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Giant Shapiro steps in Josephson-junction arrays
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Giant Shapiro steps have recently been observed in the I-V characteristics of Josephson-

junction arrays, both with and without transverse magnetic fields. For magnetic fluxes per unit

cell of the array 4 (p/q)4p, these steps occur at voltages per unit cell of htv/2eq, where tv is

the frequency of the rf field. I present a calculation of this effect, restricted to certain values of

f p/q and certain current directions within the lattice. This calculation leads to results concern-

ing the width of steps as a function of q and as a function of the amplitude of the driving field. It
also leads to a prediction of subharmonic steps, at voltages of (@tv/2e)(n/qrn)

One of the most remarkable consequences of the ac
Josephson effect is the appearance of Shapiro steps in the
I-V characteristic of a Joseghson junction exposed to a
radio frequency (rf) field. ' These steps are regions in

which a range of currents is compatible with a single volt-
age. The voltages at which steps occur are related to the
frequency tu of the rf field by

V„n,N

e

for the voltage of the nth step. In junctions with an appre-
ciable capacitance, it is possible to see subharmonic steps,
with

hca n

2e m'

Recently, Benz et al have rep.orted the observation of
"giant" Shapiro steps (previously seen by other authors)
in arrays of Josephson junctions. For a square N&N
array of junctions, these steps appear at voltages of

(3)
2e

corresponding to ordinary Shapiro steps with voltages
v„(hco/2e)n across each unit cell of the junction. This
is already somewhat striking, as one might expect the
inevitable inhomogeneities of a real array to destroy the
phase coherence necessary for the appearance of giant
steps.

But Benz et al. also performed the same experiment in
the presence of a magnetic field transverse to the plane of
the array. For "rational" magnetic fields, for which the
flux @ per unit cell is a rational fraction f (p/q) of the
superconducting flux quantum 4p, @ f@p, they found
steps at voltages

@to ¹

2e q
corresponding to 1/q the voltage of the zero-field steps.

Although these results have been obtained also in nu-
merical simulations, the detailed understanding of these
steps may present considerable difficulty. ' Even the
zero-current ground states of an array are not completely
understood as a function of field. However, in this Rapid
Communication I will show that for a special family of

ttfk+ ap —n tfk+ ap/tt j„, (7)

where the brackets [ ]„ indicate the nearest integer func-
tion. The requirement that the states be locally stable

magnetic fields it is possible to obtain a detailed under-
standing of the step structure, at least for currents orient-
ed in a particular direction. I will present a calculation
leading to an implicit formula for the step widths. In the
limit q)&1, this formula simplifies considerably, so that
for low rf voltage the step widths may be obtained direct-
ly. The most significant result of this calculation is that
even in the overdamped limit, in which the junction capac-
itance is negligible, subharmonic steps should appear, cor-
responding to voltages

hra n
Vn, m (5)

2e mq
'

across each junction of the array. Subharmonic steps
should also appear in zero field.

The ground states of an array in the absence of quan-
tum fluctuations are determined by requiring that the
Hamiltonian,

cos(8; —8j —A;, ),Ep
(6)

(ij )

should be minimized as a function of the superconducting
phases 8; of the sites of the array. The sum is over
nearest-neighbor sites, and ip is the critical current of the
junctions in the array. The bond terms A; are line in-
tegrals of the vector potential, which satisfy Pp A;, 2trf,
where the sum is a directed sum around a plaquette. It is

easy to show that the transformations f f+1 and

f 1 —f do not change any physical property of the
model defined by Eq. (6).

The requirement that the Hamiltonian equation (6) be
minimized is identical to the requirement that super-
current be conserved at every site in the lattice. ' The su-

percurrent across the (ij ) bond is ipsin(8; —8j —&;j). On
a square lattice, a simple way of satisfying this constraint
is for the supercurrent along the diagonal "staircases" into
which the lattice may be separated to be constant (see
Fig. 1). Indexing these staircases by k, and defining

8; —8J —A;j on the kth staircase, we then find that
there are locally stable states with
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FIG. 1. The sample geometry considered in this paper, for
the case 1V 3. The current is imagined to be constant along the
"staircases" of the square lattice. Three such staircases are
marked. This state wi11 automatically satisfy current conserva-

tion at each supcrconducting island (marked by the squares).

i (a) — ipsinPq (a)1

g k~l

1
ip cosset, (ap)sin(a)

gk
ipcsc(tr/2q) .

sin a (9)
q

Note that a has the range —x/2q ~ a ~ jr/2q. It follows
that the maximum current for these states is i, ip/q
These states are locally stable provided that a has the
stated range.

