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Structure of an isolated vortex in an anisotropic type-II superconductor

R. A. Klemm
Ames Laboratory and Department ofPhysics, Iowa State University, Ames, Iowa 50011

(Received 8 May 1989; revised manuscript received 31 July 1989)

The Ginzburg-Landau equations with general effective-mass anisotropy are diagonalized for a
general direction v of an isolated vortex core. For v not parallel to one of the three crystal axis
directions, the local magnetic induction b contains components b~ and b&, perpendicular to v,
which vanish as p away from the center of the core with coefficients that are odd in the azimuthal

angle P. In the London limit far from the core, be and b& are comparable to b3 =v b, and all fall off
exponentially in p, with two distinct exponents, each of which depends explicitly upon the azimu-

thal angle P about v. The presence of be and bt, reduces the energy cost of the locking of the core
into the lattice but does not remove it entirely, as the leading correction to the line energy is propor-
tional to the parameter P~ (rather than P), where P is the parameter introduced previously by the au-

thor. With the use of an ansatz, an exact form for the field components and reduced order parame-
ter f in the core region is obtained. The lines of constant b, and ~b, ~

in the core region are found

for arbitrary effective-mass anisotropy and v. These forms should be observable by scanning tunnel-

ing microscopy and by large-momentum-transfer neutron-scattering experiments for fields slightly

greater than H, &. In addition, the angular dependence of H, &
should exhibit a kink, as the vortex

cores prefer to lie along one of the crystal symmetry directions.

I. INTRODUCTION

The recent discovery' of superconductivity in layered
materials with high transition temperature T, has led to a
revival of interest in the phenomenology of supercon-
ductivity in highly anisotropic systems. Although there
is still some dispute about the question of order-
parameter anisotropy, the preponderance of the evi-
dence is presently consistent with s-wave superconduc-
tivity, with a large effective-mass anisotropy. Al-
though the question of intralayer effective-mass anisotro-
py in the superconducting state has not yet been resolved
for all systems, there is evidence' that the normal-state
properties in some materials exhibit some degree of intra-
planar effective-mass anisotropy, as well as a large (uniax-
ial) effective-mass anisotropy between the directions
parallel and perpendicular to the conducting planes.

To date, there have byen a number of attempts to treat
the behavior of a vortex at an arbitrary external field
direction relative to the crystal axes. Kogan" investigat-
ed the asymptotic (London) regime far from the core, and
solved this case in Fourier space. Klemm and Clem'
(hereafter referred to as I) neglected the components of
the local magnetic induction perpendicular to the core
direction v, and transformed the Ginzburg-I. andau free
energy exactly, using an anisotropic scale transformation,
a rotation, and an isotropic scale transformation. Ko-
gan" showed that the components of blv are non-
negligible, suggesting that the transformation procedure
of I is not valid away from the upper critical field 0,2 for
an arbitrary v direction. Recently, we showed' (hereaf-
ter referred to as II) that application of the Klemm-Clem
transformations to the Ginzburg-Landau (mean-field)
equations leads to a component a3 of the vector potential
parallel to v, which causes a near locking of the vortex
core onto the lattice. In that treatment, the components

b and b& of blv were neglected, as it was assumed for
simplicity that the dominant contributions to the core en-

ergy arose from the variations of the reduced order pa-
rameter f and b& =b v.

In this paper, we assume only that there exists a direc-
tion v along which the order parameter and magnetic in-
duction b do not vary. In Sec. II, we apply the Klemm-
Clem transformation s to the mean-field Ginzburg-
Landau equations in such a way that the scale-
transformed axes e3 is rotated parallel to v, but do not
neglect the resulting components of blv. These fully gen-
eral transformed equations depend upon three new pa-
rameters, hatt, v, and (b2, as well as the parameters a of I
and P of II, all of which are functions of the direction
cosines of v with the crystal axes. There are four
transformed (coupled, nonlinear) Ginzburg-Landau equa-
tions describing the spatial variation of the reduced order
parameter f and the three magnetic induction com-
ponents bs, b, and b& (in transformed polar coordi-
nates), as well as the Maxwell equation V b=0 in those
coordinates. In Sec. III, we analyze the behavior of the
core region, and find the general form for f, bi, b, and

b& as p~0. With the aid of an ansatz, the azimuthal
dependence of those quantities in the core region is found
exactly. In Sec. IV, we analyze the London regime
p~ 00. In Sec. V, we calculate the lower critical field H„
for an arbitrary direction of v, and show that the cost in
energy as v is rotated away from a crystal axis is propor-
tional to P for small P. In Sec. VI, we present some con-
cluding remarks.

II. TRANSFORMATION OF THE ANISOTROPIC
GINZBURG-LANDAU EQUATIONS

The starting point for this calculation is the anisotropic
Ginzburg-Landau free energy for the superconducting
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state, relative to the normal state [Eq. (8) of I], which in
reduced units can be written as' '
Fs F—N= f dr f—+ ,'f—

and
1/2

(4d)

+ g —2(B+)'+a+' +b'
p p K

where

m
a(80, $0)= g " (e„v)'

m

1/2

(5)

——Bg+ag =f (1 f )—1
(2a)

and

where m =(m„m2, m3)' is the efFective-mass geometric
mean, a =A, /g is the usual GL parameter, b =V Xa is the
local magnetic induction in terms of the gauge-
transformed vector potential a, f= ~+/+o~ is the relative

magnitude of the local order parameter, m„ is the
effective mass in the p, =1,2, 3 direction, and 8„—:8/Bx„.
This notation is precisely the same as in II. In I, we
found that this free energy could be transformed, assum-

ing the direction of b to be a constant. In II, we
transformed the mean-field anisotropic GL equations, ob-
taining

is the anisotropy factor associated with the upper critical
field H, 2. Note that at H, 2, 1=v, so this definition of a is
the same as in I and II in that limit. As in I and II, the
rotation matrix A,„„is given by [Eq. (4) of II]

sin(()' —cos(t ' 0
cos8'cosP' cos8'sing' —sin8'
sin8'cosP' sin8'sing' cos8'

where O', P' are the angles the scale-transformed coordi-
nates make with the original lattice,

e ' = (sin8'cos((', sin8'sin(t ', cos8'),

a„f'=VX(VXa) e„=QB„(B„a„—B~„),
P V

(2b)
which are related (as in I and II) to the direction cosines
of v by [Eq. (5) of II, with the replacement b~v]

v = ( sin 80cosgz, sin 80singo, cos80), (3)

along which the quantities f and b do not vary. This
direction corresponds to the direction of the center of the
vortex core, which is assumed to be a constant in the bulk
sample. We neglect cases in which the center of the vor-
tex core can bend, as this would require a local, rather
than a global transformation procedure. In addition, as
we shall see, the vortex cores prefer to lie along one of the
crystal symmetry directions, so that bending of the core
centers costs additional energy. Although such bending
would be expected in a finite sample of nonellipsoidal
shape, it is not expected to be important in a bulk sample,
or a finite sample of ellipsoidal shape, which are the cases
of interest here.

