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The scaling equations for the x-ray and Kondo problems are rederived using the standard tech-
niques employed in statistical-mechanical and field-theoretical problems. Specifically we obtain a
Callan-Symanzik equation for the bare theory, the corresponding P functions, and anomalous di-

mensions for the involved fields being computed up to the three-loops order in the coupling con-
stants. The different steps of the procedure are developed in some detail. In particular, we are able
to identify the relevant Feynman diagrams for the vertex functions at the three-loops order. By ex-

ploiting this, we obtain for the Kondo model a P function in agreement with recent exact results.
Moreover, when our series for P is naively extrapolated, the exact result emerges.

I. INTRODUCTION

The x-ray-absorption and Kondo problems are two
prominent topics in both many-body physics and solid-
state theory. In the past two decades many workers have
produced theoretical and experimental results on these
two phenomena. The x-ray problem was studied in the
pioneer works by Mahan, ' Roulet, Gavoret, and
Nozieres, ' and Nozieres and De Dominicis. In Refs.
1—3 the main characteristics of perturbation theory have
been established, while in Ref. 4 one has a one-body
theory exact solution. This solution was also found by
Schotte and Schotte ' by using two different methods.
Two interesting approaches are also that made by Com-
bescot and Nozieres and the more recent one by Mahan
(see also the references therein). However, the history of
the Kondo model is much more complex. In the review
by Tsvelick and Wiegmann, it is mentioned that there
are more than 1500 papers on this problem. We only
mention a small number of these works.

After the famous Kondo demonstration, ' where the
transition probability of conduction electrons in the pres-
ence of a magnetic impurity should exhibit a logarithmic
divergence at zero temperature, early attempts to im-
prove this result were made by Nagaoka, " Abrikosov, '

Falk and Fowler, ' Hamann, ' Cheung and Mattuck, '

and others. An important series of papers that appeared
in the 1970's are those based in a renormalization-group
approach. In the pioneer work by Abrikosov and Mig-
dal, ' a multiplicative renormalization scheme for the
theoretical propagators and vertex parts is implemented.
The idea is similar to the Gell-Mann —Low procedure for
renormalizing quantum electrodynamics. ' ' It leads to
scaling equations analogous to the ones found in the
theory of second-order phase transition. ' These au-
thors performed the theory up to the three-loops order in
the exchange coupling. By using a slightly different pro-
cedure, namely, by employing a Lie differential equation,
Fowler and Zawadowski and Solyom also found the

scaling equations up to the two-loops order.
Other important scaling approaches were made by An-

derson et al. ' via an equivalence of the Kondo prob-
lem with the thermodynamics of a classical one-
dimensional Coulomb gas and by Anderson in its pedes-
trian procedure known as "a poor man's derivation. "
This last method was improved by Solyom and
Zawadowski. These scaling approaches have not been
able, however, to give the correct physical behavior in the
zero-temperature limit. The main reason for this failure
is that when the temperature decreases the effective cou-
pling increases unboundedly Then th. ere is a complete
compensation of the impurity magnetic moment by the
conduction electrons. It follows that at temperatures
T (& T~, where Tz is the Kondo temperature, the physi-
cal magnitudes have a simple power-law behavior. This
picture emerged from the works by Anderson et al. ,
by Nozieres and especially from Wilson's important
work. ' ' Therefore, it is clear that these results cannot
be obtained from any Pnite order perturb-ation theory in
the exchange coupling.

In the past few years the Kondo problem was solved
exactly via a Bethe ansatz by Andrei, Wiegmann
and Fateev and Wiegmann. In spite of this, in a recent
paper Barnes revitalizes the diagrammatic methods to
obtain scaling equations. He finds exact results for the
Kondo model, in agreement with Wilson's numerical
method. Its approach, although clear, is highly sophisti-
cated and requires a great deal of work. Therefore, it
should be desirable to find a simpler route to obtain the
exact results.

This work is a first attempt in such a direction. We
consider a generalized single-site impurity model with
both exchange and potential scattering couplings. It in-
cludes the x-ray and the S =

—,'-Kondo Hamiltonians as
particular cases. The theoretical bare propagators and
vertex parts are calculated up to the three-loops order in
the coupling constants by keeping the relevant Feynman
diagrams and using the most popular zero-
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temperature diagrammatic technique. We find the usual
(co/A)"ln ~A/co~ singularities (A is an energy cutoff and
n and p are integers). Next a renormalized theory at the
energy scale x is defined by using mass renormalization,
pseudofermion wave renormalization, and constant cou-
pling renormalization, exactly as in previous pa-
pers. ' ' The renormalization conditions are an essen-
tial ingredient here.