Now let us turn to the problem of the resistive character
of an array at finite voltage (ac or dc). I will ignore both
quantum and thermal fluctuations in the following discus-
sion. I will also assume that the junctions are strongly
overdamped, so that it is possible to ignore capacitive
effects. Then the current on a link is

constrains the pk to satisfy —jr/2 ~ pk ~ x/2, a constraint
satisfied by the pj, defined in Eq. (7). The constant ap is
determined by minimizing the global energy. The result is
that for odd q, ap 0, while for even q, ap jr/2q. The in-

terested reader may consult Ref. 10 for details.
These staircase states are not the true ground states for

all f. However, they are the true ground states for f
—,', —', , —', , and —', , and it has been conjectured that they
are the true ground states for the "Fibonacci" sequence of
values of f, f ~'~, —,', , —,", , . . . , which converges to one
minus the golden mean Q. (f 1 —0 is equivalent to
f 0 for this problem. ")

If we wish now to find states that carry current along
the [11] direction parallel to the staircases, we simply
choose

trfk+ a+ ap —tr[fk+ (a+ ap)/jr]„,

with aWQ. The current carried per staircase is then

conserved at every site of the array.
I will make one further assumption, that the response

frequency tv jr 2ei pR/h for Eq. (10) is large compared to
the frequency m(v) 2ev/it corresponding to the voltage
across a typical junction of the array. This is equivalent
to assuming that the supercurrent is typically larger than
the current in the normal channel.

Suppose that a time-dependent voltage V(t) Vp V ~

xcos(rpt) is applied across an N&N diamond-shaped
sample (Fig. 1) so that the current flows parallel to the
staircases. The average voltage across an individual junc-
tion is then v(t) V(t)/2N. (The factor of 2 arises be-
cause of the diagonal geometry. ) We can satisfy the re-
quirement of current conservation if we take a staircase
form, as in Eq. (8), but make a a function of time, with

.( ) 2ev(t) (1 i)

Then the normal currents and supercurrents will be sepa-
rately conserved at each site.

If we make a small deviation in this state, and we are in
the large resistance regime mentioned above, then the
state will be dynamically stable provided that the static
state for that a is locally stable. Thus we require a(t) to
also satisfy —x/2q & a(t) & x/2q. For any state with a
finite dc voltage, this implies that a(t) will occasionally
undergo a discontinuous change as a function of time.
This is related to the process of vortex slippage in the ar-
ray, and involves rapid time-scale behavior which I do not
attempt to describe. This process of vortex slippage corre-
sponds to a coherent movement of the vortex lattice across
the direction of supercurrent flow, as suggested by Benz et
al. and observed numerically by Lee, Stroud and
Chung. It is important to realize that the instability
causing the vortex slippage is a local instability. 'p Thus it
will not necessarily lead to the appearance of voltages at
the boundaries, even if phases in the interior of the sample
are varying rapidly. In the large resistance limit, the
current passed during these events will be negligible. '2

Thus we may calculate the current using

with

a(t) A (t) —(tt/q) [qA (t)/tr], ,

A(t) yp+y)t —Psin(rpt),

(12a)

(i21 )

where yp is an initial phase, y~ eVp/AN, and P eV~/
N hrp. There will be a Shapiro step at a particular voltage
if there is a range of possible net supercurrents at that
voltage corresponding to different values of yp. We must
thus calculate the average supercurrent corresponding to a
particular a(t).

