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Spectra of optical conductivity and magnon Raman scattering have been investigated in single
crystals of a parent family of cuprate superconductors with various types of Cu-O single-layer
networks. The analysis of the spectra shows the systematic dependence of the charge-transfer
gaps and covalent character of Cu—O bonds on the pattern of the Cu-O network, while the spin-
exchange energy is rather convergent for all the single-CuQO;-sheet compounds.

Superconducting copper-oxide compounds with high
transition temperature (T.) possess two-dimensional (2D)
sheets of corner-linked CuOj4 squares (“CuQ,” sheets) as
a common structural unit. The first discovered high-T,
compound,' alkaline-earth-substituted La,CuO4 shows
the 2D sheets of Cu-O octahedra, while most of the other
copper-oxide compounds with higher T.’s show adjacent
multilayers of pyramidal CuO; sheets. Recent work? on
electron-doping-induced high 7. shows that the CuO;
sheets without apical oxygens can also sustain supercon-
ducting carriers, as observed in Ce-doped Nd,CuQO4. In
this Rapid Communication we have spectroscopically in-
vestigated how the electronic parameters (e.g., the
charge-transfer gap, spin-exchange energy, and degree of
p-d hybridization in Cu—O bonds) vary with the change
in the pattern of Cu-O networks in single crystals of
parent compounds for high-7, superconductors.

Single-crystal compounds investigated here are (a)
La;CuOs, (b) Sr,CuO,Cly, (¢) LaGdCuOs, (d) Nd»-
CuOy, (e) (Ca,Sr)Cu0,, and (f) Ca,CuO;. These com-
pounds represent the typical patterns of the 2D Cu-O net-
works presently known' =3 (see the inset of Fig. 1). All
the structures show a well-defined network of a single
Cu-O sheet within a repeated unit. Therefore, there is no
complication in these compounds due to the coexistence of
two or more types of Cu-O planes as observed, for exam-
ple, in the Y-Ba-Cu-O systems which have both pyrami-
dal sheets and chain(s). This feature is important to get
clear-cut observations about the Cu-O network depen-
dence of the electronic structures by spectroscopic
methods.

Of particular interest among these are the compounds
which can sustain charge carriers in their CuQ; sheets;
(a) La;—,Sr,CuOy4 (T phase), (c) (La,Gd);—,Sr,CuO,
(T* phase),* and (d) Nd;-,Ce,CuO4 (T’ phase).®
These represent the three prototypical patterns of Cu-O
networks—i.e., octahedra, pyramids, and squares and are
all superconducting at a suitable doping level (e.g.,
x =0.15) with maximum T.’s of ca. 40, 35, and 25 K, re-
spectively. The important aspect is that the former two

4

compounds associated with apical oxygens possess the
hole-type carriers (p type) and the T'-phase compound
with no apex only sustains the electron-type carriers (n
type).2%7 Such an observation about the types of charge
carriers in single-CuO,-sheet compounds may be general-
ized to the multisheet systems: Other superconductors
with pyramidal or octahedral CuO, sheets all show hole-
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FIG. 1. Optical conductivity spectra of single crystals of Cu-
O layered compounds. In all the spectra the light E vector is
parallel to the basal plane.
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type conduction, at least at low carrier concentrations,
whereas the no apex compound® (e) (Ca,Sr)CuO; with
Ca-to-Sr ratio of ca. 85/15 appears to show the n-type be-
havior from our preliminary measurements of its thermo-
power. Such an exclusive p- or n-type behavior implies an
important variation in the background electronic struc-
tures in CuO; sheets depending on the pattern of Cu-O
networks.

Single crystals of the “carrier-undoped” compounds
(a)-(f) listed above (see the inset of Fig. 1) were grown
from the melt by using CuO or CuO-Bi,O; mixture as
flux, detailed procedures will be described elsewhere. All
the crystals show insulating or semiconducting behavior:
The compounds (b), (e), and (f) show in-plane resistivity
(pas) larger than 10° Qcm at room temperature. To
eliminate or reduce the charge carriers arising from oxy-
gen nonstoichiometry, single crystals of (a) 7- and (d)
T'-phase compounds were annealed at 900 °C under a re-
ducing and oxygenating atmosphere with oxygen partial
pressures of 10 ~* and 1 atm, respectively. After this pro-
cedure, the single crystals show well insulating behavior
with pg (300 K) > 10 @ cm. The Néel temperature for
the T-phase (La,CuQ,) single crystal adopted in the mea-
surements is around 240 K.