We now employ the transformations of I as in II, with

the interpretation that the direction e3=v. As in I and
II, we write

where e„=x„is a unit vector in the @=1,2, 3 direction of
the crystal. In both I and II, the direction of b was as-
sumed constant, but in this treatment, we relax that re-
striction, assuming only that there is a direction v given
by

m(w ~ Pe'e =—
a m

' 1/2

V'Cp .

As in I and II, transformation of the order-parameter
equation [Eq. (2a)] leads to

V 2+y 2f —f(1 f2)
K

where

m
I t3=+ A, PP=IP

As in II, we now explicitly evaluate Eq. (10), but we now
keep all of the components of b, assuming only that

33f=33a =0 .3 p (12)

where R—:z/a and a is given by Eq. (5). As in II, trans-
formation of Eq. (2b) leads after multiplication by
A,z&(mz/m) and summation over p to

(10)

1/2
m

X
a m

1/2

Op=a

(4a)

(4b)

We find

if,f = —3(b+eb, e,b ), —

d'2f =3,(b +e32b, —e,b2),

(13a)

(13b)

b„=a
' 1/2

Q A„b, , , (4c)
& f =e,3,b3+E232b3+E332b,

(13c)
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where

&& —=a (I 3zl i
—I 3ii iz»2

~,—=a (I.„r„—r„r„),2

2 2

e —=a(I„I„—I', },2 2

(14a)

(14b}

(14c)
and

b
&
=b.P =b z cosP —

b& sing,

b~ =b.p =b, cosP+ bzsin((},

b3=b-v .
(14d)

The relevant Maxwell equation is, of course,

(18a)

(18b)

and

(r»r„—r»r„) .2 (14e)
—'S,(pb, )+—'S,b, =0,O' ' P'' (19)

The e, may be explicitly evaluated by using Eqs. (6} and

(11).We define

a(Po)—:a(n /2, go}= m& m2
cos Po+ sin Po

' 1/2

(15)
ap

' '
a(Tt

As in II, we de6ne

The e; are then given by P= —,'(ei+ez) (20a)

m3
' 1/2

(m/m 3)[a(((}o)]—1
sin(28o)

2a(go}
(16a)

and

tanP =—,0 (20b}

(m3/m )' [(mz —m, )/m )a sin8osin(2po)

2a(ko)

a (m z /m )[(m, /m ) cos P o+( m z /m ) sin Po]

[a(4o)]'

(16b)

(16c)

and let P=P —Po. Similarly, we define

p,:,' (e&+—e4—),

v —=—,
' [(e, —e4)z+ 4esz]'rz,

26'
tan2$, =

E'3 E4

(21a}

(21b)

(21c)

and

(m3/m)cos 8o+(mlm3)sin 8o[a(go))

[a(4o})'
(16d} and

4'z =4'i+ do (21d)

(m3/rn)[(m, rnz)/m]—a cos8osin(2$o)
(16e)

2[a(((}o}]'

We now write

0—=0+4z=4'+Pi (22a)

The expressions for e, and ez are identical to Eqs. (12a)
and (12b} of II, with the interpretation that 8o and Po are
defined by the direction cosines of v, not b. Note that for
uniaxial anisotropy (rn, =mz) both ez and e5 vanish iden-

tically.
Equations (9) and (13), together with

and

P Ps

b~=v 2pb~,

bp =~2Pb

(22b)

(22c)

(22d)

(22e)

bz =Sitz BP&

bz = —Sitz,

bi =Bpa3,

and

(17a)

(17b)

(17c)

3|b 1 +Bzbz =0 (17d)

[which are just the three components of 1=VXI', and
the Maxwell equation V.b=O), give a closed set of equa-
tions for the order parameter and the b„. As in II, it is
convenient to transform to cylindrical coordinates, as we
assumed there is no spatial variation of the physical

quantities along the direction (F~) of v. We thus write

b (p, P)—:cosg8 b3 —p 'sin/8&b3

+p[p 'Gab p'8 (pb4, )]-
+vcos(2$)[p 'B~b +pB (b~/p)]

+v sin(2$)[pB (b /p) —p 'Bpbp] (23a)

and

g(p, P)= b3 2P(co—sgb&—+singb ) . (23b)

for simplicity of notation, since it turns out that b& and

b~ are both proportional to V'2p, relative to b3 and f
[that is, they vanish when v is directed along a crystal
symmetry direction, for which P=O]. For simplicity, we
write
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The Ginzburg-Landau equations for a vortex in a super-
conductor with general effective-mass anisotropy may
now be written,

1
[p 'a (pa+)+p @"]

K

+f-'[(a~)'+p (ag) +2Ph ]=f(1—f ),
b =p 'a (pf ap}+p a&(f ap),
bp= a(—f h ),
b, =p-'a, (f -'h ),

(24a)

g (p &)=b3(0)—ko(0)p'+ 01(4)p'—(24b) (28a)

(24c) and

h (p, g)=go(P)p'+ (28b)(24d)

Equations (27c) and (27d) follow from Eqs. (24c} and

(24d) and the finiteness assumption as P~O. Unlike the
forms found in II, there are no logarithmic corrections
(e.g., p lnp, etc. for f). The presence of b and b& con-

spires to eliminate such terms exactly. Note that as
P~O, the a, and c; reduce to constants. For arbitrary P,
we then write

and we have the Maxwell equation,

p '[a (pb )+a&b&]=0,
where

(24e)

a, =a/a„a, =a/a, , a', —=a'/ay'.
Note that the variables p, 1I) are transformed variables, ac-
cording to Eqs. (4a) and (22). In the case that b& and b

can be neglected, Eqs. (24a) and (24b) reduce to those
[Eqs. (18) and (15)] of II. We remark that Eq. (24) con-
tains the parameters a, p, p, v, and $2. The quantity 1I)o is

present implicitly by Eq. (20b), but only serves to define

the zero of the cylindrical coordinate system, as it does
not enter explicitly into any of the equations. We note
further that a,p & 0, and P, v & 0.