To obtain the true dependence on A we now write a
Callan-Symanzik-like equation ' ' ' for the bare func-
tions. The characteristic curves of this equation lead to
the renormalization-group flow equations and to the
physical behavior of the theory. The advantages of this
procedure on the previous ones are mainly the following.

On one hand, the relation between the changes in tem-
perature (or in frequencies) and the motions in the
abstract flowing-coupling space here is more transparent:
in the infrared (ultraviolet) limit, T=O (T)&Tz), the
Hamiltonian is driven towards the strong- (weak- ) cou-
pling fixed point. This is exactly the behavior observed
by Wilson. ' ' Furthermore, scaling only holds in these
limits, contrarily to the usual assumption involved in the
Gell-Mann —Low formulation of the problem. On the
other hand, and more remarkably, Callan-Symanzik im-

plementation of the renormalization scheme leads to a
natural selection of the relevant Feynman diagrams: by
taking an adequate choice of the renormalization point,
one concludes that only the simpler logarithmic singular-
ities (n =0 and p =1) determine the P functions. As a
consequence of this fact, our three-loops order term in
the scaling equation turns out to be different from that re-
ported in Ref. 16. Moreover, this (new) result now leads,
by a simple extrapolation, to the exact Barnes' scaling
law. "

The outline of this work is as follows. In Sec. II we
briefly review the Hamiltonian and bare propagators.
The vertex parts are calculated up to the two-loops order
for the general case in which one has three arbitrary
external frequencies here. The calculation in this section
includes all the involved Feynman diagrams up to this or-
der.

In Sec. III the renormalization of the theory is
developed in some detail. First we obtain the two-loops P
functions. It is explained how, by using appropriate re-
normalization conditions, one is led to physical results
for these functions. By exploiting this idea in the next
step we show what the relevant graphs involved at the
three-loops order are. The Callan-Symanzik equation for
the bare theory is then formulated. By making careful
use of the renormalization-group invariants one now ob-
tains the mentioned results for the three-loops P func-
tions of the Kondo model.

In Sec. IV we analyze the question about how the scal-
ing law arose and the specific results for both problems.
In the x-ray absorption case we find the standard re-
sults' up to the lowest order in the corresponding cou-
pling. For the Kondo model, on the other hand, the true
flow equation is extracted as a conjecture from the finite-
order perturbative series. The same method is not able,
however, to give the strong-coupling limit for the anoma-
lous dimension of the pseudofermion field.

Section V is devoted to concluding remarks. In partic-
ular, we indicate how the approach could be further im-
proved. The plausible connection with Wilson's ideas
is also analyzed.

II. REVIEW OF THE HAMILTONIAN
AND BARE PROPAGATORS

A standard expression for the Kondo Hamiltonian is'

H = g skat ag +Eo g b pbp
k, a P

J
(rr Spp)bpta~q .aq bp .

kk' aa', PP'
(2. 1)

Here ak is a creation operator for a conduction s elec-
tron with momentum k and spin a, while bI3 creates a
deep d electron with spin P. Abrikosov's pseudofermion
representation' of the impurity operator has been used.
The components of the vector matrices 0. ~ and

2SP&=op& are the usual Pauli matrices for s and d elec-
trons. The bare s- and d-electron energies measured from
the Fermi level are ek and Eo, respectively. Finally, J is
the s-d coupling constant (J (0 in the antiferromagnetic
case) and X is the number of impurity atoms.

