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Variational approach for tunneling diff'usion of a particle interacting with phonons
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Displaced-squeezed states are proposed as the variational ground states of phonons coupled with
a particle moving in a tight-binding band. The narrowing eA'ect of the phonon overlapping in-

tegral on the renormalized bandwidth of the tunneling particle is investigated. %e find that for
Ohmic dissipation the conditions for the localization-delocalization transition of the tunneling par-
ticle are modified compared with the previous studies.
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The problem of a quantum tunneling system interacting
with a dissipative environment has recently attracted a
great deal of attention, e.g. , the dissipative two-state sys-
tem' and dissipative tunneling diffusion problem.
Renormalization-group analysis shows that there exists a
sharp localization-delocalization transition in the dissipa-
tive two-state system ' and dissipative tunneling diffusion
problem. It is believed that such a transition is the re-
sult of infrared divergence stemming from the low-

frequency phonons (or excitations) of the environment,
thus it depends strongly on the ground states of phonons
under coupling with a tunneling system. Unfortunately,
there are few discussions about these states. Only dis-
placed states were proposed as the variational ground
states of phonons in the dissipative two-state system'P
and dissipative tunneling diffusion problem. '" However,
it can be physically understood that the coupling with a
tunneling system may have two different inAuences, dis-
placement and deformation, on the phonon wave functions
depending upon the phonon frequency and coupling
strength. For high phonon frequency and weak coupling
the displacement will be dominant, while for low phonon
frequency and strong coupling one must take into account
both displacement and deformation effects. ' The dis-
placed state approximation only considers the former and
omits the latter; therefore, it is desirable to find an ap-
propriate description of the deformation effect on the
ground states of phonons. Recently we proposed
displaced-squeezed states as the variational ground states
of phonons coupled with a two-state system, ' which con-
tain both displacement and deformation eff'ects. The main
purpose of this paper is to apply the displaced-squeezed
states to the system of a particle moving in a tight-binding
band and coupled with phonons.

The model Hamiltonian is as follows

H = g &pC„C„+~
+ H.c.+g h tok bk bk

n k

+ gnC„C„+gk(bk+bk)

where C„and C„are operators for the particle, g„nCtC„
is the position operator for the particle in the tight-binding
basis, 2hp is the bare bandwidth of the particle, bkt and bk

are operators for phonons with frequency tok, and gk is the
coupling coefficient. Applying the usual canonical trans-
formation

r

U ~ exp g nC„C„Q (bk —bk )
, n, k htok

to Hamiltonian (1), we obtain

H -UjtHUl

(2)

g hpC„C„+ ] exp g "
(bk —bk )

n k

+H.c.+g htokbkbk .
k

(3)

A term concerning the interaction of two particles has
been omitted, since we assume that there is only one parti-
cle in the system. It is useful to rewrite the particle opera-
tors at site n in the momentum space:

C„Qe'e"Ce,
N

C„= g e 'v"C
N

Hamiltonian (3) then becomes

(4a)

(4b)

H = —g ApC~ C~ exp iq +g (bk —bk )

+ H.c.+g h tok bk bk,
k

where H is diagonal in the particle operators and nondiag-
onal in the phonon operators. More importantly, it shows
that linear coupling with the tunneling particle induces
nonlinear interaction between phonons not only in the
same modes but also in diA'erent modes. ' Thus it is
difficult to find an exact solution, and one has to look for
approximations.

Generally, the ground state of Hamiltonian (5) may be
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assumed to be written approximately as a product of two

parts

(6)
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Minimizing the energy (11) leads to the equation for yk

where ( y~) is the ground state of the tunneling particle
and

~ y2I) is the ground state of phonons under coupling
with the tunneling particle. From Hamiltonian (5), ( y~)
is easily determined to be a single-particle state with zero
momentum ~q 0). Then

and

K exp — — dxx " " 1+—x
4yr hrop o 8

(16)

UjbkU2 bk cosh2yk+bk sinh2yk,

U jbk U2 bk cosh2yk+bk sinh2yk,

the ground-state energy is derived,

E (IP2I i HOh i IP'2I)
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1~ gk-—2d,p exp ——Z,
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For mathematical simplicity, we choose the power law
for the coupling strength and phonon frequencys

gk -gp(ka)', a)k -pip(ka)', (12)

where rop is the cutoff frequency, gp is a ProPortional con-
stant, 0& (ka) & 1, and v& 1. In order to explore the
inAuence of the phonon ground states on the tunneling
particle, it is necessary to introduce a renormalized band-
width of the tunneling particle

Wy 2hgK,

where K is just the phonon overlapping integral and can
be defined from (11),

~1 gkK exp —Z, —
2 hCok

—4' (14)

Hph (I/fp i H i IIyp)

—2&p cosh g (bk —bk ) +g h plk bk bk
k ANk k

(7)
gives an effective Hamiltonian for the phonon subsystem.
To zero order of gk/grok, the ground state of H~h is a vac-
uum state, or a displaced state in its original space. Up to
(gk/ho3k), the ground state may be described by a
squeezed state, or a displaced-squeezed state in its original
space. '4'5 In the following, we propose the displaced-
squeezed state

( ya) -U2
~
vac)

with

U2 exp g y (kbk bk )
, k

as the variational ground state of phonons, where yk's are
variational parameters. If yk 0, ( y2I) return to the dis-
placed states. With the aid of the following identities

We can easily find that the infrared divergence appearing
in the renormalization-group analysis is, to an extent,
deterred due to the last factor. Completing the integral,
we obtain

K exp — ln(JB+ MB+K)
1 —a

The dirnensionless coupling strength is

go
42r(v+ 1) h rop

(20)

For a & 1 there is always a nonzero solution of K, while
for a & 1 there exists a critical value 8„ leading to two
nonzero solutions of K when 8 & 8,; only zero solution
when 8 & 8,. 8, is determined by the following equation:

8, (21)
a+1

or

III, COp
16n(v+ I ) a(a -1)

(a+ 1)'+' (22)

When there are two nonzero solutions, detailed analysis of
stability tells us that the large one corresponds to a
minimum point and the small one to a saddle point. Thus
we choose the large one as the stable solution. These re-
sults imply that a sharp localization-delocalization transi-
tion of the tunneling particle can be triggered with an in-
crease in the dimensionless coupling strength.