The appropriate boundary conditions for the order pa-
rameter and magnetic induction must first be found be-
fore any calculations can be performed. From the Aux

quantization condition,

=0,

(30)

where Eq. (28b) follows from Eqs. (27), (23a), (24c), and
(24d), and the assumption that all quantities are finite as
P~O. We can then expand Eqs. (24a) and (24b) in
powers of p, solving for the various coefficients of each
power. From Eq. (24b), the term of order p

~ gives

a 0o4
(29)

c,'(y)

which has the general solution go=yCo($), where y is a
constant. Since we require go(P) to be periodic in P,
go($) =go({{1+2m), this would require Co to be Periodic in

P, with no constant term unless y =0. Since for P=O, Co
is a constant, we are forced to accept the solution y =0,
implying go(P) =go=const.

The terms of Eq. (24a) to order p
' yield

4&o
[Co($)+Co'(P)]+ =0 .

rc Co(P)

1 40B=— b der=
S s S

where {{)ois the flux quantum, we obtain

(25a)
Note that as P=O, we expect Co'o =0, goo= Coo/2R, as for
the isotropic case, where the quantities Foo=Fo(P='0).
For PAO, Co(P) becomes P dependent. Equation (30)
may be solved exactly for arbitrary P. We define

I pdp J dkb3= (25b)
0 0 K

Using Eq. (24b), we obtain the boundary condition as

p —+0:

2mdp p ag
o 2nf~ ap. (26)

b3(P ~) b3(0) ao(1I )P +~1(4)P +

by(p ~)=eo(k)p e1(0)p + ' ' '

b (p ~)=do(4)p dl(4)p + ' '

(27b)

(27c)

(27d)

as we have assumed p(ag/ap) —+0 as p~ oo. As p~ oo,

we expect f~1, and b3, b&, b ~0, ab3/ap~O,
ab&/ap~O, ab /ap~O. We also assume f, b3, b&, and
b are finite as P~O, and all quantities are periodic in P:
f(P)=f(/+2m), b3(P)=b3(/+2m), b (P}=b ({t+2m),
and b&(P) =b&(/+2m ) for single valuedness.

III. SOLUTION NEAR THE CENTER
OF THE VORTEX CORE

We assume a trial solution of the form

f (p, g)=Co(g)p C, (P)p'+C, (P)p'—. , (27a)—

Co =Co($ ) /Coo

0o=4oCoo

(31}

(32)

2

—,'C11+—,'(Co) +— =Eo,
2

(33)

where Eo is a constant of integration. Equation (33) de-

scribes the conservation of energy of the vortex core, and

may be solved in a number of ways. By solving for C 0 in

terms of C0, we may integrate directly to obtain

Co(4) = [&o+«o —0 o)'"cos (34)

where P, is a second constant of integration. Note that
there is no solution for Eo (go, and that Eo & 0 from Eq.
(33). Hence, the only case in which Co could vanish for
some angle would be for (o=0, which is certainly not the
case as P~O. This result is therefore consistent with our
assumption go=const. We have investigated solving Eq.
(30) with go=yCo for yAO, assuming perturbation

relative to their respective P=O values (Coo and goo, re-

spectively). Multiplying Eq. (30) by C o, and integrating,
we have
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Eo= 1+pEoi+13 Eoi+

00=1+&koi+&'Coi+ ' ' '

Co(p) = 1+pCoi($)+ p C02($)+

(35a)

(35b)

(35c)

theory in y. Using Eq. (34}as the starting point (y =0), it
is not possible to obtain a go(P) that is periodic in P for
y&0. Hence, the assumption y =0 is further supported.

Note that as P~O, Eo =go= 1, so that a perturbation
series in powers of P should be possible for Co($). We
write

The functions eo($} and do(P} are found from the
Maxwell equation [Eq. (24e)] to satisfy

do(4') = —
—,'eo(y) (38)

where eo($) =deo(P)/dP.
We then write out Eq. (23a) to order p, and use Eq. (37)

to eliminate ao(P) in favor of the constant go,

rl—(3eo+ ,'eo—)+/[(eo——,'eo )cos2($+P3)

——", eosin2($+P&)] =2gocosg,

We note that the normalization condition [Eq. (26)] is
automatically satisfied to all orders in P, as is easily
checked by substituting Eq. (34) into Eq. (26). It is easy
to demonstrate that (~, =ED„but E02&g~z cannot be
found in this way. We find

Coi (P ) =
& ( /pi + [2(Eoi gc2)] cos2(P P& ) ) ~ (36)

~here

and

P—
g=(P +v +213v cos2$2)'

(39a)

(39b)

(39c)

Hence, a core energy of order P can give rise to an az-
imuthal dependence of Cc of order P. One could formal-

ly carry out this procedure to higher order, but it is not
useful, as one must first find Eo in terms of gz to order P
and beyond. In what follows, we have succeeded in that
task.

From the order-p terms in Eqs. (23b), (28a), (27c), and
(27d), we have

vsin2y,

P+vcos2$2 ' (39d)

eo(P)—:[r/+ g cos2(/+Pi)]f0($) . (40)

and we have used Eq. (38) to write do and do in terms of
eo and eo, respectively. To simplify Eq. (39a), we write

go=ao(P)+2P[eo(P)cosg+dc(P)sing] . (37) After a bit of algebra, we obtain

[rl+gcos2(P+P3)] Fo($)+ I[rl+gcos2(P+P3)] +8(rl —
g ))Fo(P)= —6gocosg . (41)

A particular solution to Eq. (41) is easy to find,

eo(p) =—

eo(p)=—

3Jocose

3(ocosg

4(rl g')—[rl+ g cos2($+ P3) ] .

