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Monte Carlo renormalization-group study of the sitediluted simple-cubic Ising model
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The Monte Carlo renormalization-group approach is applied to investigate the critical behavior
of the simple-cubic Ising model diluted randomly with nonmagnetic atoms of concentration x.
For x 0.2 a value of v 0.688(13) is found which is well above the result v 0.629(4) for the
pure model and above the exact lo~er bound of v 3, and the relative width of the asymptotic
regime is definitely larger than 3x10 . For x 0.1 the obtained value is below the exact lower
bound, possibly indicating that the asymptotic critical regime has not been penetrated, that this
regime has a width smaller than 1.3x10 4, and that it can hardly be explored by experiments or
computer simulations.

The critical behavior of spin systems with random
structural disorder has been discussed for almost 20 years.
According to the phenomenological arguments of Harris, '

systems with weak disorder should exhibit the same criti-
cal behavior as the one of the corresponding pure system if
the specific-heat exponent a~ of the pure system is nega-
tive, as in the case of d 3 Heisenberg ferromagnets (for
a review of experimental verifications see Refs. 2 and 3).
In contrast, the critical behavior is expected to be
modified by disorder for a~ )0, for instance for the d 3
Ising model. The latter statement has been proved
rigorously by Chayes et al. who derived an inequality for
the correlation exponent v of disordered systems, v~ 2/d,
yielding a 2 —dv~0, which contrasts to vs 0.63 and

a~ 0.11 for the pure d 3 Ising model.
Whereas the existence of a stable random Ising fixed

point is thus well established, no consensus has emerged so
far concerning (a) the precise values of the exponents and
their possible dependences on the degree of disorder, i.e.,
the concentration x of nonmagnetic atoms in a site-diluted
system; (b) the width of the asymptotic critical regime,
which —according to Harris' —should depend strongly on
x. Various k-space renormalization calculations for
weakly disordered systems obtained results for v between
0.67 and 0.697, i.e., consistently higher than the theoreti-
cal lower bound of v —', and independent of x, without

giving any estimate for the width of the asymptotic criti-
cal regime. The results of Monte Carlo simulations (MC)
are divided. Whereas the early small-system simulations
were consistent with a pure-fixed-point behavior, later in-
vestigations ' revealed modified effective exponents
which depend on x and which are for small x so close to
the pure system values that the criterion v ~

3 is violat-
ed. The most recent simulation" obtained impure critical
exponents which did not depend on x but which differed
significantly from those of the k-space renorrnalization
calculations (e.g., v 0.77+ 0.04). Similarly, the experi-
mental investigations were inconclusive (for a review see
Refs. 9 and 10). Altogether, it may be suspected that all
the inconsistencies may arise because the width of the
asymptotic regime is very small and depends on x, so that
part of the MC and the experimental investigations were

not able to penetrate this regime or yielded at most an
effective average exponent over a large temperature range.

In this paper we present a Monte Carlo renormaliza-
tion-group (MCRG) study'2 for simple-cubic Ising sys-
tems with quenched random site dilution. We consider
x 0 and the weakly diluted limit (x 0.1, 0.2) for which
the k-space renormalization calculations most probably
yield reliable results. Our aim is to try to reproduce these
results by the present real-space renormalization tech-
nique, and to obtain, in addition, an estimate for the width
of the asymptotic regime.

Our procedure is very much in line with the MCRG of
Pawley etal. 's for the pure (x 0) simple-cubic Ising
model, and we discuss only the modifications introduced
by the dilution. MC simulations based on a fully vector-
ized multispin coding program 'o have been performed
for lattices with 64, 323, and 163 spins with 2, 4, and
8 & 10s sweeps, respectively, for x 0.1 as well as 2, 3, and
4&10 sweeps for x 0.2, taking the data after every
fourth sweep for the thermal averaging. Two different
kinds of majority rules have been applied for each concen-
tration, one where we assign spins + I with equal proba-
bility to the nonmagnetic sites, ' and one where we associ-
ate a nonmagnetic site with spin 0. Both procedures lead
to consistent final results, but the latter one exhibits a fas-
ter convergence. We considered the same even correlation
functions as in Ref. 13, as well as a single spin and three
three-spin correlations (inclusion of higher-order odd
correlations did not change the results beyond the statisti-
cal significance).

For a reliable determination of the thermal eigenvalue
yT I/v and the magnetic eigenvalue ytt (d+2 —ri)/2
the MCRG calculation must be performed accurately at
T,. In a pure system T, is usually obtained from the
demand that all correlation functions (in practice the
nearest-neighbor correlations) for lattices of different
sizes but correspondingly different blocking levels n (same
"effective" sizes) should be equal ("lattice comparison").

