hence the nearest-neighbor
(NN) direction to the next (0001) plane produces the deepest po-
tential. The splitting in the NN potential is about 2 eV in the
interstitial due to about an 3% decrease in the ¢ /a ratio.

density are displayed in Fig. 11. The most striking
feature here is that it is the /,=5 component, which
turns out to be the largest in the 5d metals Os. Such a
component involves wave-function character of higher /
than that due to s, p, or d bands. Charge tails coming
from adjacent atomic sites are responsible for ps. Since
the charge density p is obtained by taking the product
Y¥*9, it is clear that the crystal wave function ¥ must be

T T T /
0.07r / 4
— hep Os gvzs/
S /
o 005
Q.Q;’
NL
o 0.03
Z
s
T 001
<
T
E
s -0.01

0035 05 1.0 15 20 25

RADIAL DISTANCE ( bohr)

FIG. 11. Higher (I,=2, 3, 4, 5, and 6) harmonics of the elec-
tron density in hcp Os. Note that the /,=5 term turns out to be
the largest near the sphere boundary, indicating tailing effects
from other sites. Also, the nodal structure of, say, p,, resembles
that of a 5d function inside the sphere.
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expanded up to at least /=3 in order to reasonably
represent the charge density. The nodal structure of the
density terms at the smaller radii reflects their atomic
character as discussed previously?, e.g., the [, =4 density
term has the nodes of the 5d wave function (e.g., it has
two nodes). However, near the sphere boundary there
are obvious deviations from the above-mentioned atomic-
like behavior, indicating the importance of higher-/ terms
as observed in the previous paper.2 We also find that the
1,=17,8 terms (not shown) are at least a factor of 3 or 4
smaller than the smallest harmonic shown here, indicat-
ing the adequency of our / expansion, which has a cutoff
of /., =8 for the wave functions.

V1. COHESION

Cohesive energies involve the difference in energy be-
tween the crystal and free atom. As already was dis-
cussed in Sec. I, one may simply take a LSDA result for
the free atom, obtained for that atomic configuration
having the lowest LSDA total energy, and subtract that
from the crystal total energy. However, the LSDA result
for the free atom corresponds to an average over a set of
spin multiplet levels for a given atomic configuration. It
is possible to use spectroscopic data to correct the free
atom’s total energy for the energy cost associated with
going from the free-atom ground state to the multiplet
level average corresponding to the LSDA calculation.
For example, the atomic configuration 5d 86s of Ir has
two quartets, ‘F and “P, both of which will be used in a
LSDA average. It can be seen from spectroscopic data
that the average energy of these lies 1.14 eV above the
lowest-lying multiplet level (ground state) of the atom.

The simple LSDA result and the results of correcting
5d" “16s LSDA energies for the promotion energy are
shown in Fig. 12, where the full-potential, double-basis-
set calculations were employed for the crystal energies.
The present results for W agree to within a few hun-
dredths of an eV/atom with the FLAPW results of Jan-
sen and Freeman!! and of Mattheiss and Hamann.'? Ac-
counting for promotion-energy effects measurably im-
proves the agreement with experiment, and while the cal-
culations consistently overestimate the cohesive energies,
fair agreement with experiment is obtained for Hf, Ta,
and Au. The effects of going to the single basis set or to
the muffin-tin potential can be obtained by subtracting
the results of Fig. 1 from the cohesive energies of Fig. 12.
Going to the muffin-tin results would greatly improve the
numerical agreement with the experimental cohesive en-
ergies at the middle of the row (while worsening the
agreement for Hf, Ta, and Au)—of course, by introduc-
ing errors to compensate for the errors already in the esti-
mates of AE ;.

There are spectroscopic data!’ for atomic config-
urations other than the 54" ~!6s, allowing estimates to be
made for other promotion-corrected AE . Some of
those cases, for which there are sufficient data, are col-
lected in Fig. 13. The downwards arrows on some of the
points indicate cases where the spectroscopic data are in-
complete, i.e., some of the multiplet levels necessary for
the averaging have not been observed. These are normal-
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ly the higher lying of these levels and, thus, the resulting
estimates are upper bounds on the values of AE_ ;. As
seen by the cases plotted, there are substantial data across
the row for the d” ~2 and d" ~sp, but only sparse results
for d",d" " 'p, and d” ~'6d. None of these cases yield re-
sults in better agreement with experiment than those al-
ready obtained with the d" ~'s.