(42a)

(42b)

The homogeneous solutions to Eq. (41) can be written as
an infinite series in powers of g+gcos2(P+P&), which is
described in detail in Appendix A. As we shall see below,
we shall neglect the homogeneous solutions.

From Eqs. (37) and (38), we now may find the forms of
do(P} and ao(P), ao(P)=y, C (P) . (44b)

Comparing Eq. (43) with Eq. (34), we see that ao($) may
be written as

0(4}=3 iCo(p)+y2, (44a)

where y, and y2 are constants. We note that for p=0,
aoo=COO/2R, so that the spatial variation of the field
component parallel to the vortex core in the core region
is related to that of the order parameter. In Sec. V, we
show that the dominant contribution to the core free en-
ergy is proportional to Eo/go. Minimization of this
quantity for y2 & 0 requires y2=0. We therefore make
the ansatz

and

do(P) = —
i I sing[g+g'cos2(4+$3)]

~2 g2

+2gcos4 sin2(/+Pi)]

aQ(y) =go 1+

X [2rl+g cos2$3+i}cos2$

+2(cos2(P+ Pi) ]

(43a)

(43b)

(45a)

(45b)

Physically, the ansatz states that the spatial variation of
b3 near the vortex core is proportional to f, just as in an
isotropic system. This ansatz is very powerful. Not only
does it enable us to determine the constant P„but it also
enables us to obtain an expression relating Eo and go.
Using the ansatz, we obtain

2v sin2$z
tan2$, =—

p+P+ 2v cos2$2

( g 2 p2g 2/4)ii2
~1 2p —v —2P(p+ v cos2$2)
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and
—1/2

0 00 4Ai
1

where

and

A, =p —v —P(p+ —3v cos2$2) —P /2

(45c)

(45d)

with those of p~{x). Unfortunately, this procedure in
nontrivial, as we shall see in Sec. IV. Even for P=O, the
coefficient Coo must be found in this way, as was done for
an isotropic superconductor by Hu. ' Nevertheless, we
shall see in Sec. V that the ratio Eo/go is important, as it
enables us to calculate the dominant contribution to the
lower critical field H„.

IV. SOLUTION IN THE LONDON REGIME

A22=(p+P) +4v +4v(p+P)cos2$2 . (45e)

In the above equations, we have written rt, g, and Pi in

terms of p, , v, P, and $2, using Eqs. (39b}—(39d).
We see immediately that Eo/go= I+O(P ), as our per-

turbation expansion required, and that Eo ~
go, the equal-

ity holding only at P=0.
We remark that the forms [Eqs. (42b) and (43a}] of the

field components perpendicular to v are odd in P~P+ ir,
as was found in the London regime by Kogan. " The
form of b& is even in P —+/+it, since b& does not vanish

at the vortex core, in contrast to b and b&.
Although our ansatz. has enabled us to find the ratio

Eo/go, we are unable to use it to find go explicitly. This
can only be done by solving the full equations for all
values of p, by matching the boundary conditions at p~0

bi =p 'Bz(PBg)+p dt's,

b~= —8 h,
b, =p 'a,h, -

(46a}

(46b)

(46c)

where g, h are given by Eq. (23). After solving for g, h,
one then finds the leading correction to f (from unity) by
inserting the forms of g, h into Eq. (24a). Although one
desires g and h rather than the components of b, Eqs. (46}
are easier to solve for the b components. We therefore
use Eq. (23) to write Eq. (46) entirely in terms of b3, b,
and b&. We have

As p~ &a, f~1, with corrections that are expected to
behave exponentially in p. The magnetic field com-
ponents then satisfy

b3 p 'dz(pd b& )+p B&b
—2p[p '8 [PB (cosp blh+sinp b )]+p d&(cosp b& +sing b )I

bp= —8 [p[p 'dt, b p'r) (pb~—)]+vcos(2$)[p 'dt, b +pd (b~/p))

+vsin(2$)[PB (b Ip) —
p 'B&b&]] —8 (cosPB bi —

p 'sinPB&bi),

(47a)

(47b)

and a similar equation for b . In Eq. (47a), we denote the
terms involving b3 as the homogeneous part of the equa-

tion, and the rest of the equation is the inhomogeneous
part. Conversely, the terms involving b3 in Eq. (47b) are
the inhomogeneous terms, as b& and b are related by Eq.
(24e). We first examine the homogeneous terms. We
have

b3h P ~p(p~pb3h )+P ~ljlb3h (48a)

b,h(p, p)= g A cos(mp)E (p), (49)
m=0

where EC (z) is a standard Bessel function, and the A

are arbitrary constants. In order to solve Eqs. (48b) and
(48c), we assume a trial form for b&h and b h. We write

e„(P)e
b (Soa)

p

blah
= —8 hh, (48b)

bah =p '~yhh (48c)

where hI, is the part of h with b3 set equal to zero. Equa-
tion (48a) can readily be solved by the separation of vari-
ables, yielding

as p~ 00, where to = to($). Maxwell's equation requires

to($)=(ILt+vcos2$)'~2fo($} .
We then obtain

(53)

(p v)fo+ (p+ v cos2$ }—f0
= 1 . (54)

One solution is immediately obvious: taking f0($)=0,
we obtain fo

= (p —v )
' . To find the most general

solution of Eq. {54), we note that both terms on the
right-hand side are ~ 0, so that each must separately be
& 1. Hence, we can write fo(P)= Aocos[go(P)]. An ad-
ditional solution satisfies

go(P) =(p —v )' (JM+ v cos2$)

which can be directly integrated to yield

(ssa)

d„(P)=—toe„(P)/to . (51)

Combining Eq. (51) with the homogeneous part of Eq.
(47b) leads to the equation determining to($),

p( t c + t 0 ) —v cos( 2$ )( t o t o ) +2v—tot 0sin2$ = I . (52)

Although one could immediately find a solution to Eq.
(52), to find additional solutions, it is useful to write

bp
d„(P}e

P
(50b) fo(4)= cos(P —5$)