For diluted systems, however, this procedure is not reli-
able because there may be rather big differences in the
pseudocritical temperatures for different lattice sizes due
to different configurations of nonmagnetic atoms. As a re-
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suit, the lattice comparison may stabilize at a temperature
which is the critical temperature of neither of the con-
sidered lattices. Because the results of the MCRG depend
extremely sensitively on the choice of the critical tempera-
ture, there may arise very big errors from this uncertainty.
We are not certain whether the problem may be overcome
by performing a configurational average for the lattices
before the lattice comparison. Because the lattice sizes
are smaller than the thermal correlation length, the situa-
tion is not ergodic, i.e., we cannot simulate a big lattice by
a configurational average over many small lattices.
Furthermore, a configurational average over many 64
lattices is beyond our computational capabilities.

To cope with the above-discussed problem we proceed
on the following line: We consider only one lattice of size
64' with randomly distributed nonmagnetic atoms, but we

generate many 32 and 16 lattices, each of them with
different impurity configuration. For all these lattices we
perform the MC simulation at, say, four different temper-
atures which are close to the infinite-lattice critical tem-
perature predicted by a conventional MC simulation. We
then select from this set of lattices those triplets of 64,
32', and 16 lattices for which the lattice comparison sta-
bilizes at a temperature near one of these four tempera-
tures. To cope with the above-discussed uncertainty, we

carry out the following consistency check. ' ' We per-
form the MCRG analysis of the 64 lattice at all con-
sidered temperatures on the line described in Ref. 13, be-
ing well aware of the fact that the finite-size corrections
(for which we need the data of the corresponding 32 and
163 lattices) may be erroneous if the lattice comparison
did not yield the correct critical temperature. If every-
thing is reasonable we expect results for yT vs 2 " like
those shown in Fig. 1 (in all our cases the largest negative
eigenvalue turned out to be close to —1, which justifies
the plot yT vs 2 "). For T T, [Fig. 1(b), the non-
corrected data are given in Table I] there is an indication
of a plateau for large blocking levels n. For the larger
temperature, Fig. 1(c) shows a situation for which after
an initial approach to the fixed point the trajectory in the
parameter space is clearly driven away from the fixed
point. Such a behavior of yT is typical for temperatures
above T,. Figure 1(a) demonstrates that for the lower
temperature an upward bending of the curve is obtained
for large n, which is typical for temperatures below T,.
Since even for the correct T, the plateau could possibly
occur only for larger than the considered values of n, we
must find a further criterion for a lower limit of T,. We
assume that the considered temperature is certainly below
the correct T, if the energy per spin is already larger than
the energy per spin of the pure model at the critical tem-
perature of the pure model. Although apart from the di-
luted honeycomb lattice' there is no general proof for
this assumption, it seems to be highly reasonable. Alto-
gether, the behavior of yT vs 2 " for difterent tempera-
tures as shown in Fig. 1 suggests that the lattice compar-
ison yielded the correct critical temperature. For other
triplets of lattices we can find situations for which at the
"critical temperature" of the lattice comparison a behav-
ior such as in Fig. 1(a) with a violation of our energy cri-
terion occurs, indicating that the obtained critical temper-
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FIG. 1. Estimates for I/v at (a) I/K~ 3.4980, (b) 3.4985,
and (c) 3.4990, plotted vs 2 ". The dashed line in (a) indicates
the linear fit to the data points for n 2, 3, and 4 yielding an ex-
trapolated value of yT 1.4584(224) with an upper limit of
yT 1.4808. The dashed line in (c) represents the lower limit
for yT.

ature is too low. Alternatively, we can also find situations
for which at the critical temperature Fig. 1(c) holds, indi-

cating a too high temperature. All these pathological situ-
ations are eliminated.

The above-discussed procedure is able to enclose the
critical temperature of a triplet in an interval which is, for
x -0.2, an order of magnitude smaller than the spread in
the critical temperatures of all our 32' lattices and
hence —according to simple statistical assumptions —a
factor of 3 smaller than the spread for the 64 lattice.

The final result for yT is found in the following way:
We first extrapolate the last three points (n =2,3,4) in

Fig. 1(a) linearly in 2 "as in Ref. 13, yielding for x -0.2
an estimate yT 1.4584(224) and an upper limit of
yT 1.4808. To obtain a lower limit we note again that
the correct critical temperature is somewhere between
cases 1(a) and 1(c), and that we expect a plateau for large
n at this temperature. Assuming that the approach to this
plateau is monotonic, we obtain a lower limit of yT
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TABLE I. The MCRG table in the form of Ref. 13 for the

thermal eigenvalue, yr 1/v for x 0.2 and 1/Ki 3.4985. Be-

cause the results of the first renormalization step have only a

negligibly small eA'ect on the final exponent values, we have cal-

culated the correlation functions for the original lattice with

poorer statistics, thereby saving about 3 of the computer time.

