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The measured normal-state resistance threshold for the onset of global superconductivity is cal-

culated, in the mean-field approximation, for a Josephson-junction array in which the normal-

state junction resistances and, hence, also the Josephson coupling energies, are weakly disordered.

Such disorder increases the threshold by a nonuniversal factor which depends on the width of the

junction conductance distribution and the lattice coordination number.

A number of recent experiments' ~ on the onset of su-

perconductivity in ultrathin granular films have focused
on the precise determination of an apparently universal
normal-state resistance criterion RQ for the occurrence of
global superconductivity in the zero-temperature limit.
Theoretically, the existence of such a criterion has been
attributed to the destruction of global Cooper-pair phase
coherence by quantum-mechanical phase fluctuations. 4 If
a film is modeled as a regular two-dimensional array of in-

dividually super conducting granules, the theoretical
threshold is universal, that is, independent of the BCS
energy gap & in the small grain limit in which the mutual
capacitance of neighboring grains is dominated by the
nongeometrical virtual quasiparticle tunneling capaci-
tance ' hC required by causality. s A mean-field calcula-
tion has yielded RIv =5.7 kQ for a square array of identi-
cal Josephson junctions. Accounting for the correlated
fluctuations of neighboring grains to first order in the in-

verse lattice coordination number and allowing for the fre-
quency and phase dependence of AC have reduced this9 to
RII =3 SkA, in acc. ord with the range of reported values
that are found to vary from 4 to 6.5 kQ between experi-
mental groups. '2 But, while the theory has considered a
lattice of identical, equally spaced grains, the experimen-
tal samples are mos( probably disordered. Indeed, such
disorder may have contributed to the distribution 'e of the
measured values of RN.

The disorder present in granular films is difficult to con-
trol or to quantify. On the other hand, it has recently be-
come possible to fabricate" Josephson-junction arrays
consisting of grains sufficiently small that the quantum
Auctuation eH'ects of interest here are relevant. It is
reasonable to expect that it will prove feasible to construct
arrays in which disorder in the relevant junction parame-
ter, the Josephson coupling energy, is deliberately intro-
duced in known measure, as has already been done in the
case of fabricated arrays in which disorder in plaquette
areas has been introduced to study magnetic-field ef-
fects. ' Arrays that have thus far been fabricated consist
of grains sufficiently large that the capacitance determin-

ing the charging energy is the usual geometrical one, '3 C.
Therefore, it is this nonuniversal case which will be treat-
ed here. It is planned to treat the more complicated prob-
lem of disorder in hC elsewhere.

The dynamics of such a two-dimensional array of
granules, each described as zero temperature by BCS
theory, is determined by the Lagrangian

with V; the voltage on that grain. The Josephson coupling
energy,

hhp
Jlj 2 trIJ s

e

is determined by the normal-state conductance cr;J of the
tunnel junction formed by grains i and j. In Eq. (I), the
double sum is restricted to nearest-neighbor grains.
Planck's constant and the electron charge have been
denoted by h 2trI1 and -e, respectively.

The quantum-mechanical amplitude for the evolution
of the array from one phase configuration at time zero to
another at time T is

T
K(T) I: Dpexp — L dt4 I1~o (4)

where the path-integral measure is Dp=+DP;. For an
array of identical junctions, cr;J—= tre, J;J=Je, the mean-
field approximation leads, along the lines described, for
example, in Refs. 5 and 9, to an effective single-grain La-
grangian,

I1 C
0i +ztt Jocose,

Se
(5)

L —QV2+g J"cos(p -p ) (I)
&i))

where the time derivative of the common Cooper-pair
phase of the electrons on the ith grain pt is given by the
Josephson equation,

e
V
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where z is the lattice coordination number and

p -(cosy, )p (6)

depends on the single parameter

is the ground-state order parameter, which is to be deter-
mined self-consistently. Introducing the dimensionless
momentum canonically conjugate to pi, pi h M, /& ji,
the corresponding one-body Hamiltonian is (4e /C)Hi,
where the reduced Hamiltonian,

p
2

H] ~ gcosf],

and, according to Eq. (9), a threshold resistance criterion

( g)
—

/
4P ii

4e 4e
(i2)

EG ih lim
inK

T—oo T (i3)

The Hamiltonian approach just described is, according
to fundamental quantum-mechanical principles, '4 equiv-
alent to evaluating the one-body version of Eq. (4) for the
single-grain propagator and extracting the ground-state
energy using the Feynman-Kac formula,

with

g ZPAO,

CJp
X,o~

4e

r 'll

C& hcrp

Se 4e

We now use this correspondence between the Hamil-
tonian and path-integral approaches to calculate the con-
ductance threshold for a disordered array in which cr;, ,
which now varies from junction to junction, is distributed
according to a sharp Gaussian probability density,

~ -2g -7g'+ (io)

and imposing self-consistency via Eq. (8), gives a thresh-
old coupling

1

2Z
'

using Eq. (3). Evaluating the ground-state eigenvalue of
the pendulum Hamiltonian Hi, using the Feynman-
Hellman theorem to obtain the order parameter,

P(cr J)
1

J2rracr
exp[ —(cr;, —crp) '/2(acr) 2], (14)

with b=hcr/crp«1. We consider two approaches, which
yield the same final result. One employs the familiar re-
plica trick and the other, which we treat first, is a pertur-
bative calculation to 0(b ), based on the smallness of B.