Instead of Hz, a more general Hamiltonian

V
H =Hrr+ 2~ g g bpa„,aq bp

kk' aP
(2.2)

gbaq aq b
kk', c7

r

+ g g V+( —1) +'—b~~~. aq b,2' 2
(2.3)

(o,r=+ —,'). Henc'e there are three elementary processes
associated with this Hamiltonian. They are shown in
Fig. 1. Diagram l(a) [l(b)] shows a spin —no-Hip scatter-
ing with total spin S, =2o (S,=0). When JWO the
strengths of these graphs are different from each other.
On the other hand, diagram 1(c) represents the spin-Hip
scattering and only exists for S,=0.

will be considered. Note that when J =0 and VAO this
equation resembles the x-ray-absorption Hamiltonian. '

The only physical difference is that the deep level in Eq.
(2.2) is twofold degenerate, while in the original
Mahan-Nozieres-De Dominicis model one has a nonde-
generate level. The case where Eo=0(in ad—dition to
J=0, VAO) also resembles the single-site approach to
the Hamiltonian of a mixed valence metal in which the
hybridization term has been neglected.

We remark that the V term in Eq. (2.2) is written as a
particle-particle repulsion ( V )0), contrarily to the origi-
nal picture of a particle-hole attraction. '

By using the decomposition

cr r=rr, r, +2(a+r +cr r+)

we can write H in the form

H= g @qadi aq +Eo XbP,
k, cr
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FIG. 1. The elementary processes associated with Eq. (2.3).
Dashed solid lines correspond to the pseudofermion
(conduction-electron) propagator. Note the spin structure of
each vertex.

FIG. 2. The vertex part I . The energies c&,cz (e&, c2) are as-
sociated to the pseudofermion (conduction-electron) lines.

In the rest of this paper we make the rescaling
V/2N~ V, J/2N~J, in order to follow Nozieres nota-
tion. Now, we take a constant density of states (NF)
for the conduction band and perform the calculation of
the Feynman diagrams up to the two-loops order in the
coupling constants. In this section we only keep the most
divergent contribution in each diagram (see also Sec. III}.

For the pseudofermion (deep-electron) propagator
Gd (co) we obtain the result

Gd (co) (co—Eoz—)

needed, it can be restored by dimensional considerations.
Now we consider the vertex part

which is the sum of all the diagrams of the form of Fig. 2
(without their external legs). This function can be
decomposed into a scalar part I and a vector part I',
according to'

r, . . .(I~j)=r'(I~j N~, ~,5r, r,
X 1+2NF(V + —,'J )ln

Eoa
(2.4) +,'r'(I~j)~. . r„. (2.6)

XI=1, (2.5}

and the density of states disappears from our formulas. If

where A is a cutoff for the momentum integration. The
renormalized deep-electron energy EoR arises from Eo by
adding the bubble diagrams up to the two-loops order.
To get a simpler notation from now on we take Epg 0.
As is explained in Refs. 2 and 3, the conduction-electron
propagator G (k, k';co) does not have A divergences.
The diagrammatic series break the translational invari-
ance and therefore G (k, k', co } is no longer diagonal in k.

However, the density of states turns out to be multi-
plied by a jinite constant. This is a crucial point. It im-
plies that the renormalization properties of any function
f coincide with those of NFf. So, in the rest of this paper
we make

From this it follows that

1 '(
t co j ) = I' . ( I co j ),

I (tcoj)=r . (tcoj) —
—,'r . (I~j)

(2.7)

=r. .. .(I~j)+,r. . ..(I~j) .

Now we calculate all the Feynman diagrams that con-
tribute to I up to the two-loops order. Topologically the
involved graphs are the same as one has in the x-ray simi-
lar problem. ' The additional ingredient is that now a
combinatorial factor arising from the three possible ele-
mentary processes of Fig. 1 must be computed. Finally
one expresses the perturbative series for the two possible
reaction channels defined by Eqs. (2.6) and (2.7). Keeping
only the most singular terms of each diagram, one ob-
tains

I (e&, ez, Q„Qz)=V —(V +—,'J ) ln2 3 2

1

A—ln
02

+(V +—'VJ +—'J ) In 0 1

—I (Qz, e& ) —I(Q2, ez)

+( V +—'VJ ——'J ) ln —I(Q&, eI)—I(Q~, ez)
2

+2(V +—'VJ )ln—
4 (2.8)

for the scalar part of I and
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I (&i, &2,'&i, &2)= —J+2JV In
A