[p+ v cos(2$ )]' [p+ v cos(25$ )]'
(55b)
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Hence, the solutions for to(P) are
' 1/2

)M, +vcos2$

p

and

(56)

cos((t) —5$ )
(57)

[p+v cos(25(I})]'/

We can find the full form of the homogeneous solutions
even under P~P+ ir by assuming a form

bt), =to(0)b[to((I})P]

bp),
= to(—4)b [to((t))P]

(Sga)

(58b)

and

bah i = tol(4)K)(tol (4)p} (59a)

bt) 2 =to2(4)exp[ito2(4)p] . (59b)

which satisfies the Maxwell equation exactly. It is readily
found that the even solutions are

—to«»b,„=e„o(y) e '"/p
'o«» s+1(y )e 0 /ps + i

p& d o(~} /P

+d„)((1})e ' /p'+'+'o«» s+1

(60a)

(60b)

Using Maxwell's equation, we obtain equations for the
d„,(P) in terms of the e„;(P) [e.g., Eq. (51) for d„o]. We
then use the form of Eq. (60) to solve Eq. (47b), equating
terms of like p dependence. The expansion [Eq. (60)] is
solvable for s =

—,'. Using the substitution

(})} for which no decay exists. Although the coefficient of
b&), 2 would vanish as to2(p)~0, the coefficient of b &2
would not. Hence, we must eliminate the form to2((I)) for
the exponent.

To obtain the homogeneous solution odd under
(})}~/+m., one has to use a different, but less elegant pro-
cedure.

We expand Eq. (50) out further,

Although it is implicit in Eq. (59b) that one only takes
the sign inside the square brackets so as to obtain ex-
ponential decay as p~ 00, there exists an isolated value of

e „o($)=fo(P)/t(') ((I}),

we obtain an equation relating fo and e i(p),

(61a)

()M+ v c so2$)'f o(p)+ [(p+v cos2$)2 —
—,'(p' —v )]fo(p) = —2e „,((I})to3/2(p)(p2 —v2) . (61b)

Note that if we choose fo(P)=to(P), we recover the
(even) solution given by Eq. (59a), expanded to order

&o«» 3/2e '
/p . To obtain a solution odd under P~(t)+it,

we choose fo(P) =cos(P —5$), leading to

b &),3
=cos((}I) 5$ ) —

) /2
1+ + (62a)

and

vsin2$ cos( P —5(I})
ph3

x
X [1—x '[ —', +z(P)]] (62b)

where x =to((I}}pand

z(f)= v sin( P+5$ )
—

)((, sin((l}—5$ )

v sin2$ cos((I}—5$ )
(62c)

We note that
bing 3 appears to be of the form

cos((}I)—5$)f(x), but that b „3 does not have such a sim-
ple form. Hence, a general solution is not expected to ex-
hibit such simple behavior. We note that while other
solutions to Eq. (61b) are possible, the solution given by
Eq. (62) has the same symmetry as the particular core
solution, bt1, 3 and bpi, 3 being odd under p~(t)+m, and
that the form cos((t) —5$)f(to,p) appears to be consistent
with Eq. (42b) as p~O, provided that 5(I}=(N}2,assuming

f (x}~x as x ~0. The important point to consider,
though, is just that there exists a form for the homogene-

g (y)e
—(y)p/ /

( y )e
—t (P)p/ i /2

(y)e
—t(())p/ 1/2

(63a)

(63b)

(63c)

Using these asymptotic forms in Eq. (47}, we obtain an
equation for t(P),

ous solutions for b& and b in the London regime exhibit-
ing a P dependence of the exponential decay of the form
toi (P ), that cannot be ruled out on symmetry grounds.
This point is the basis for the following approach for the
general solution in the London regime.

As p~O, Eq. (47a) for b3 reduces to the homogeneous
solution, which behaves as e p/p'/2 as p~ao from Eq.
(49). However, to order p, the inhomogeneous terms for

ol ~~ ~ 1/2b3 behave as e " /p'/ . Similarly, the particular
solution for b& behaves as cos(t) e p/p'/ from Eq. (47b),
which competes with the homogeneous solution of the

'o& ~ l' 1/2form e„o((r})e " /p'/ . If we attempt a perturbation
expansion in powers of P, it is necessary to perform the
perturbation in the exponents. As p increases, the ex-
ponent characterizing the decay of b3 decreases and be-
comes P dependent. The exponent for b& is also
modified, and these two equations [Eqs. (47)] plus the
analogous one for b must be solved self-consistently.
This is only possible if b3, b, and b& all have the same
exponent, which is p dependent, unless p=O. We there-
fore assume that the general asymptotic forms for the
field components as p~ ~ are
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[1—(t —t' )][1 —p(t —t' )+vcos2$(t t—' ) —2vtt'sin2$]=P(t +t' )[t +t' +cos2$(t t—' ) —2tt'sin2$] . (64)

We note that as P~O, there are two solutions for t as we expect, given by setting each of the quantities in square brack-
ets on the left side equal to zero. Thus, we recover the P=O solutions t~ 1,tp, (P). It is possible to find perturbation
forms for t for small P by expanding about these values. We find

2
13 4 +0(pz)

(1—}Lt+vcos2$ )

P(p, +v +tv cos2$)[p, cos P+v cos (P+P2)+2@v(cos P —sin ((z)]

(p —v ) tp, (P)[(p —v )(p+vcos2$) —(p +v +2pvcos2$)]

(65)

We note that for all 8p Pp we have ju & v, and p, +v ( 1, so
that these expansions are valid for P»1. We remark
that PRO causes both unperturbed exponents to decrease,
increasing the range of the magnetic field components
from the core. At finite P, both exponents are assumed to
be the same.