From Eqs. (1), (4), and (13), we must work with the
disorder-averaged value of the logarithm of the propaga-
tor

K(z) cx' Dpexp dz 2 g p; —g X;) cos(p( —
pj )

i &ij&

(is)

where the time variable has been scaled by hC/4e and analytically continued to the imaginary axis. In Eq. (15), we

have redefined &i=8rtr;/8z and z 4e iT/hC The coup. ling strength X;, CJ;,/4e2 is proportional, according to Eq.
(3), to cr~J.,

8e 4e

The width of the A, ;, distribution, about a mean value kp, is

[((a"—x )'&] '"-=m- C&
ij 0

Se 4e

(16)

where ( ) denotes a disorder average with respect to Eq. (14).
Expanding the potential-energy term in Eq. (15) to second order in the fiuctuations in the Josephson coupling strength,

performing the disorder average, and reexponentiating the result, we obtain

~~m

(lnK) ln Dpexp — dzL +const,

where L, the eN'ective Lagrangian, is defined by

(~)z ~ ~as + tns

dzL
&

dz 2 gp; —
Apz~ dzgcos(p; —

p, ) — dz dz'gcos[p;(z) —
p, (z)]cosfP;(z') —P, (z')l .

&ig)

(i9)

In the notation of Eq. (6), the mean-field average can be introduced into Eq. (19) by

cos(p —
&J )=cosp;(cosp~)p+ sing;(sinpj)p p cosp; .

Consequently, the one-body mean-field version of L,L ~ is defined by

(2o)
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2(~) 2 r

drL —'
dry&

—pXpz drcostttt- dr dz'costi(r)costi(z') .
0 1 2 4 Q 4! 0 &p up

(21)

' I/2

1 -2z (Z()'+ (22)

The last term in Eq. (21) gives a shift in the large-z be-
havior of the propagator or, alternatively, a change in the
ground-state energy. Evaluating the change shows that
effect of the disorder average is simply to replace Q by
Ap+ (hX) /z. Self-consistency then implies that the
mean-field threshold coupling is now no longer given by
Eq. (11)but by

I

Thus, to 0(b ),
2

1— (24)
2z 2z

Recall that b Acr/ep«1 measures the strength of the
disorder.

As an alternative to the perturbative approach, we can
avoid the necessity of reexponentiating by keeping the
computation in the exponent throughout and performing
the disorder average using the replica trick,

or

(w) '
2z 2z(k,()

(23)

&lnK& lim —ln&K"& .
n~p 1l

(25)

Introducing a replica index a, the disorder-averaged repli-
cated propagator is, from Eqs. (14) and (15),

&K"&— Dtt exp
~~a (~)2

dry '2 g(p ) -Xpgcos(ttt -pj's) exp g drgcos(hatt —p!')a, i (ij 2 (ij) 0 a
R

where Dp=—g, Dp'. Making the mean-field approxima-
tion, as in the disorder-free case, we obtain as a one-body
effective Lagrangian per replica L~ of Eq. (21). The
ground-state energy is then simply proportional to n and
the limit indicated in Eq. (25) can be taken with no
diSculty. The resulting self-consistency condition is, con-
sequently, exactly the same as Eq. (22), tending to
confirm the reexponentiation performed in the perturba-
tive approach.

To establish the observational consequences of Eq.
(24), the result must be recast in terms of the measured
value of the normal-state sheet-resistance, RD. The effect
of disorder on R~ as described by a network of resistors of
resistance R o', where e is randomly distributed ac-
cording to Eq. (14) about the mean value ap Rp ', has
been calculated'~'6 for the honeycomb, square, and hex-
agonal lattices, corresponding to z 3, 4, and 6, respec-
tively. The result of the calculation for all three of these
cases is expressed by

Rp Rp 1+—80 2 2

z
(27)

C4)z h

4~2 4~ 2

$2
1+

2z
(28)

so that disorder increases the measured critical sheet

where Rg J3Rp, Rp, and Rp/J3 for z 3, 4, and 6, re-
spectively.

Combining Eqs. (9) and (24), the critical value of Rp is

I

resistance Ro by a factor
2f 1+

2z
' (29)

This mean-field prediction for the increase in the thresh-
old can be checked by fabricating weakly disordered
Josephson-junction arrays of the appropriate coordination
number.

In summary, we have shown that disorder in the
Josephson coupling energies increases the normal-state
sheet resistance threshold for the onset of global supercon-
ductivity in an array of Josephson junctions. This arises
as a consequence of two independent effects. One, as
quantatively given by Eq. (27), is a purely normal-state
effect true for any weakly disordered resistance network:
the measured normal-state sheet resistance is greater than
that corresponding to the inverse of the mean local con-
ductance. The other effect, the main result of this paper,
is expressed through Eq. (24), which lowers the minimum
mean local conductance that is required for the oc-
currence of global Copper-pair phase ordering. The sign
of this latter effect is an immediate consequence of the
convexity of the ground-state energy: Any weak pertur-
bation, including disorder, which does not have a diagonal
ground-state matrix element lowers the ground-state ener-
gy.
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