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Stability of the saturated ferromagnetic state in the one-band Hubbard model
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We discuss the stability of the saturated ferromagnetic state of the one-band Hubbard model
against a single spin flip in the limit of infinite on-site repulsion. We consider the case where the
number of holes NI, can be large but satisfies the condition Ãq(&lnN, in two dimensions,

(Nt, «N't' in three dimensions) where N is the number of spins. We show that the Nagaoka
state is locally stable, except for certain small values of NI, for which there is an instability at
long wavelengths.

Our understanding of itinerant ferromagnetism is poor
despite extensive work over many years. ' Real itinerant
ferromagnets, such as Fe and Ni have degenerate orbitals
with (ferromagnetic) Hund's rule couplings between
them. It is interesting to ask whether such couplings are
vital to the stability of ferromagnetism in itinerant sys-
tems or not. In particular, it is not known for sure wheth-
er the one-band Hubbard model, 2 which cannot, of
course, have such couplings, has a ferromagnetic phase. 3

Interest in this model recently has revived because of its
possible relevance to high-temperature superconductivity
and this has led to new work on the older question of fer-
romagnetism. 5 s The only rigorous result in this area is
that of Nagaoka, who showed that the ground state of
one hole in the Hubbard model with infinite on-site repul-
sion, U, is a fully aligned ferromagnet, which we shall call
the Nagaoka state. The interesting question is, of course,
whether the system is ferromagnetic for a finite density of
holes in the thermodynamic limit. In this paper we make
a step towards answering this question by computing
the local stability of the saturated ferromagnetic state
(Nagaoka state) of the infinite-U Hubbard model with
respect to a single spin flip, when the number of holes is
large, but still less than a finite fraction of the number of
sites.

Extrapolation of results on finite-sized systems to the
thermodynamic limit is complicated by the irregular be-
havior observed' s as a function of the number of holes.
In this paper we try to make sense of this irregular behav-
ior by studying, through a combination of analytical and
numerical techniques, the case where the number of holes,
Ni„satisfies the condition Ns « lnN, where N is the num-
ber of sites on the twoMimensional square lattice. When
this condition is fulfilled the spin-wave energy that we cal-
culate is the excited state of lowest energy. The analogous
condition in three dimensions is Ns«N' 3. For larger
numbers of holes the spin wave lies in a particle-hole con-
tinuum and the analysis is more complicated. Within

I

these limits we show (i) that the finite-size corrections are
large, (ii) for finite Ns, the spin-wave energy depends on
whether or not the saturated ferromagnetic state has or-
bital degeneracy, (iii) for boundary conditions with non-
degenerate Nagaoka state, the spin-wave energies are all
positive and, at each wave-vector Q, are proportional to
the number of holes, (iv) for boundary conditions with a
degenerate Nagaoka state, the spin-wave energies form
several bands, the lowest of which has energy proportional
to the number of holes in the j'tiled shells, Nf, of the
Nagaoka state, except for modes with Q close to zero,
where (v) we find that the spin-wave energies are all posi-
tive, except that for certain finite values of Nt, a small
number of long wavelength modes are unstable. Note
that our calculation is applicable to an infinite number of
holes in the thermodynamic limit, though unfortunately
not where Nt, is a finite fraction of N. We now discuss
briefly the model and calculational methods. A full ac-
count will be published separately. '

In the limit of infinite on-site repulsion the Hubbard
model reduces to a problem of constrained hopping with
the Hamiltonian given by

H t g (Caec~e+C~ecaa) i
(n, m)cr

where (n, m) indicates nearest-neighbor pairs, c cm
x (1 -nm, — ), c~t, cm are the creation and annihilation
operators of an electron in the site m, and nm cmt cm
Unless otherwise stated, our results will be for a square
lattice with N L2 sites and periodic boundary conditions,
but we will also comment on the analogous results for oth-
er boundary conditions and the simple cubic lattice, where
appropriate. From now on, we set t l.

We confine our attention to the case of a single spin flip.
Denoting by p(Q;kl, . . . , ktv„), the amplitude to have the
holes in states with wave vectors kl, . . . , kN, and the spin
flip to have wave vector Q —gk;, the Schrodinger equa-
tion is found to be

m(Q) —g e«, )+ pe(p, ) e(Q;k, , . . . ,k.„)
i 1 i~1

1
Np
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with e(k) —2t(cosk, +cosk»). The energy t0(Q) is
measured relative to that of the saturated ferromagnetic
state, eF ge(p;), where the [p;), i I, . . . ,Ni„are the
momenta of the holes in the Nagaoka state. The wave
function p(Q;k~, . . . , kjv„) must be completely antisym-
metric in k~, . . . ,k~„, and because of the constraint of no
double occupancy, must satisfy Pq p(Q;k', kq, . . . , k~, )

0 for each k2, . . . , kjv„. We have, for convenience, shift-
ed all the wave vectors by (tr, n), so that the wave vectors
of the holes in the Nagaoka state, [p;j, are close to (0,0).
This means that for an odd number of holes, the crystal
momentum is actually not Q but Q —(n, n).