We have not been able to find an analytic form for t (P )

valid to all orders in P.

mations used in Eq. (4), as was shown in I and II, yielding
a line energy per unit length of the form

e= f d(() f pdp[bi+2P(b +bt, )+—,'(1—f )] . (66)

As in II, we multiply Eq. (24b) by Bzb3, Eq. (24a) by Bg,
and add them together. After some algebra and integra-
tion by parts, we find

V. LOWER CRITICAL FIELD where

~reg+ ~irreg ~ (67a)

We now are in a position to calculate the line energy c
and therefore the lower critical field H, ]. The free energy
given by Eq. (1) can be transformed by the same transfor-

I

and

e„,= f dP f pdp(1 f')— (67b)

e;„, =3Pf

deaf

pdp[b +b&+2P(cosgb&+sinPb ) pgB (—cosPb&+sinPb ) ph f —Bg] .
0 0

(67c)

0p
~-4 2 ~

K CpP
(68)

which arises from the (Bg ) f term in Eq. (24a), treated
as (f Bg) f, using the boundary condition [Eq. (26)].
Hence, the regular contribution to c. is

2
lnK 2~ 0

res
K p

2m. lnK E0
—2
K 0

(69)

In order to evaluate these integrals approximately, one
must obtain asymptotic forms for the functions that are
valid in the region p & 1/Pc, and then match the boundary
conditions as p~O. Hence, it is not correct merely to use
the asymptotic forms found in Sec. IV, as they do not
lead to the correct boundary conditions as p~O, and
hence will be inaccurate in the region near the core,
which dominates the line energy. In the usual procedure
(14), one finds an approximate expression for 1 f-
which incorporates the boundary conditions as p~O, as
we did in II (neglecting b& and b ). Using Eq. (24a) for
1 f, we find—that in the intermediate regime (which
dominates the line energy), we have

lnK E0
Hc],

Ii

=
2kgp

and the other components of H, &
are given in the usual

way (I and II),

(70a)

I

As we noted in Sec. III, the line energy is proportional to
Ep/gp, and hence it costs energy for the vortex to point
away from a crystal symmetry direction. For small P,
this cost in energy is proportional to P . In II, we found
a cost in energy proportional to P by neglecting the bz, b&
components. Hence, the presence of b and b& reduces
the cost in energy for the core, as well as restoring analyt-
ic behavior for the field components and order parameter
as p~0.

We recall that in our ansatz relating ap((()) to Cp(P),
the particular core solution allowed for an additional
constant term y2. It is easy to show that Eq. (69b) is min-
imized for F2=0, provided that y2 is taken to be ~ 0. Al-
though it is formally possible to have y2(0, provided
that y, is sufficiently large, we do not believe such a pos-
sibility to be physical, as Ep/gp would then not have a
minimum.

In a similar fashion, one can show that the irregular
contributions to the line energy are a11 of order K, im-
plying that for K))1, the line energy is approximately
given by Eq. (69b). We recall that Ep/gp was found using
our ansatz, and given by Eq. (45c). Hence, we have
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BH, ) 1 $o aH„ l

88 sin8 BP
(70b)

Equation (70) is easily derived for an arbitrary v direc-
tion, since the Gibbs free energy per unit volume contains
the term —H B/4n, where B=(b). Note that the
volume averages of b& and b vanish, so that B is parallel
to v.

We note that with the aid of the ansatz, it has been
possible to solve for the leading term in the line energy
exactly, provided In'»1. As indicated by Eq. (45), the
analytic form for H„ is rather complicated for arbitrary

8o, pp, but well behaved. Since the P dependence of H, I
~~

is intermediate between that of I and II, we expect kinks
in the angular dependence of H„ that are present for

large effective-mass anisotropy. These kinks are most
pronounced for a large effective-mass anisotropy, but
should be present for anisotropies as low as those report-
ed' in YBa2Cu307 &. We note that for that material
(with an intraplanar effective-mass anisotropy), the posi-
tion (8p value) of the kink in H„(8p, pp) will depend upon

normal vector set

x=x(sinPp, —cosgp, 0),
y =y(cos8pcosgo, cos8psingo, —sin8o),

z = z( sin 8pcosgo, sin8psingo, cos8p),

(71a)

(71b)

(71c)

a mX1=
rr(pp) m 3

' 1/2

(72a)

m3
@((to)y (72b)

and

x3=a 2

With this real-space notation, we have

f'l(Coogo)= A',i +
where

(72c)

(73a)

such that z points along v. By inverting the transforma-
tions [Eq. (4)], we obtain

1/2

po

VI. DISCUSSION AND CONCLUSIONS
a

a(Pp)

2 Em o

m3 0o

1/2

We have shown that the transformations of I are fully
general for a straight vortex core. They give rise to mag-
netic field components perpendicular to the core direc-
tion, which behave as p away from the core center. The
presence of b& and b for the core directed away from a
crystal lattice direction lowers but does not eliminate the
cost in energy for the core to lie away from those direc-
tions, and restores analytic behavior as p~0 for the or-
der parameter and all field components.

Using the ansatz that in the core region, the deviation
of the component of the magnetic field b3 parallel to the
core direction from its maximum value in the center of
the core is proportional to the square of the order param-
eter, we were able to solve explicitly for the line energy of
the vortex, and hence determine H, 1 exactly, assuming
1'&) 1.

In the London regime far from the core, the field com-

ponents fall off exponentially, with an exponent that de-

pends in a complicated fashion upon the azimuthal angle
about the vortex direction, unless the vortex is directed
parallel to a crystal axis direction. The perpendicular
components b and b& are proportional to P'~ in ampli-

tude, and odd under P~P+m. In the core region, their
azimuthal dependencies have simple analytic forms,
which were found explicitly. We note that as the azimu-

thal dependence of the field components and of the order
parameter in the London region is somewhat different
than in the core region, the cross-sectional shape of the
vortex depends upon the radial distance p from the core,
but always exhibits the same symmetry. The order pa-
rameter and b3 are even number P~P+m, whereas b

and b& are odd. To illustrate the behavior in the core re-

gion, we have calculated the order parameter and perpen-
dicular magnetic field components in the core in real
space (untransformed coordinates). We define an ortho-

Xcos2(go+((},} (73b)

a '(Po)
m

'2
Eo

, 0o

1/2

Xcos2(gp+ P, } (73c)

0o

1/2

—1 sin2(go+((}, ) . (73d)