In Fig. 1, we plot the optical conductivity spectra for
the six Cu-O layered compounds (a)-(f). The conductivi-
ty spectra were obtained by Kramers-Kronig transforma-
tions of the reflectivity data, which were measured on the
(001) faces of those single crystals at 290 K with the po-
larization parallel to the Cu-O basal planes. Concerning
the reflectivities at photon energies above 6 eV, reflectance
data® taken by use of the synchrotron radiation source
were utilized. In all the compounds investigated here, we
have observed strong optical transitions with peak ener-
gies of 1.5-2.0 eV, below which the compounds show no
optical-active bands except for the optical-phonon modes.
The energies of the absorption bands in these semicon-
ducting compounds are roughly in agreement with the re-
sult reported recently on ceramics samples.” However,
the present study on single crystals can bring about much
more reliable and quantitative information about the an-
isotropy, peak energy, intensity, and spectral shape which
may subtly but significantly depend on the pattern of Cu-
O networks.

The absorption bands observed in the single-CuQO,-
sheet compounds [(a)-(e)] are all strongly polarized
along the basal plane and the reflectance spectra for the
polarization normal to the basal plane (i.e., parallel to the
¢ axis) show no prominent structure in the energy region
shown in Fig. 1. In addition, the optical-absorption band
around 2.0 eV in the compound Ca,CuO; with the Cu-O
chain [see Fig. 1(f)] is strongly polarized along the chain
axis (a axis) and neither Ellb nor Elic reflectance spectra
show any prominent feature below 3 eV. Since the polar-
ized bands in these single crystals are considered to be of
the same origin, their large anisotropy strongly indicates
the importance of the anisotropic hybridization between
Cu 3d,:.,2 and O 2po orbitals in the optical-excitation
process. According to the photoemission studies,'® the
topmost valence band is dominantly composed of O 2p or-
bital. On these bases, the anisotropic bands observed at
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1.5-2.0 eV can be assigned to charge-transfer-type excita-
tions mainly associated with the transition from O 2p to
Cu 3d,2,,2 (d'°) states.

The fairly sharp profile of the absorption peaks as ob-
served should be considered due to the excitonic character
of the transition. However, rather blurred features are
observed in the spectra of T-phase La,CuO4 and T*-
phase LaGdCuO, [Fig. 1(a) and 1(c)]. This may be at-
tributed to extra charge carriers, which are inevitably
present due to the nonstoichiometric oxygens in the T
phase and due to a small amount of Sr in the T* phase.*
Similar but less prominent tails below the main conduc-
tivity peaks observed in other compounds may be attribut-
ed to the broadening of the strong charge-transfer (CT)
exciton, which may be similarly caused by a small amount
of extra carriers and/or by strong coupling of the CT exci-
ton with lattice phonons or magnetic excitations.

Looking at Fig. 1, one may notice the systematic
change in the peak position with the number of oxygens
coordinated around Cu; 2.0 eV in octahedral CuO; sheets
of La,CuO,; 1.8 eV in pyramidal-CuO,-sheets of
LaGdCuQq,, and 1.5 eV in square-type CuO; sheets with
no apex in Nd,CuOy and (Ca,Sr)CuO,. In addition, the
CT peak is observed at the intermediate position (ca. 1.9
eV) in Sr,CuO,Cl, [Fig. 1(b)], in which the single-
CuO;-sheet has two apical halogens [hatched circles in
the inset of Fig. 1(b)] per Cu atom instead of apical oxy-
gens. These facts indicate that the relative position of the
topmost filled (dominantly of O 2p character) and lowest
unoccupied (dominantly of Cu d.?.,. character) bands is
quite sensitive to the number and valence of apical ions
(oxygen or halogens).

In Fig. 2 are plotted the Raman spectra in the single-
CuOs-sheet compounds shown in Figs. 1(a)-1(e). The
spectra for the B, excitations were measured at 300 K
with the polarization configuration (x',y’) by utilizing the
Ar laser 4880-A line as an exciting light. Fairly strong
but broad Raman bands around 3000 cm ~! have been at-
tributed to the spin-pair (two-magnon) excitations.'' =4
The spectra for La;CuO4 and Nd,CuQOy4 agree well with
the previously reported ones.!'”!* We have observed
similar Raman bands in Sr,CuO,Cl,, LaGdCuQ,, and
(Ca,Sr)Cu0,, with different ‘“‘shapes” of CuO, sheets.
Remarkably, the Raman shifts for the spin-pair excita-
tions appear not to be sensitive to the pattern of CuO net-
works, which is in marked contrast to the systematic
change of the CT gap energy.