For the majority of hole numbers, the Nagaoka state is
degenerate when one imposes periodic boundary condi-
tions. We shall show that this degeneracy, which does not
seem to have been treated analytically before, does affect
the results for finite clusters, though it has a negligible

I

40 4(Q&pl)P2) ~ ~ t PNI, ) r

Al (ppik) 4'(Q~pl~ ~pp —laker+ l~ ~ ~ ~
r PNg) ~

(3a)

(3b)

Ignoring certain terms which are negligible in the thermo-
dynamic limit, we find

effect when both 1VI, and N are large. A particular
Nagaoka state I is specified by the set of wave vectors
[PJ, p I, . . . ,1', which are occupied by holes. The de-
generacy arises, of course, from the last shell being only
partially filled. Let us denote by p„a 1, . . . ,Nf, a hole
in a filled shell and by p;, i 1, . . . ,N„, a hole in the
partially filled shell. Clearly we have Nf+N„NI, . As
found by Nagaoka and discussed further below, we need
only consider states where, at most, only one hole is excit-
ed out of the Nagaoka state. Hence we define,

1
8

(Q)eh- —Z [ (p.+P —Q) —(p.))OS+—g gl (p, +P —Q) —(p, )](—1) "y'"
N N I-) J

1+—g g [e(k'+P, -Q) -e(k')]y,"(p„,k'),
N p-i ~'

[tu(Q) -e(k) +e(p. ) ]pf(p.,k) -—[e(k+Pr —Q) —e(p, )]pII' +—g [e(k'+ k+ pr —
p —Q) —e(k')) p& (p, k')

gt

[ro(Q) —e(k) +e(p;) ]p[(p;, k) -—g[e(k+ Pr+ p~
—p; —Q) —e(p;) ) ( —1) Jpo'J

J

+—„g[.(k'+k+P, —p;-Q) —.(k')]yf(p;, k').
N g'

(4a)

(4b)

(4c)

Nl N
'+ (5)

in 2D, for Q »1/lnN, inde endent of Q for N
while in the opposite limit, Q « 1/lnN, one obtains a Q
spin-wave dispersion, i.e.,

a)i(Q) -—1—1 2J 2

I +J' (6)

Here the possible values of j are j i and the unfilled hole
states in the partially filled shell of state I, 1;J is the num-
ber of occupied hole states in state I which lie in between
states i and j, I;, is the state obtained from I by removing
the hole from state i and putting it in state j, and Pr is the
total momentum of state I . The prime on the sum over k'

indicates that the wave vectors of the filled shells and the
partially filled shell are to be omitted.

Following Nagaoka9 we find that if the [p„} are all
small, and also if Q is not very close to one or more of the
wave vectors of the partially filled shell, then we can re-
place the [p;) in Eq. (4) by zero. Also, if the energy to(Q)
is much less than the splitting between successive single-
particle levels, which is of order I/L 2, then we can also re-
place m(Q) in Eq. (4b) by zero in computing the lowest-
energy solution, to which we confine our attention from
now on. We then find that the lowest excitation energy
can be expressed in terms of the result for one hole ro~(Q)
where

H Nt, roi (Q),

( —1)"roi(Q),
H rr'

,0,

(8a)

(8b)

where the nonzero result in Eq. (8b) is for states I &I"
that are connected by transferring a single hole from state
i to j. If I and I" are not connected by the transfer of a
single hole, then the matrix element is zero. The matrix
for two holes in 2D, for example, is of dimension 4, and
has eigenvalues (1,1,1,5) x tu~(Q). From the structure of
the matrix we find that, in general, the energy of the
lowest branch is only determined by the number of holes

I

where, in d 2,

sin k, 2J'—=—g 1 —— (7)
N g 2 —cosk, —cosk» n

'

and the last equality in Eq. (7) is valid for N ~. The
logarithm of N appears in Eq. (5) because of the loga-
rithmic divergence of the 2D sum N ' g'(2 —cosk,—cosk») '. In 3D one has9 ro~(Q) N 'f(Q) where
f(Q) is a function of Q, which can be evaluated in terms
of various ftnite integrals. At long wavelengths this ex-
pression reduces to Eq. (6) with the corresponding 3D ex-
pression for J'. We then find that the lowest excitation
energies for the case of more than one hole are then given,
in any dimension, by the eigenvalues of a matrix, H"",
whose size is the degeneracy of the Nagaoka state and
whose elements are



STABILITY OF THE SATURATED FERROMAGNETIC STATE. . . 11 699

( —1)"H"'-
N

(Q-P )(Q-P') 1
2J'

l+ s

Pr+Pr-(p;+p, ) Q-, (10b)

which reduces to Eqs. (6) and (8) when the p factors are
neglected. Equation (10) is valid in any dimension pro-
vided that J' is taken to be the appropriate d-dimensional
integral.

