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Quantum diffusion of adatoms on a surface
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We use the small-polaron model to study the mobility for the quantum diffusion of light adatoms
on a surface, using a canonical transformation. The Hamiltonian and current operator are separat-
ed into two parts. One of them represents quasiparticles with renormalized temperature-dependent
effective mass, leading to a band mobility channel while the other contributes to hopping conduc-
tivity. The band mobility is studied in this paper with the Mori memory-function projection opera-
tor.

The diffusion of light atoms in solids has attracted
much theoretical and experimental attention. Recent
progress in surface physics has brought the attention to
the diffusion of light adatoms on solid surfaces. ' This
problem is of great importance both for technological
reasons as well as for the basic underlying physics. A mi-
croscopic understanding of surface mobility is crucial for
further theoretical progress in such diverse processes as
crystal growth, surface reaction, surface phase transition,
and catalysis.

For hydrogen atoms diffusing on metallic surfaces such
as W(100), a transition from a quantum tunneling regime
at low temperatures with weak temperature dependence
of diffusion constant to a classical thermal-activation-
over-the-barrier motion has clearly been observed. The
current viewpoint on the low-temperature diffusion of
light adatoms is that they proceed via phonon-assisted
tunneling. This problem bears many similarities to that
of the electronic polaron mobility. The difference lies
mainly in the extremely narrow bandwidth associated
with the relatively large mass of adatoms. In the study
of electronic polaron mobility, the memory-
function —projection-operator technique has been applied
in the past to obtain the resistivity of a two-dimensional
electron gas under strong magnetic field and the trans-
port relaxation time due to interaction with two-
dimensional (2D) and 3D LA phonons. In this paper we
show that he same formalism allows us to study the mo-
bility of adatoms on surfaces.

We start with a Frohlich-like Hamiltonian describing a
collection of noninteracting adatoms interacting with lat-
tice vibrations of the substrate:

H =g t, , +sc, +sc, +g f-itoeaqaq

+pc, c,e 'Mq(aq+a q),

where t; is the adatom transfer-matrix element from site

i to site j and c; (c; ) is the destruction (creation) operator
for the adatom at site i. The operators aq and aq~ refer to
phonons of wave vector q and frequency co~ coupled to
the adatoms through the potential Mq.

We assume that there is one Wannier state per site.
This is an assumption valid at temperatures k~T((6,
where b, is the diffusion barrier which has the typical
magnitude of 1000—2000 K for surface diffusion. We
also need to decide on an algebra for the Wannier opera-
tors. There exists an ambiguity as to what statistic is ap-
propriate for adsorbed atoms such as hydrogen. In this
paper we shall assign Fermi statistics. Even for a mono-
layer of hydrogen adatoms, the Fermi energy is only
about 40 K. Thus the experimental situation is usually in
the nondegenerate regime. The distribution function for
the adatoms then reduces to a Maxwell-Boltzmann form
and the fermion or boson character of adatoms becomes
irrelevant.

A standard canonical transformation brings the Hamil-
tonian into the form

H=g t, , +sct+sc, X;+sX;+g %co,ata —g n, b, ,
l, J q J

where

(2)

q

and X, is defined by

,q.R M
X, =exp ge '

(aq —a )

q COq

(3)

(4)

We separate the interaction term of the Hamiltonian
into two parts:

Ho=+ t, , +sc, +sc, (X;+sX, ) =g t;;+sc, +sc, ,
i, h i, 5

and
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Hi =gt;;+sc;+sc; [X;+sX,—(X;+sX; )], Hi =X [F(k q}—~k5q o]ck+qck
k, q

(10)

wherewhere ( . . ) refers to thermodynamic average. The
current can be separated in a similar way into Jo and J&..

lJ,=—g t, , +,5c,t+,c, (X,t+sX, ),
i, 5

(7)
and

F(k, q) =—g t;;+se 'e '"+ 'sX~+sX,
i,5

J|=—g t;;+s5c;isc;(X~+sX; —(Xi+sX;) ) .
i,S

&F(k,q) & =5,g„. (12)