1

A—ln
2

+J2 1 +1"01 "02 —J(3V +—'J +3VJ)ln A
4 0

1

—J(3V +—,'J —3VJ)ln +J 3V — + VJ [1(Qi,s')+1(Q s')]
2

J2 J2+J 3V — —VJ [I(Q2,si}+I(02,az)] —2J V — ln—
4 2p 1 2p 2 4 (2.9)

for the vector one. In these formulas

01=E]+E1=E2+ E2

I02=61 82= E2

(2.10)

are the total energies associated with the particle-particle
(0, ) and with the particle-hole (02) interaction chan-
nels. 4'

The first term in these expressions is the elementary in-
teraction. The terms associated with the sums and
differences of the lnA's represent the contribution of the
one=loop graphs. The terms in ln A arise from the two-
loops ladder graphs. The parquet (nonladder) dia-
grams ' are represented by the terms in I(Q;, sj. ). The
latter is a double-logarithmic function defined by

I (x,y) = ln —ln ——
—,'ln — (1—b,» 0}

A A, 2 A

x y
'

y

——' ln
A

T y0& (2.11)

where the symbol b,~o takes the value one (zero) for y
equal to (different from) zero. Finally, the last term in
these formulas is due to the irreducible ' two-loops
graph. It depends on c.=max(c, „s2).

The imaginary parts of the propagators have been
neglected in this calculation. Note that Eqs. (2.8) and
(2.9) are general expressions for I and I'. No hy-
pothesis on the external frequencies has been made. The
only restriction is the conservation law (2.10), and there-
fore these functions depend on three independent vari-
ables.

III. RKNORMALIZATION OF THE THEORY

Expressions (2.4), (2.8), and (2.9) for the Green's func-
tions and for the vertex parts are not satisfactory. These
formulas contain a strong dependence with the cutoff,
which is of the form 1nA for Gd and ln A for I . There-
fore, the expressions diverge in both limits, A~O and
A~ ~. However, this double divergence is hard to ac-
cept in a physical framework. The latter is especially
clear in the case ~/A~ CD, because electrons with ener-
gies far away from the Fermi level should not produce
any type of singularity in the physical magnitudes. The
main reason for which this type of behavior arises has

I

been clearly explained in Wilson's numerical works about
Kondo ' ' and Anderson models. The point is that in
these problems one can distinguish an infinite number of
energy scales determining the phenomena.

To obtain a finite theory the various scales must be
separated in some way. Wilson's method provides a pos-
sible manner for doing this. Starting, for example, with
an energy scale A0, one considers in a second step the
scale Ao/2, then Ao/(2 ), then Ao/(2 ), and so on. When
the problem is attacked by using a continuous perturba-
tion theory such as the one explained in Sec. II, we are
simultaneously considering all the possible scales in-
volved in the phenomena. No separation has been made,
and one finds divergent results.

Here we propose another way to separate the various
scales, by using a multiplicative renormalization method.
Although this type of method has been considered some
years ago, ' ' we present in this work a different pro-
cedure to obtain the renormalization-group flow equa-
tions (RGFE's). The idea is to employ for the Kondo
problem the formal machinery that is used in field theory
to renormalize, for example, a classical P theory, or a
nonlinear 0. model, etc. Essential ingredients of these
methods are the renormalization conditions and the
Callan-Symanzik equation.

In this case, the first step of the procedure has been
given already when the bare energy E0 was replaced by
E0+, absorbing the bubble diagrams. This is similar to
the bare mass renormalization in field theory. Exactly
as in that case, one must postulate here that the observ-
able quantity is E0+ rather than E0. Moreover, when the
theory is worked out to a Pnite order, some bubble dia-
grams turns out to be divergent for A~ ~. So, if E0& is
a finite quantity, E0 is not.

Now we consider the renormalization of Gd '. A re-
norrnalized theory at the energy scale x is defined by re-
quiring that

Gd~ g(~)=—~~ (3.1)

(recall that Eos has been taken as zero). Condition (3.1)
means that the renormalized function has the same form
as the bare one (hereafter renormalized quantities are
denoted with a suffix R). The relation between the renor-
malized and the bare propagators is of the form

(3.2)
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Taking into account Eq. (2.4) one obtains

Zd = 1 —2( V +—'Jz)ln—
4 X

(3.3)

up to the two-loops order. Strictly speaking, Eq. (3.1)
only holds at IcoI =x. However, Gd R turns out to be in-

dependent of A at any frequency, and then it is finite in
both limits A~O and A~ ~. The constant Zd gives
the wave-function renormalization of the deep-electron
field. The effect of Zd is to cancel the two-loops graphs
of Gd, which has the logarithmic divergence.