64

0.8343
0.9144
0.9139
0.9121
0.9099
0.9003
0.&979

1.3705(10)
1.4148(11}
1.4148(11)
1.4144(ll)
1.4139(11}
1.4121(12)
1.4074(12)

1.4063(21)
1.4484(21)
1.4476(23)
1.4467(23)
1.4456(22)
1.4431(22}
1.4357(22)

32

0.8388
0.9227
0.9226
0.9209
0.91&4
0.9075
0.9054

1.3609(11)
1.4099(12)
1.4100(13)
1.4091(13)
1.4078(14)
1.4058(14)
1.3994(15)

1.4234 (21)
1.4796 (22)
1.4795 (27)
1.4739(28)
1.4712(28)
1.4678 (29)
1.4594(30)

16

0.8298
0.9179
0.9178
0.9139
0.9120
0.9018
0.8975

1.3527(10}
1.4157(12)
1.4162(13}
1.4135(13)
1.4126(12)
1.4104(14)
1.4012(15)

1.5439(23)
1.6457 (23)
1.6519(23)
1.6342(25)
1.6298 (24)
1.6236(25)

1.4301(33)
1.4827 (32)
1.4813(34)
1.4769 (33)
1.4755(35)
1.4724(35)
1.4639(34)

1.5854(52)
1.6839(52)
1.6915(51)
1.6700(50)
1.6634(49)
1.6565 (49)

1.5790(82)
1.6786(81)
1.6861(79)
1.6641(87)
1.6551(77)
1.6479(84)

1.4256 as shown in Fig. 1(c). The assumption of a
monotonic exponent flow is equivalent to the notion that
the thermodynamic behavior in the considered tempera-
ture range is determined by only one fixed point, i.e., that
the system is driven directly to the stable fixed point. Oth-
erwise there could be a crossover from an unstable fixed
point which determines the flow at low blocking levels to
the stable asymptotic 6xed point at high blocking levels
(perhaps at higher than the considered ones), yielding
possibly a nonmonotonic flow.

Our results are summarized in Fig. 2. For x 0 we ob-
tain the same value of v as in Ref. 13. For x 0.2 the
value is above the lower limit of v T and within the
range obtained by the k-space renormalization calcula-
tions. This suggests that we have found the correct
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FIG. 2. Results for v as function of x. The lower solid line in-

dicates the exact lower bound of Ref. 4, and the shaded area in-

dicates the range of values obtained by the k-space renormaliza-
tion calculations.

asymptotic critical value and that the width hT/T, of the
asymptotic critical regime is at least as large as our rela-
tive uncertainty for the critical temperature (3&10 )
defined by the lower and upper limits [Figs. 1(a) and
1(c)). Furthermore, from our data we do not see the
influence of any other fixed point (e.g., the pure Ising fixed
point) in the lower blocking levels. For x 0. 1 the value
of v is below the limit of v T, i.e., we have determined
an effective rather than the asymptotic exponent. If the
critical behavior is determined by only one fixed point, this
result indicates that none of the three considered tempera-
tures in the interval hT/T, 1.3&10 was within the
asymptotic critical regime, that for weakly diluted sys-
tems the width of the asymptotic critical regime is very
small (according to Harris' proportional to x ") and
that it can hardly be penetrated by experimental investi-
gations and computer simulations for finite lattices. Al-
ternatively, it may also be possible that there are two fixed
points and that for x 0.1 a crossover to the asymptotic
fixed point is observable only in larger systems at larger
than the considered blocking levels. In this case we can-
not say anything about the width of the asymptotic criti-
cal regime. However, the obtained exponent flow then
would indicate that the unstable fixed point is most prob-
ably the homogeneous fixed point as discussed in Refs. 17
and 18 and not a fixed point with totally different ex-
ponent values (e.g. , the random tricritical fixed point with

y7 v I discussed in Ref. 19).
Because for diluted systems the error bars are consider-

ably larger than for the pure model (cf. Fig. I), the rl

values which result from the difference of two large num-
bers, ri 5 —2yH for d 3, could only be enclosed in the
reasonable, albeit wide, interval 0 & ri &0.05 for x-O. l

and x 0.2. The flow of the g values is thereby consistent
with the flow of the yT values as shown in Fig. 1, consti-
tuting a further consistency check for the critical tempera-
ture. For example, for the temperature of Fig. 1(a) the
extrapolated rl value is already negative, indicating that
the temperature is definitely too low.

For a stronger dilution (x 0.4) the statistical accuracy
of our MCRG approach was too poor to obtain reliable es-
timates for the exponents. A very detailed description of
the calculation will be given in Ref. 20.
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