Hence, the lines of constant order parameter and, with
our ansatz, constant b3 are given by setting the right-
hand side of Eq. (73a) equal to a constant. This resulting
equation is obviously an ellipse in the plane perpendicular
to v, which for the full anisotropy of three distinct

effective masses is rotated from the x, and y axes by the
angle 8=—,'tan '[C, l(B, —8', )]. In Figs. 1 and 2, the
lines of constant f and b3 in the x-y plane normal to v are
plotted for the case of the effective masses m„m2, and

m3 in the ratio 1:2:25. In each part of Fig. 1, Po is held
constant, and various curves for different 8o values are
shown. In Fig. 2, 8o is held constant at 90' (normal to the
large effective-mass direction), and Po is varied. In all of
these plots, the value off (or b3 } is held constant. In Fig.
1(a), the vortex lies in they-z plane of the crystal. We see
that as Pp is increases from 0, the ellipsoidal lines of con-
stant f first became less eccentric, shrinking in the y
direction, while expanding in the X direction. As Ho is in-
creased further from 0', the eccentricity again increases,
but the major axis is now in the x direction. In Fig. 1(b),

Pp is 60', and the behavior is similar to that of Fig. 1(a),
except that the line of the major axis rotates to the left by
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FIG. 1. Shown are plots of the lines of constant order parameter f (and also constant b3) in the plane normal to the vortex core
direction v. The effective masses are in the ratio m, :m z..m, as 1:2:25. In each figure, Pp is held constant, and the different curves are
for various {{)pand Hp values (a) $p =90., (b) {bp=60', (c) Pp =45', (d) $p= 3O', (e) $p =0 .
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FIG. 2. Shown are lines of constant f and b3 in the plane
normal to v for go for 90', and several values of Po.

90' during the process of shrinking and expanding, as 8o
increases from 0 to 90'. Similar, but more pronounced
behavior is seen in Fig. 1(c}for go=45'.

In Fig. 1(d), a very interesting situation occurs at
go=30. The core struggles to avoid the regions of large
cost in energy. As 8O increases from 0', the major axis ro-
tates first to the right, and then switches to the left be-
tween Ho=60' and 70'. In Fig. 1(e), for which the vortex
lies in the x-z plane, the lines of constant f and b3 first
becomes more [rather than less, as in Fig. 1(a)] eccentric,
expanding in both x and y directions as 8O is increased
from O'. Beyond 8O=30', the minor axis shrinks, while
the major axis expands greatly, until at approximately 49'
the eccentricity diverges. Beyond the point, the vortex is
not allowed. At approximately 76', the vortex reappears,
with its major axis in the same direction as before, but
with decreased eccentricity. As 8O is increased to 90', the
eccentricity first decreases, and then increases along the x
direction, similar to the behavior in Fig. 1(a).

In Fig. 2, the vortex is in the x-y plane, and is free to
point in any direction. As Po is increased from 0', the
only change in the lines of constant f and b3 is a minor
decrease in the minor axis, with the major axis remaining
constant.

In Fig. 3, the excess core energy Eolgo is plotted for
the same effective-mass values as in Figs. 1 and 2, as a
function of 6)o and Po. Each curve corresponds to the Po
value indicated in the legend. We note that the excess
core energy vanishes at the crystal symmetry direction
8O=O', and is exceedingly small for 8O=90', even for
go%0', for which PWO. This was evidenced by the ordi-
nary behavior seen in Fig. 2. For Po)40', there is a
smooth peak in the excess core energy in the vicinity of
Ho=78'. As Po is decreases from 40, a sharp jump in the
excess core energy at Oo & 60' is apparent for go=30'. As
Po is decreased further, the cost in energy of the core ex-
hibits a large peak at Ho=60' for go=25', and for smaller
values of Po, this peak diverges. Hence, the core is not al-
lowed in this region. This behavior will be seen as a kink
in the angular dependence of H, &

as was shown in I and
II, but will be intermediate in magnitude between those
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effective masses in the ratios indicated as a function of Ho for
various values of Po. The three curves that go off the figure are
divergent.

(74a)

where

A 2+ =r)2(40+32 cos2$o}+g [28+24 cos2$o

+ 12 cos4($2 —Po) ]

+ rig[40 cos2II)2+83 cos2($2 po)—
+24 cos2($2 —2$o)],

Cz =80r12+g [56—24cos4($2 —Po)]

+gg[80 cos2$2 —48 cos2($2 —Po],

D+ =64rl sin2$o+48( sin4(gz —Po)

(74b)

(74c)

+qg[+96 sin2(gz —2PO) —126 sin2(gz —Po)],
(74d)

and

Ko
64(g —

g )
(74e)

where x, and x2 are given by Eq. (72).
For uniaxial anisotropy, the terms odd in X and y drop

out, leaving an elliptical-like form for the lines of con-
stant b~. For full anisotropy, this form is not preserved
by a simple rotation about the v axis, however, since

predictions, due to the P dependence of the excess core
energy for v directions near to the crystal axes.

To illustrate the magnitude of the components of b
perpendicular to v, we have calculated the scalar quantity
b ~=b +b

&
in real space. In the plane perpendicular to

v, b j obeys the equation

b~2

—Ap+X )+ A2 X 2+C2X )X 2+D+X]X 2+D X )Xp,
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D+AD and A, +PA,
In Fig. 4, we have shown the lines of constant b j in the

plane normal to v, for various 8o and Po directions. In
Fig. 4(a}, the vortex is in the y-z plane and 8o is varied.
The effective masses are the same as in Figs. I-3. We ob-
serve that the lines of constant b~ are rounded parallelo-
grams. Since bj vanishes along the crystal symmetry

directions, those values (8' and 90) of 8o are curves of
infinite major and minor axes. In this figure, as Ho is in-

creased from 0', the figure maintains its shape for
8o 40', but a shrinking of the minor axis is noticeable
for 8o=60'. The minor axis shrinks further for 8o&80',
but then expands for Hp & 80', as does the major axis.