Now we consider the renormalization of the vertex
parts. In an intermediate step we define the vertices I
and I' by

r"({~})=z,r"({~}). (3.4)

The multiplication of I by Zd cancels the corresponding
irreducible diagram. This is not the case for I [see Eqs.
(2.8) and (2.9)]. We note, however, that in both vertices
there remain A-depending terms, in particular the diver-
gences of the type ln A. To avoid this problem in the
next step renormalized couplings VR and JR are intro-
duced. Putting Eq. (3.4) in the form

I ({co})=VZ ({co}),
I '( {co } ) = —JZ ( {co } )

(3.&)

VR VZvIP~ JR JZJ IP (3.6)

When V and J are eliminated in favor of VR and JR
and replaced in Eq. (3.5), the resulting expressions be-
comes asymptotically free of A singularities (i.e., for
A~o or A~ ao ). However, we must note that while the
lnA terms are canceled out in the differences of the type

(the bare couplings have been factored out) and introduc-
ing a renormalization point

P = {co}=(e&, e2', Qt, A2)

to be specified, we define the renorrnalized couplings via

I '({co},V,J,x)=Z I '({co},VJ, A),

~d, R (~& VR & JR &x) zd~d

Gd R(co, V„,J„,x)=Zd 'Gd(co, V, J,A) .

(3.9)

(Xd is the pseudofermion self-energy. ) More generally we

suppose

r'," '({~},V„,J, ,x)=(Z, )"r'" '({~},V, J,A)

(3.10)

for a vertex with 2n (2m) external legs of pseudofermions
(conduction electrons). This assumption is based on the
fact that the conduction-electron field does not undergo
renormalization.

Now we can take two different routes. A possibility is
to study the different renormalized theories that corre-
spond to a given bare one. The second path is on the
contrary, to vary the parameters of the bare theory keep-
ing as fixed the renormalized ones.

We adopt the latter procedure, which is known in the
analogous field-theory problem as renorrnalization of
the bare theory. To do this one imposes on the left-hand
side of Eq. (3.10) the condition

and cancellation only occurs at frequencies 0=—Q. In
other words, the theory becomes finite on)y at the vicinity
of the renormalization point.

Now we take a scale factor x and define the point P by
imposing

(3.8)

Taking into account Eq. (2.10), these relations can be
fulfilled, for example, if the pseudofermions are placed in
their "mass shell" (e, =Ez=o) while the conduction elec-
trons are endowed with an energy x above (or below) the
Fermi level. The renormalized functions are then related
to the bare ones as follows:

»I A/n —»IA/o I
=»In/n, (3.7a) (r'," ')I„=o, (3.1 1)

another thing happens with the ln A terms. For this
case, one has differences like where the subscript means that the renormalized magni-

tudes (x, VR and JR ) remain fixed. We obtain the condi-
tion

—P (VJ,A/ ) —P (VJ,A/x) +ny„(V J,A/x) r'"' '({~},VJ, A)=0,aJ (3.12)

where

Pv( V, J,A/x) = — A V
a

I

Equation (3.12) is a Callan-Symanzik-like equation. We
must deduce explicit expressions for the derivatives in
Eq. (3.13). From Eq. (3.6) it follows that

yd( VJ A/x) = A lnZd
c}

aA
(3.13)

O=A lnJ +A lnZJ,
a D

BA DA
(3.14)

pJ(V, J,A/x)= — A Ja and a similar relation for V. Expanding the tota1 deriva-
tives of the factors Zz and Zv we obtain



41 X-RAY-ABSORPTION AND KONDO PROBLEMS: UARIATIONS. . . 11 541

J BZJ J BZJ J1+
Z, aJ 'Z, av Z, aA '+ ~

= A
pj = —2J (1+J),
Py=O

(3.22)

V ~Zv V ~Zv V 8+ y 1+ A'Z, aJ ' Z, av Z, aA

(3.15a) (although ZJ has a one-loop term, it vanishes at the point
P). To calculate yd, only the first term of Eq. (3.16) is
needed because the first correction to Zd is two-loops or-
der. We obtain

(3.15b) yd= —2(V +—'J ) (3.23)

From this system one can calculate PJ and Pv. Note
that all the involved derivatives must be taken at the re-
norrnalization point. Finally, the quantity yd is equal to

cl 8 8
yd =A lnZd —pJ lnZd —pz lnZd .