First we use a Fourier representation of the roundoff
function equation (12a)," (-1)j+'

a(t) -g . sin[2jqA(t)] .
JC

The supercurrent per staircase is given by Eq. (9), with
a a(t). Consider exp[ta(t)]. We can write this as

i&;,& (8; —8, )+ipsin(8; —8, —A;, ), (10)
2eR dt

where R is the normal resistance. This current will be

( I)j+I
exp[ta(t)] Q expJ-], J0

sin [2jqA (t)]
(i4)
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Recognizing a generating function for a Bessel series, we can rewrite this as'

exp[&a(t)] Q g J~((—1)J+'/j q)exp[2ilj qA (t)]
j~)

Clearly this leads to an expansion,

era(t) ~ g (q)+g (q)e qA(l)+g (q)e
—2&qA(&) ~ + ( ) 2imqAo)+ —2imqA(p)+

The Q~] are functions only of q, and can be related to sums of products of the Bessel functions JI ((—1)J+ '/jq).
We must now average exp[~a(t)] over time. This we can do order by order in the series equation (16). We write

1 T!2 eT]2
lim — dt exp[2imqA (t)] exp(2imqyo) lim —

~
dt cos[2mqy&t —2mqPsin(rot)] .

P 4 -T/2 T ~ P -T/2

This is nonzero provided that 2mqy~ mo, with n an integer. Then the integral gives a Bessel function,

+ T/2
lim — dt exp[2imqA (r)] J„(2mqp)exp(2~mqyo)

00 y'4

(is)

(i6)

Thus we expect to see steps in the I-V characeteristic for
voltages Vo satisfying

Vo 2N (19)
2e mq'

corresponding to a voltage of (pro/2e) (n/mq) across each
junction. Again, 2N appears in Eq. (19) instead of N (as
in the quantization observed by Benz et al. ) because in the
diagonal geometry the total number of junctions across an
N x N sample is 2N (see Fig. 1).

It is simple to develop convergent numerical procedures
for calculating the coeScients g (q) of the series equa-

I

I

tion (16). Then a maximization (minimization) of the
current

tocsc(z/2q)
l sin a t (20)

with respect to yo will yield the width of the various steps.
More insight may be gained, however, by studying the
step width in a simple limit. The large-I terms in the
product equation (15) will be suppressed for large q. We
will thus approximate the full product by including only
terms up to first order in q '. Then we have

(22)

sin[a(t)] = Q Jo . g 2( —1) +' sin[2mqA(t)] .
J((I/mq) (2i)

J I Jq m I Jo(I/mq)

If mqP« 1, then the current in each step will be dominated by the first term in this series for which the step voltage
leads to a nonvanishing result upon integration. If we include only the effects of this first term, then a simple calculation
yields the width hi„of the step at the voltage V„, 2N(hro/2e)(n/mq). The result is

hi„,~ SN
iocsc(z/2q) " J ~ (I/mq)

H Jo(I/Jq)
'

J„(2mqP) .
Jo 1 mq

Thus, provided that mqP « 1, we obtain

Nio
ai„, — (mqP)". (23)

For the large m steps, for which the requirement on mqp
does not hold, we must take into account the contribution
of higher-order terms in the series.

The principal drawbacks of the above analysis are that
it is restricted to particular values of f, and that it is re-
stricted to current flowing in a particular direction with
respect to the lattice. Nevertheless, one might hope that
its main qualitative conclusions, that the subharmonic
steps appear even for strongly overdamped junctions, and
that the step widths scale according to Eq. (23) for small
rf voltages, will hold in the more general case. The de-
tailed predictions of this calculation can be checked by
performing experiments upon diamond-shaped arrays.
The reader will note that the results above apply also in
the case q 1, corresponding to zero field or an integral

I

number of flux quanta per cell.
This calculation also suggests directions for further

study. The experimental and numerical results alluded to
above seem not to show subharmonic steps (although
there are some ambiguities, particularly in the experimen-
tal results). This may be due to boundary effects, to the
difference between current and voltage driving, or to inho-
mogeneities (at least in the experimental arrays). All of
these effects must be included in a full theory of the
Shapiro steps.

While it is probably premature to hope for analytical
results for general f soon, the calculation of currents for
staircase-type states for other directions may prove tract-
able, although in these cases the normal currents and su-
percurrents will not be separately conserved. 'o Also, the
form of a(t) chosen implies an occasional coherent shift of
the vortices in the lattice to new positions. This shift will
involve relatively rapid variation of the phases, the details
of which may be quite interesting.
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