In Fig. 4(b), Pc=60', and the parallelograms present in

Fig. 4(a) are greatly distorted, as if they were subject to a
strain. As 8o is increased from 0', the lines of constant bi
become rather elliptical at HO=20' with a major axis that
is rotated from the y direction, but four rounded corners
are evident at 8o=40', two of them developing along an
axis that is not perpendicular to the major axis direction.
As 8o is increased further, the lines of constant bi be-
corne unstable along this direction, forming distorted hy-

perbolas. Past 8o =20', the bi =const lines again stabilize
into rounded parallelograms, with the major axis in the y
direction. Similar but distinct instabilities are evident for
8o between 10 and 80' at go=30' in Fig. 4(c). In Fig.
4(d), go=0', and the behavior is similar to that of Fig.
4(a}. The only difFerence is due to the infinite core energy
for certain 8o values. In the region of infinite core ener-

gy, the lines of constant b~ shrink to the origin, as all of
the magnetic field becomes normal to v. Hence, curves
for 8o between 49' and 76' are just points at the origin.

Using the ansatz that bi is proportional to f in the
core, we have been able to find an exact solution for the
vortex core shape in real space. This solution, while ana-
lytic in form, contains many interesting features, some of
which have been illustrated in the figures. We believe
that such behavior should be observable in low field
measurements on anisotropic materials such as
YBa2Cu&07 s. For H & H, t, the vortices will be spaced
sufficiently far apart that the vortex-vortex interactions
should not greatly affect the magnetic field distribution in
the individual cores, so that our exact solution should be
applicable. In this regime, one ought to be able to ob-
serve directly the spatial distribution of the individual
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FIG. 4. Shown are plots of the lines of constant b„ in the plane normal to v, for the effective masses in the ratio m l ..m2..m3 as
I:2:25. In each plot Po is the same, and the various curves are for diff'erent values of Po. (a) $o=90, (h) po =60', (c) Po =30, (d) Po =0'.
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vortex cores by scanning tunneling microscopy. One
could also observe the magnetic field distribution in the
cores by large-momentum-transfer neutron-scattering
difFraction, as the vortices will form a lattice at low tem-
peratures. The advantage of the neutron-scattering tech-
nique is that it samples the region of the vortices within
the bulk of the sample, where the boundary effects are
less important. The disadvantages of this technique are
that one requires a periodic vortex lattice with a large in-
tervortex spacing, and that one must examine the large-
momentum-transfer part of the scattering cross section.
The scanning tunneling microscope, on the other hand,
has been shown' to be capable of mapping out the struc-
ture of an individual vortex in the layered compound
NbSei, for the case of H~~c. Hence, this technique could
clearly be applied to that material for the field in an arbi-
trary direction. Note that in NbSe2, the efFective-mass
anisotropy is sufficient that a kink in the H„{eo) has been
observed experimentally. " This technique is particularly
applicable to the high-T, materials, which are complicat-
ed by irreversibility and vortex pinning of an as yet not
understood nature, as one can examine the structure of
an individual vortex core.

We reiterate that the solution for the vortex structure
we have found is fully arbitrary, appropriate for aniso-
tropic superconductors with three distinct efFective
masses. It thus can be applied to all crystal structures,
assuming only that the symmetry of the order parameter
is described by two components.

Note added in proof. After this work was completed,
we became aware of similar (unpublished} work by N.
Schopohl and A. Baratoff, using a different ansatz.
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APPENDIX A

In this appendix, we derive the homogeneous solutions
to Eq. (41) for Fe(P). We let /=/+A&. From Eq. (41),

and

Foi„=cosg f+(x),
Foi, i =sing f (x),

(A2a)

(A2b)

(A2c)

%e also write

f~= g a x"+' (A3a)

and

xn+s' (A3b)

where the negative powers are allowed since

0& ran
—g&x &i)+g .

Using the above forms for the Foi,;, we find

xif (~)[xg
i(x —g) ]+x f+(x)[2(ri —x}+g]

+2(ri —
g )fg(x) =0,

(A4)

(A5a)

and

4x fi'(x)[g —(x —i)) ]+4x (i)—x)fi(x)
+fi(x)[x +8(ri —g )]=0 . (A5b)

Using the power-series expansions [Eq. (A3}] for f+ and

fi, we find that the coefficients satisfy the recursion rela-
tions

the homogeneous form Fos (p) satisfies

(g+(cos2$) F 0'i,

+&Os [(ri+ g cos2$)2+8{v)i —(2}]=0. (Al)

Since the coefficients of Foz and 10'z are both periodic in

P with period m (rather than 2n), and Fo is periodic with
period 2m, F0& contains terms periodic both in m and in
2'. That is, in an expansion in powers of cosP or sint}},
there are both odd and even powers of those quantities.
We thus write x =i}+(cos2$,

and

a„*(ri —g )(n +s +1)(2—n s)+(n —+s —1)[[2'(n+s—l)kg]a„*,+(n +s —2)a+ i )
=0

4b„(ri f )(n +s—'+ l )(2—n s')+(2—n+2s' 3}[4rib„ i{n—+s' —1) b„ (2i+n2s—' —5)]=0 .

(A6a)

(A6b)

a*=0,0 (A7a}

It is convenient to choose s = 1 and s' ——,'. We then find

t

the parameters a + are given by Eq. (A6a) in terms of a*,
and a*2. %'e thus haye

b„=0 for n &1 . (A7b} n=1n=1
f+(x)= g a„*x"+'+g a +—„x (A8a}

The parameters b0 and b, are arbitrary, as are a 1, a
and a+:2. For n (—1, the parameters b„are then given

by Eq. {A6b} in terms of bo and b, . For n & 1, the a +

are given by Eq. (A6a) in terms of a*, , and for n & —2,

and

f ( )=xgb x
n=0

(A8b)
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From Eq. (A2} and Eqs. (40), (37), and (38}of the text, we
see by inspection that eog3 leads to a component to the
coefficient oo(P) of the reduced order parameter f that is
odd in P~P+n. Hence, this term is unphysical, imply-
ing b„=O for all n. The homogeneous terms eo» and

eoI, 2 have the same symmetry as the particular solution,

and cannot be neglected on symmetry grounds. Howev-
er, as the coefficients a„—and a:„are determined from

+ + + + + +a —, , a:&, and a:2, it is clear that unless a
&

=a —,=a:z,
ao(P) will be an infinite series in powers of Co(P). The
only solution compatible with our ansatz is the particular
solution. Hence, we drop the homogeneous solutions.
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