BJ BV
(3.16)

The P functions define the RGFE's of the problem
while yd determines the anomalous dimension of the
deep-electron field.

Now we consider both the two-loops and the three-
loops approximations of the theory.

(i) Two-loops approximation Th.e derivatives
(A(B/BA)ZJ)p and (A(a/aA)Z~)z can be calculated
from Eqs. (2.8), (2.9), (3.4), and (3.5). For an arbitrary
point P these derivatives contain terms of the form

A+ co]
ln —= ln (3.24)

The Eqs. (3.22) and (3.23) are our results in the two-loops
approximation. Note that the choice (3.18) implies that
the functions PJ, Pv, and yd are no longer dependent on
the ratio A/x, and they only depend on the physical con-
stants Vand J.

(ii) Three loops -approximation In. this paper all the in-
volved Feynrnan diagrams have been calculated assuming
that the external frequencies co; are small in comparison
with the cutoff A, i.e., Ice, I

« A. In other words one uses
the notion that A is a priori a genuine cutoff for the
momentum integrals. Then in any step of the calculation
the following approximation has been made:

(3.17)

By taking the renormalization point as in Eq. (3.8), the
terms in lnIQ~/Q2I are eliminated: one then has a sym-
metry between the input and the output of each diagram.
The remaining two terms behave as ln(A/x). The physi-
cal magnitudes cannot depend, however, on arbitrary cal-
culations parameters. Then one is forced to take the re-
normalization point satisfying

(3.18)

This choice is equivalent to neglecting in the perturbative
series all the terms of the form in~A, with p ~2. To ob-
tain physical results, only the lnA singularities ~ould be
relevant. The effective Z functions are, then, up to the
two-loops order,

This is particularly useful in the computation of diagrams
with two or more loops because the analytic work is then
simplified.

In Sec. II only the leading contribution of each dia-
gram has been kept. However, to perform the theory up
to the three-loops order is now necessary to keep also the
subleading contributions of the two-loops diagrams.
Then the A-independent terms are required. Although
the parquet graphs have terms of this type, they depend
on ratios of external frequencies. We neglect these con-
tributions because we are interested in quantities in-

dependent of the renormalization conditions. On the
other hand, the two-loops diagram for Xd and the corre-
sponding irreducible graph of I produce relevant con-
stant terms.

As results from expanding the corresponding logarith-
mic integral, we must make the change

Z~ =1—2J(1+J)ln —,Zf, =1,A
(3.19)

A A
ln —~ln —+ 1 (3.25)

z I, =z I,=z I,=l. (3.20)

while Zd is given by Eq. (3.3}. Note that at the renor-
malization point

in the last term of the Eqs. (2.4), (2.8), and (2.9).
Now we look for the three-loops order terms. For Xd

these contributions are represented by the two diagrams'
of Fig. 3. The total contribution of these graphs is

From Eq. (3.10) one obtains
Xd (co)=3J e ln —+21n —+(3) 3 2 A

(3.26)

A ZJ = —2J(1+J),a
aA

A Zy =0,a
aA

and from Eq (3.15) it fo.llows that

(3.21}

(the ellipsis indicates nonsingular terms). For J=O there
is an exact cancellation between the two diagrams. For I
there are many more three-loops diagrams. Some of
them are shown in Fig. 4.

Let IG =IG(Q„e,, s2) be the loop integral that corre-
sponds to a given graph G of this figure. Together with G
there is a symmetrical diagram G (not shown) that is ob-
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(a)

FIG. 3. Diagrams contributing to Xz at the three-loops or-
der. Only the topological structure of the graphs has been indi-
cated. With each vertex one must associate one of the elementa-
ry processes shown in Fig. 1, whenever the total-spin conserva-
tion law is fulfilled. The allowed vertex configurations then pro-
duce a topological factor affecting the loop integral.

+ —,'C [IG(Q) ) —IG(Q2)] (3.27)

(a=0, 1). Clearly only the factor C+ matters because the
difference of two logarithmic integrals does not contrib-
ute to the P functions. If IG has a simple lnA term and

fG is different from fG, an effective contribution to I
arises. As a reference we give in Table I the loop in-
tegrals for the graphs of Fig. 4, together with the corre-
sponding C+ factors for the two channels of I .