In order to compare with numerical results on finite
clusters it is necessary to understand the form of the
corrections to the asymptotic form in Eqs. (5)-(10). To
do so, we need to include corrections which come from ex-
citations of more than one hole out of the Nagaoka state,
for which we have developed a perturbation theory ap-
proach. 'o In 2D we find that the lowest excitation energy
is given, for Qz»1/InN, by

4') g
tn(Q) -— + + ~ ~ ~

N InN lnN

+—1+0 1 +, (11)
N lnN

where the coefficients a and b are both functions of Q, so
that degeneracy with respect to Q is lifted at subleading
order, as well as of Ns. The coefficient b, which gives the
leading contribution from the unfilled shell, is formally
negligible in an expansion of powers of 1/lnN, but the
coefficient is large, as we shall see, and so this term does
give a significant contribution to the numerical results for
the sizes that can be studied. States where two holes are
excited from the Nagaoka state do not contribute to the
leading term or to b. This justifies the neglect of such
terms in the leading order results presented in Eqs. (5)-
(10) above. In 3D, the leading-order correction is N
rather than 1/lnN.

in/lied shells, i.e.,

~(Q) -N,~, (Q), (9)
which is valid in any dimension. When there is no degen-
eracy, we see that the energy is just proportional to 1', as
found by Nagaoka, 9 but is otherwise somewhat less than
this.

Note that the condition for the validity of our approxi-
mations is Ns « lnlV in 2D. For larger values of Ns the
spin-wave branch is no longer the excitation of lowest en-

ergy but is rather a resonance in a band of particle-hole
excitations. " In three dimensions the approximations are
valid for Ns «N'/. It is also straightforward to show

that Eq. (9) also holds when one imposes more general
boundary conditions on the single-particle wave functions.

When Q is very small, or more precisely when Q is very
close to one of the wave vectors, fp;l, of the partially filled

shell, we cannot entirely neglect the p dependence in Eq.
(4). In this limit we find that the nonzero elements of
0"'~' are

2J'H"" —Ns (Q —Pr) 1 — —2Pr(Q Pr)
N 1+Js

(loa)

1.5
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1.3
z',
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FIG. 1. Plot of a(z, x)(x1VInN/4x) for one hole in 2D both
with periodic boundary conditions (open triangles) and with

boundary conditions which shift the single-particle wave vectors
by 2' '(-,', f ) (filled triangles). The sizes are between L 8
and L 64. The straight lines show the analytic predictions
valid for large N, I.e., m(x, x)(&NlnN/4x) 1+a/lnN where
a 0.9594) for periodic boundary conditions and a 0.3407 for
the shifted boundary conditions. The agreement is seen to be
good, particularly for periodic boundary conditions. The inset
shows Nru(z, x) plotted against N ' for antiperiodic boundary
conditions, for which the Nagaoka state is fourfold degenerate
and Ny 0. The sizes are between L 16 and L 64. The re-
sults agree very well with the analytic result co —4s3/N~,
shown by the solid line.

In order to verify our predictions we have also directly
diagonalized the eigenvalue problem in Eq. (2), using
the Lanczos algorithm. ' Figure 1 shows results obtained
for to(z, tr)(&N 1nN/4tr) plotted against 1/lnN for 1 hole,
both for periodic boundary conditions and for boundary
conditions in which the single-particle wave vectors are
shifted by 2rr/L(-, ', —,

' ). From Eq. (11), it follows that
this should equal N/ ( 1 here), in the thermodynamic
limit, with a slope equal to a neglecting the b/N and
higher-order terms in Eq. (11). We find that a 0.9594
for periodic boundary conditions and a 0.3407 for the
shifted boundary conditions. As seen in Fig. 1, the numer-
ical results agree with these predictions, though higher-
order corrections seem larger for the shifted boundary
conditions. We have also computed ro(n, z) for anti-
periodic boundary conditions, i.e., the wave vectors are
shifted by 2'/L( —,', —,

' ), for which the Nagaoka state is
four-fold degenerate, and Ny 0, so the leading term in

Eq. (11) is b/N Acalculation g.ives b —4x, which
agrees well with our numerical results, as shown in the in-
set to Fig. 1.