In Eq. (9) we have introduced the renormalized energy

Fourier transforming into the k space, we have

Ho =g Ekckck
k

zk= g e 'k't,
, +,(X,+sX, ) =g e 'k't,

, +, ,
5 5

where

(13)

t, , +s=t, , +sexp —g [1—cos(q 5)](2&nq&+1)
COq

(14}

We observe, from Eqs. (5}-(13),that now ck and ck
represent noninteracting quasiparticles with renormal-
ized energy 'Ek. The current operator terms are then ex-
pressed as

k

X~ ak'k'k '
k

(15)

Ji= ——g [F(k,q) —
5q oak] cki c„.

k, q

(16)

The above formulas are general and valid for arbitrary
lattice structure. We now specialize to the case of a
square lattice. In this case the mobility is just a scalar.
The frequency-dependent mobility can be expressed in
terms of the current-current correlation function,

&P 'x
z+M(z)

(19)

(20)

where X=N/m *, m ' being the effective mass
m' =52gk/Bk„'lk ='o. The diffusion constant then takes
the familiar form D =kT/m'g, where rt=( i)M(—0) is
the microscopic friction. In transport theory, g is just
the inverse of the transport relaxation time, i.e., g=7
As can be seen from Eqs. (13) and (14), m' is now tem-
perature dependent through the temperature dependence
of the hopping matrix elements t;;+&. The bandwidth
narrows and m' increases as temperature is increased.
M(z) in (19) is the memory function calculated through
the force-force propagator:

p(z) =PC(z),

where

C(z)= & J (t)IJ.(0)&.

(17)

(18)

where J= i [J, H ).—Then,

M(z) = [11(z)—rl(0)] .1

ZX
(21)

while the diffusion constant is just D=lim, o[C(z)/N]
for a noninteracting system.

The contribution due to the term J, has been treated
perturbatively by Mahan in the context of electronic
transport leading to the hopping channel, which is im-
portant only at high temperatures. At low temperature,
however, the "band-conduction" channel which comes
out from the contribution of Jo is dominant. Here we
study the band conduction in detail using the memory-
function —projection-operator method. Then C(z) be-
comes '

Since

J„=J~+J „'= i[J„,Ho—] i[J„,H,—] (22}

and J„=O,then

II(r)= —('T,[J„' (r)J „'(0)]) . (23)

In order to obtain the propagator above we used the con-
ventional decoupling

( T [F (k, q, r)F(k', q', 0)ck(w)ck+ (r)ck+ .ck. ])= ( T,[F (k, q, ~)F(k', q', 0)])( V',[ck(r)ck+ (r}ck+ .ck. ] ) . (24)
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2 ~k+q
B(k+q)

2

BEg

av

where

1 g Ek ~k+q
D(k, ,

' ),
P (p leo /P +Xi, Ei +q

(25)

D(k, q;».)= —(T,[F (k, q, r)F(k, q, 0)]) (26)

Fourier transforming Eq. (23) and performing
Matsubara's frequency summation we obtain in the
lowest order of perturbation

where A is the area of the sample, =d is the deformation
constant, m, is the lattice ion mass, N' is the number of
cells per unit area, and n is the number of adatoms per
unit area.

Next, we consider the interaction with a high-
frequency branch of surface phonon with nonzero fre-
quency at q =0. %e now assume the dispersion relation
has the form co =cop+cq . The finite frequency cop at

q =0 comes from the influence of the underlying sub-
strate. Again, we consider the regime E& « kz T
((ksOD. Then from (27) and (28), we obtain the follow-

ing expression for the friction:

and f(11, ) is the Fermi-Dirac distribution function and
P=(ks T)

Then, after a lengthy calculation, we obtain for the
friction the following expression:

12:- m*
(ks T)

m X'm;A cop

X exp( —cm 'coolks T )exp( 3I3ficoo/4—), (32)

p6)

»)=( i)M—(0)= g ~M ~ q S 2(q, co»),
ym ', ' (e~» 1P

(27)

where S2(q, co ) is the imaginary part of the dynamic
structure factor of the noninteracting-quasiparticle sys-
tern:

S2(q, a)) =2»rg 5(&i,—'Ei, +@+co)[f(ei, )
—f(Zi, +q)] . (28)

We treat the interaction potential M(q) in the
deformation-potential approximation and consider the in-
teraction of the adatom with longitudinal surface pho-
nons. First we consider the interaction with a low-
frequency branch of surface phonon with dispersion rela-
tion ~, =c,q.