The function P(x) of Table I is defined by

tained from 6 by reversing all the internal conduction
lines. Its contribution is IG = —IG(Q2, s, , e2), because the
signs of the three elementary loops are changed. '

If fG (fG) is the topological factor~s of the diagram 6
(6) contributing to the channel a of I, for the combined
contribution of 6 and 6 to I it follows that

I G+G(Ice) )=fGIG(Q)) —fGIG(QZ)

—:—,'C+ [IG(Q()+IG(Q2)]

FIG. 4. Some of the three-loops diagrams for I . Again we
have only indicated the loop structure of the graphs. The asso-
ciated 6 diagrams (see the text) are not displayed. The loop in-

tegral and the topological factors for these graphs are given in

Table I. Only diagrams (d) and (I) are relevant for the P func-
tions.

P(x)= —f du = g, x",~ ln(1 —u) "
1

0 Q
&

n

and it satis6es

(3.28a)

$( I ) =g(2) =n/6, . (3.28b)

0g b„
n&1

A
ln 0 (3.29)

Note that the summation runs over n «1. Then, con-

g being the Riemann zeta function. The leading term in
these graphs is of the form 1n~A, with 1 &p ~ 3. For the
ladder graph 4(a) is p=3 and there is no correction term.
In a typical parquet graph such as 4(b) there are, on the
other hand, subleading terms of the form

TABLE I. Loop integral and topological factors for the diagrams of Fig. (4). The formulas displayed in the first column of this
table represent only the singular contributions to the loop integrals. In the case of diagram (c) the calculation has been made only for
the choice e.

&
=@2=0of the external frequencies. In all the remaining diagrams the formulas are general (c—= c& ———c2 and c'=-e& =—c2).

To obtain these formulas it is convenient to perform first the frequency integrals. The topological factors for the vertices I and I'
(Co+ and C~+, respectively) are defined by Eq. (3.27), being shown only for the relevant graphs. In the cases of diagrams (d) and (I)
these coefficients include an extra factor 2, due to the two symmetrical possibilities one can draw such graphs.

Graph Logarithmic integral I (0&) c+ C1

(a) —1n
A

Ql

—,'ln'
I

n, A—2 ln21n 1 — +P( —Q, /2A) ln +
2A QI

(c)

(d)

r

A
g((2)ln +2 P(Q, /A) —P( —0, /2A) —ln2 ln 1 — ln +0, 2A QI

A A—-'ln ——ln —+
2

6VJ'

(e) —ln —ln —, + -lnA A I 2 A + ~ ~ ~

C C' 2 0)
2—4J V ——2 2

4

—ln
A A—ln + ~ ~ ~

QI
—4J V ——

4
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sistently with Eq. (3.24), these terms must be neglected
because they are a priori small (when one assumes that
~Q~ ((A). The so-called fundamental graphs [Fig.
4(c)] are the only ones with a logarithmic leading term
(p= 1). However, as C+ =C+ =0, these diagrams do not
contribute to the Z factors. Diagrams 4(d) and 4(e) are
vertex corrections to the irreducible part ' of the interac-
tion. Graph 4(d) is a one-loop correction to the vertex I
(or II) of Fig. 5(a). Its leading part contributes with p=2.
Its subleading part is, on the other hand, a simple loga-
rithmic correction with a constant coeQcient. Graph 4(e),
which represents a correction to the vertex III, has not,
on the other hand, a subleading lnA tt;rm and it contrib-
utes with p=2. Finally, Graph 4(f) represents a two-
loops irreducible-vertex correction to the one-loop dia-
gram; see Fig. 5(b). It has p =2 and also contributes with
a subleading lnA part.