In Fig. 2 we show results for two holes for a range of
sizes up to L 24. From Eq. (11) the asymptotic value is
predicted to be 1, which seems to be consistent with the
results. Note the change of sign, indicated by the points
crossing the line as discussed in the caption, which occurs
for intermediate sizes. Fang et al. found an instability at
Q (n, 0) for sizes up to L -10. While we agree with
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z',

symbol

TABLE I. Results for [N/(2tt)ltd(Q) for two holes in two
dimensions with periodic boundary conditions, where Q

2ttL '(n, nr }. In these units the value for one hole is

n, 2+nr2. The results marked N ~ are obtained from Eq. (10)
of the text while the results for finite N are obtained by di-
agonalizing the Hamiltonian, given by Eq. (2). The eigenvalue
on the second row is 0 because Q (0, 1) is the wave vector of
the Nagaoka state, so we just obtain the rotated state of the
same energy with S' reduced by one. Note that only a finite
number of long wavelength modes are unstable. Note that the
energies increase with increasing system size. For L ~ our
calculations predict that the energy is positive for all other Q
values and the numerical results appear to confirm this, though
we have not cheeked all possible Q values for L 24.

0.3 0.40.8
(In Nl '

FIG. 2. The excitation energy, ttt, is plotted against I/lnN for
two holes for Q (tr, tr) and (tr, 0). The sizes are between L 4
and L 24. We have subtracted from m the b/N2 term in Eq.
(11), where we find b -8tt'. Although this term would be
negligible for sufficiently large N compared with the logarithmic
corrections in Eq. (11), the coefficient is very large so that it
does make a large contribution for the sizes studied. We have

also multiplied by NInN/4tt, so the asymptotic value should be

1, i.e., Ny rather than Nq, and the data appears to be consistent
with this. The solid line is the result obtained if the frequency
were gtt'/N2. Hence the actual frequency is given by the
difference between the points and the solid line, which changes
from negative to positive for L & 12 for Q ~(tt, 0) and L & 8 for

Q (tt tt).

0.0

their results for the sizes that they studied, we see that this
mode, in fact, becomes stable at larger sizes. However,
we do find unstable modes for two holes at small Q for
two holes. Results obtained from the reduced Hamiltoni-
an in Eq. (10) are presented in Table I, along with the re-
sults of directly diagonalizing the original Hamiltonian
for finite sizes. We see that the agreement between the
two sets of results is quite good. In all cases the sign of
the energy is given correctly for the largest size. Presum-
ably this long wavelength instability is the one reported by
Doucot and Wen. 7 In addition to Ns 2 we find a small
number of unstable long wavelength modes for Nt, 2-4,
7, 15-19 in two dimensions. However, for larger hole
numbers (we have checked explicitly up to Nt, 37) we do
not find any unstable modes, even at long wavelengths, be-
cause of the factor of Nt, with a positive coefficient on the

(n. ,nr )

(0,0)
(0,1)
(0,2)
(0,3)
(0,4)
(1,1)
(1,2)
(1,3)
(1,4)
(2,2}
(2,3)
(3,3)

L ~oo

0.467
0

—1.324
-0.965

0.853
—0.477
-1.159
—0.580

1.324
—0.643

0.544
2.369

L 16

0.269
0

-1.449
-1.424
-0.354
—0.472
-1.284
—1.087

0.003
—0.909
—0.204

0.980

L 24

0.378
0

-1.384
-1.196

0.219
—0.477
—1.227
—0.848

0.611
—0.804

0.108
1.511

It is a pleasure to thank David Edwards for most help-
ful suggestions and correspondence. We are also grateful
to Josh Deutsch and Sriram Shastry for many helpful dis-
cussions. This work was supported in part by National
Science Foundation Grant No. DMR 87-21673. J.A.R.
was financially supported by the Consejo Nacional de In-
vestigaciones Cientificas y Tecnicas de la Argentina.

diagonal of 0"" in Eq. (10). We have been unable to find
all the values of Nh in 3D for which there is a long wave-

length instability because the degeneracy of the matrix in

Eq. (10) becomes too great. We were able to check that
the instability does occur for Nt, 2-5, 10, 11, 15. How-
ever, it is clear that, just as in 2D, the instability will not
persist for large Nt, .

To conclude, we have demonstrated that the instability
found in earlier calculations is an artifact of the small
sizes and the particular hole numbers used. The saturated
ferromagnetic state is generically locally stable with re-
spect to flipping a single spin for Nt, « lnN, in two dimen-
sions (Nt, «N '/3 in three dimensions).
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