Based on the observed results for CT and spin-pair exci-
tations, important features of electronic structures in
CuO,-sheets can be discussed for various Cu-O networks.
Hereafter, we focus on the systematic change in electronic
parameters in the three single-CuO,-sheet compounds,
T-phase La,CuQO,, T*-phase LaGdCuQ,, and T'-phase
Nd,CuQ,4. These compounds have the common chemical
formula of M,3*tCuO, [M =La, (La,Gd), and Nd] and
similar c-axis values (12-13 A) but different CuO net-
works, which may enable us to compare the electronic pa-
rameters with each other. In Table I, we show the energy
of the CT excitation (Act), its oscillator strength (fcr)
and the Raman shift for the B, excitation (w;). The
value of w; is directly correlated with the antiferromag-
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FIG. 2. Raman spectra for B, spin-pair excitations in
single-CuO»-sheet compounds shown in Figs. 1(a)-1(e).

netic exchange energy (J;) between localized Cu spins
(hws = 3J,).'° The oscillator strength fcr was approxi-
mately estimated by fitting the CT exciton peak using a
Lorenzian profile.

The observed oscillator strengths of the CT excitations
are quite high (fct=0.2-0.5), as shown in Table I, sup-
porting again our interpretation of these optical-ab-
sorption bands. However, they show a large variation in
the three (7-, T*-, and T'-phase) compounds. The CT
excitation process mainly occurs on the nearest-neighbor
pair of Cu-O and hence its oscillator strength (fct) is ap-
proximately proportional to the degree of p-d hybridiza-
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tion. The quantity may be approximated by (¢,4/A)?
when A>>t,;. Here, tps and A represent the nearest-
neighbor-pair transfer energy and energy gap between the
Cu 3d and O 2p one-hole levels, respectively. Judging
from the systematic change in fcr, the p-d hybridization
(i.e., the covalent character of in-plane Cu—O bond) is in-
creased as the oxygen coordination around Cu is de-
creased in going from octahedral to square-type sheets.
According to Harrison’s rule,'® 1,4 is expected to vary as
d ~" with n= I, d being the Cu—O bondlength. Then,
tpa for the T*- and T'-phase compounds are approximate-
ly 0.94¢¢ and 0.87t, to being the t,4 value for La;CuO4
(T phase). This tendency is in contradiction to the in-
crease in the p-d hybridization from the T to T’ phase
through T* phase. This is apparently due to the fact that
the change in A is superior to the change in tp4. In fact,
the observed CT gap energy (Act), which is a good mea-
sure for A, becomes smaller, as shown in Table I, with the
decrease of the oxygen coordination number.

On the other hand, the J; value probed by the Raman
measurements are rather convergent for different com-
pounds (see Fig. 2 and Table I) in spite of such a large
variation in the CT gap energies. To explain this, we have
to consider that the exchange energy J; is more strongly
dependent on the z,4 values. Let us tentatively adopt here
the simplified two-band (p-d) model. Let U; and U, be
the correlation energies for Cu d-holes and O p-holes, re-
spectively. Then, with the perturbation treatment of this
model (Uz,U,,A>>1,4), the exchange energy J; is approx-
imately given by the relation'’

- 2t;d

i L, 2

J.
: Us Uy,+2A

In the real situation, such a perturbation treatment may
not be valid for quantitative discussion because ,4(=1
eV) is rather comparable with A (=1.5-3.5 V). Nev-
ertheless, the leading term which governs possible materi-
al dependence of J; should be /A2, since U, and U, are
considered to be constants in a series of compounds.
(Note that the degree of hybridization probed by fcr is
t3,/A? within the same approximation.) If the power-law
dependence of 7,4 on the Cu—O bond length (d) is taken
into consideration again, it is very likely that the large
variation of t,;'d term is compensated by the variation in
A?, which seemingly gives rise to network-insensitive ;s
values.

TABLE I. Physical parameters in CuO; sheets.

Compounds La;CuQ, (La,Gd),CuO4 Nd,CuOs4
Cu-O network Octahedron Pyramid Square
(oxygen coordination) 6) (5) 4)
dcuo 1.905 A 1.936 A 1.973 A
Act 20 eV 1.8 eV 1.5 eV
fer 0.2 0.33 0.4;

s 3200 cm ! 2800 cm ! 2900 cm !
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