The d" 252 values lie consistently above the d" ~s.
This implies that the experimental atomic s —d promo-
tion or transfer energy

A, =E(d" 's)—E(d" %?)

is greater, i.e., more positive, than the calculated LSDA
result. Gunnarsson and Jones observed'* this tendency in
the 3d row, from which they inferred that the atomic cal-
culations overestimate the stability of the d” s with
respect to the d” 2s2. Gunnarsson and Jones argued
that this arose from a discrepancy in how local-density
theory deals with the exchange interaction of a valence d
electron, versus a valence s, with the atomic core. If this
were the case one would expect the same trend to hold

AEcah (eV/atom)

o

Hf Ta w Re Os Ir Pt Au

FIG. 12. Cohesive energies of the 5d transition metals, with
their observed structures and lattice constants as obtained (i)
with the LSDA approximation (ignoring multiplet promotion
energies in the free atoms), and (ii) where the d” ~'s LSDA free
atom has been used and the promotion energy from the free-
atom ground state to the center of the calculated LSDA level
has been estimated from free-atom spectroscopic data.
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AEcoh (eV/atom)

A dn—lp

od" 6d

0

Hf Ta w Re Os Ir Pt Au

FIG. 13. Cohesive energies of the 5d transition metals em-
ploying LSDA calculations for various free-atom config-
urations, using free-atom spectroscopic data to include the pro-
motion energy, going from the atom ground state to the spin
configuration in question. Downward-pointing arrows indicate
cases where the results are upper bounds on AE_,, due to in-
complete spectroscopic data. Limitations in the spectroscopic
data cause the Os d" “2sp AE.;, to be uncertain and, hence, its
plotted point has been placed in parentheses.

for the promotion d” ~!'s—d", i.e., d" results should lie
below d” ~!s by about as much as that configuration lies
below the d" %% in Fig. 13. Unfortunately, the d”"
configuration lies high in energy in the 5d elements and
as a result is rarely seen. What little data that are avail-
able are somewhat questionable, as indicated by the three
scattered d" points on the figure. The d” configuration is
lower lying in the 4d row and hence experimentally more
accessible. Results that will be reported for the 4d row in
a future publication do not show a d" ~'s —d " shift simi-
lar to the d" ~%s2—d" ~ s shift seen here.

It appears to be the case that the local-density approxi-
mation leads to an overestimation of the cohesive energy,
as we have seen here. However, Takeuchi and co-
workers have obtained'® a cohesive energy for Au of 3.46
eV/atom with their calculations, which is smaller than
experiment. This, we believe, is related to their use of
pseudopotentials or convergence of their calculation.

VII. CONCLUSIONS

In summary, we have examined the 5d row, Hf
through Au, with the full-potential LASTO method,
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which, with its full basis, yields total energies to compara-
ble accuracy as other full-potential methods. The
ground-state crystal structure is predicted correctly for
all the elements using the full potential. Various fine
features of the full potential compared to the muffin-tin
potential and improvements to the basis have also been
examined through numerous plots and tables, with
respect to the different crystal structures hcp, fcc, and
bee. Relative lattice stabilities have also been calculated
for the above three crystal structures and it is found that
the hcp-fcc energy differences are about a factor of 5
smaller in magnitude compared to the fcc-bec energy
differences. The disparity in size in the hcp-fcc energy
differences for W and Ta between the estimates of
Saunders et al.* and these and earlier local-density calcu-
lations is not expected to change with further refinements
in the calculations. We also believe that the disparity will
hold when, in the future, we have a better description of
the crystal potential than what local-density theory now
provides. It seems likely that inclusion of electron-to-
atom-ratio (band-filling) effects in the thermodynamic
phase-diagram constructs® will be necessary to obtain
better agreement. The usual overbinding seen in the
LDA cohesive energies also occurs for the 5d-row ele-
ments and some improvements to this problem have also
been discussed.
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APPENDIX

The calculations treat the atomic cores self-
consistently and fully relativistically, while the bands are
treated in the scalar-relativistic approximation, where
spin-orbit effects are omitted. The atomic spheres were
chosen so that for any given elemental metal the sphere
radius is 94.5% of that appropriate to touching atomic
spheres in the fcc structure at the observed crystal
volume (this choice of radius is equivalent to 97.2% of
the touching-sphere radius in the bce structure at the
same volume per atom). This slightly shrunken choice of
sphere size was taken in anticipation of calculations for
heats of formation of compounds for which the elemental
total energies are used as references. It so happens that
because of deviations from Vegard’s law and because of
details of how the atoms are packed in a compound, use
of the fcc sphere size in the compounds would cause the
spheres to overlap in almost all compounds. Going to
this slightly shrunken sphere size allows a large class of
compounds to be accommodated without atomic sphere
overlapping.

The single set of Slater-type orbitals were taken to be
6s-, 6p-, and 5d-like in character and their screening con-
stants were chosen so as to minimize the crystal total en-
ergy, as were the energies at which the scalar-relativistic
equations were integrated within the atomic spheres.
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Given this set of orbitals, the additional, 7s-, 7p-, 6d-, and
5f-like orbitals of the double set had their screening con-
stants optimized. As a rule the 5f-like “‘polarization” or-
bital provided the greatest benefit to the total energy of
the elemental metal, with the 6d-like term the next most
important. Some examples of the screening constants
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were given in Ref. 2.

110 special k points were used in the fcc calculations,
while 60 and 79 were employed for the hcp and bece struc-
tures, respectively, though in the case of the hcp there are
effectively twice the number of k points since there are
two atoms in the unit cell.
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