The displaced states have been used as the variational

with

ro
3

8 (17)
4+g$

From the self-consistent Eq. (16), the static properties of
the tunneling particie may be derived. For example, the
localization happens as K vanishes. Since the integral in
(16) is very sensitive to the two indices (A, , v), it is usually
divided into three cases super-Ohmic (2A, —2v+1 & 0),
sub-Ohmic (2X —2v+ 1 & 0), and Ohmic dissipation
(2k —2v+1 0). The present paper only deals with the
most important and fascinating case, Ohmic dissipation,
the other two cases will be discussed in separate papers.
Then Eq. (16) is simplified,

—&/2.
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ground states of phonons in the dissipative tunneling
diffusion problem. s'3 In the following, we would like to
give the results using the displaced states as the ground
states of phonons in order to compare the different ap-
proaches. For the model Hamiltonian (1), it is convenient
to assume the variational phonon wave function is

( ya) exp gnC, C„+As(bs —bk) . (23)
, n , k

Minimizing the ground-state energy

Es -2hoK'+g @roke/ —2gI, AI, + gP

k h, cdk

leads to the following equations:

gk

hroq+hpK' '

(24)
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FIG. 1. LocalizationMelocalization transition given by the
displaced state approximation (8,') and by the displaced-
squeezed state approximation (8,).

FIG. 2. Comparison of Eg and Eg. The shaded area is

Eg & Eg and the unshaded area is Eg & Eg.

The condition of the localization-delocalization transition
in the displaced state approximation is represented in Fig.
l. It is shown that the transition depends on the hroo/hn
and a'. For (hmo/+) &e, a,' increases as hron/hp de-
creases. Such behavior has occurred in the problem of a
particle in a periodic potential with quasiparticle dissipa-
tion. ' ' For (hroo/ho) & e, a,' 1 is independent of
Aeon/&. This result is precisely the same as that of the
renormalization-group analysis. ' It is worthwhile to
point out that the results of the renormalization-group
analysis are obtained mainly on the assumption of the di-
lute instanton gas or dilute flip gas, where only the close
pair of instanton and anti-instanton or flip and flop are im-
portant's (noninteracting blip approximation'). There-
fore, the displaced state approximation is equivalent to the
noninteracting blip approximation. ' Recently, it has
been pointed out in the study of dissipative tunneling out
of a metastable that there is the possibility of condensa-
tion of an instanton gas as the breakdown of the dilute gas
approximation. For convenience of comparison, the
condition of the localization-delocalization transition in

the displaced-squeezed state approximation is also shown
in Fig. l. It shows that the displaced-squeezed state ap-
proximation gives broader delocalization region than that
of the displaced state approximation. Moreover, for
(h ron/&) » 1, the localization transition occurs at
a,' 1+(1/v) instead of a,' 1. From the point of view of
the ground states, it is crucially important to compare the
energies between (10) and (24). For (hrop/hp)» 1, Es
and Es become

For a'& 1 there is always a solution K'&0, while for
a'& 1 the solutions K' depend on 8': K'WO for 8' & 8,'
and K' 0 for 8' & 8,'. The critical value 8,' is

Es —2hpK(1 —a),

Es —2hpK'(1 —a') . (30)

Bc
h cop [(a') ~ 2 1]a —~(a') —a'/2exp[(a') ~ &]

(28)

The condition Eg Eg determines a critical 8,'„ leading to
Es & Es for 8' & 8,', and Es & Es for 8'& 8,', . The criti-
cal value

5 ron
' [(v+ 1)/a'I fl —[v/(v+ I)ja'I (1 —a')

exp((v+1) [1 —[v/(v+1)]a'I)(4mva') ' ' " (3 )
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is shown in Fig. 2. In the calculation of B,'„we have used
the relations a [v/(v+1)]a' and B B'/16xva'. When
a'~ (v+1)/v or a) 1, we have K K' 0, then Es Es

0 for h rpp/hp » 1. For a'« 1, (31) gives a,',= (hrpp/hpe"+') '"(4xv) ' «1. This means that for
hrpp/hp»1 and a,', & a' & v+1/v the displaced-squeezed
states are more stable than the displaced states. There-
fore, we believe that our description of the localization-
delocalization transition is more preferable at least in the
view of ground-state energy.

In conclusion, we have developed a new theory to study
the tunneling diffusion of a particle moving in a tight-
binding band and coupled with phonons. The main
feature of the theory is to use displaced-squeezed states as

the variational ground states of phonons. The narrowing
effect of the phonon-overlapping integral on the renormal-
ized bandwidth of the tunneling particle is investigated.
We find that for Ohmic dissipation the occurrence of the
localization of the particle depends on hrpp/hp and the
coupling strength. Moreover, the present theory gives a
broader delocalization region compared with previous
studies.
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