A realistic limit for studying surface diffusion is the re-
gime E„(&k&T«ksOD, which is the case for finite H
concentration near room temperature. In that range we
can take the Maxwell-Boltzmann distribution for f(e) in-
stead of the Fermi-Dirac one. Then, the imaginary part
of the dynamic structure factor becomes

1/2

S2(q, w)= — —Iexp[ —p(e —w) /4Z ]

—exp[ —lt2'(e +w) /4Z ]I,

12=-'„~Z
, m* (ksT) exp

fi &»rN'm;m c,'
m cS

2k T

(30)

In the above equation we have substituted the expression
of ~M(q)~2by

gq2 2

/M(q)/2=
2m;X'e) A

(31)

where f =iri q /2m*. Bringing this result into Eq. (25),
we obtain

where we have assumed m*/cR«1. The interesting
feature here is that for a substrate undergoing either an
intrinsic or an adsorbate-induced structural transition
such as H/W(110), the phonon frequency coo can have a
strong temperature dependence near the transition region
due to the soft mode effect. In this case, the friction g
and hence the diffusion constant would have anomalous
temperature dependence near the transition region.

For the sake of completeness, we consider here also the
extreme low temperature and high concentration limit
such that k&T «FF. This case is somewhat unrealistic
in view of our negligence of H-H interaction and uncer-
tainty in the statistics of the adsorbate as mentioned ear-
lier. Here we consider only the interaction with the low-
frequency-branch surface phonon, since the contribution
of the high-frequency-branch in this limit is negligible.
In this case the friction turns out to be

E —1/2 2 Q2 '4
g(k8)m'J

(33)

where J„(x)is the Debye integral

J„(y)=f dx x"
(e"—1)

For n =4 we have

4~4
lirn J~(y)=

y ~ 15

(34)

(35)

So, we obtain a result similar to the two-dimensional elec-
tron gas interacting with 2D longitudinal acoustic pho-
nons. %'e note, however, that this result, unlike the oth-
er limit EI «k&T «AcoD is dependent upon the as-
sumption of Fermi statistics for the adatom. It is unclear
at the moment whether this is an appropriate description
for the H adatoms.

Finally we estimate the magnitude of the diffusion con-
stant evaluated above. For this purpose, we concentrate
only on expression (32) for») since it is the most appropri-
ate one for making contact with experiment. The value
of the parameters appearing in (32) are chosen as



41 QUANTUM DII'FUSION OF ADATOMS ON A SURFACE 11 801

coo=10' sec ', T=100 K, X'=a with a =3 A,
m; = 184m~ (where m„ is the proton mass). The deforma-
tion potential:-d is taken from bulk studies to be be-
tween 1 and 10 eV. The band mass m * for the H adatom
is estimated by calculating the tunneling probability be-
tween neighboring sites using the empirically observed
diffusion barrier of approximately 0.2 eU. ' This yields a
value for m'/m between 5 and 10. This choice of pa-
rameters yields a value for the diffusion constant between
10 "and 10 ' cm /sec at the temperature 100K. This
covers nicely the range of observed values of the diS'usion
constant at this temperature for systems such as
H/W(110). We must note, however, that at lower tem-
peratures the phonon contribution to the friction would
be negligible compared with that due to impurity scatter-
ing, leading to a temperature-independent diffusion con-

stant.
In conclusion, we have studied the band mobility of a

hydrogen atom interacting with longitudinal surface pho-
non of the substrate. The temperature dependence of the
mobility comes both from the phonon occupation factor
and the renormalization of the effective band mass of the
adatom. We also predict that near a surface structural
phase transition the friction, and hence the diffusion con-
stant of the adatom, can acquire an anomalous tempera-
ture dependence.
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