To calculate the p functions we have neglected above
the terms in In~A, with p ~ 2. From Eq. (3.24) we now ar-
gue that the terms of the form (Q/A)"in~A/Q~ (n ~1)
must also be neglected. It follows that only the simp/e
logarithmic corrections arising from the skeleton dia-
grams of Fig. 5 contribute to this order. (This is an im-
portant difference from the calculation made in Ref. 16;
see the following. )

Now, from Eqs. (2.4) and (3.26) we obtain the effective
propagator

Zd =1—2(V + —,'J ) ln —+1 +6J ln —+O(L ),
X X

ZJ =1—2Jln ——2J 1+ln-eff A 2 A

X X

+2(5J —4 V J)ln —+0 (L ),

Zv =1+0(L ),

(3.33a)

(3.33b)

for the relevant Z factors (L is the loop expansion param-
eter). Note that at the renormalization point these func-
tions satisfy

Zd iq
=1—2( V +—'J )+O (L ),

Zi i ~
= 1 —2J +0 (L ) .

(3.34)

Taking into account everything, the Eq. (3.15a) can be
written as

pJ[1 —4J +O(L )]=—2J [1+J—3J +4V +O(L )]

[from Eq. (3.34) the terms in Zz
' now do contribute]. It

follows that

pj= —2J (1+J+J +4V )+O(L ), (3.35a)

(3.32)

and from Eqs. (3.4), (3.6), (3.31), and (3.32) we now find

(G' ) '=co 1+2(V +—'J ) ln —+1 —6J ln-
d, o

X Pv=O(L ) . (3.35b)

(3.30)

I = —J 1 —2Jln —+2 V—1 A, J'
e6'

X 4
ln —+1A

up to the three-loops order. From Eqs. (2.8), (2.9), and
(3.25), and the results of Table I, one finds for the
effective vertices

Finally, from Eqs. (3.16), (3.32), (3.34), and (3.35) one
finds

yd= —2(V + —,'J )+O(L ) . (3.36)

IV. FLOW EQUATIONS AND SCALING

Equations (3.35) and (3.36) are the main results of this
work. They are discussed in the next section, together
with the RGFE's and scaling.

+4J(J —2V )In—

I = V 1+2(V +—'J ) ln —+1 —6J ln-eff X

From Eqs. (3.2) and (3.30) it follows that

(3.31a)

(3.31b)

Starting from the general solution of the first-order
partial differential equation (3.12), which can be con-
structed from the associated characteristic curves ', we
can deduce an important property of the vertex functions
I'"' '. If the cutoff A undergoes an enlargement
A~p 'A, one has

Ji~I nyd( V, J')I'"' '([co), V J p 'A)=exp —f, dJ' I'"' '(Ice], V J(p), A),
pj( V,J') (4.1)

where J(p) is a flowing coupling which satisfies the
RGFE's,

dJ(s) = —PJ(J(s)), s =Inp .
ds

(4.2a)

[b)

That is, except by a complicated prefactor, the vertex at
(J,p 'A) coincides with the one at (J(p), A). The flow in
this problem is only one dimensional, at least up to the
three-loops order. The corresponding equation for Vis

(a)

FIG. 5. Skeleton diagrams for I . The graph (a) gives origin
to the diagrams of Figs. 4(d) and 4(e), while graph (b) produces
the correction of Fig. 4(f).
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dv(s)
ds

(4.2b)

By combining Eqs. (4.1) and (4.3) one obtains, after per-
forming the change pcs; ~co;,

I ~"' '([toj, V J,A)=p "' [P (J(p))]"
Xl'" '([p 'co), V,J(p), A) . (4.4)

Here

J yd( V,J')
g~(J)=exp —f, dJ'

&p J VJ' (4.5a}

is the prefactor of the Eq. (4.1} for n= 1. The function
J(p) is defined from Eq. (4.2a) as follows:

d '

Jo J VJ' (4.5b)

and therefore this is a fixed parameter.
From dimensional considerations one more property is

obtained. If d„ is the canonical dimension of I'"'

[r(n, m)] A n, md

one has

r'"-'(Ip~I, v J, A)=p ".r'"-'(t~~, v J p-'A) .

(4.3)

Pq( V,J, )=0 . (4.6)

In such a case from Eq. (4.2a), J remains equal to J, for
any "time" s. Equation (4.4) must be replaced by

I'"' '([t0], VJ, , A)=p "' 'I'"' '( tp 'to], VJ„A),
(4.7)

So, there is a rigorous scaling for any p, and y, is indeed
the anomalous dimension of the pseudofermion field.

In the second situation one starts from an arbitrary Jo
and takes the infrared (ultraviolet) limit for p: p~0
(p~ ~ ). The fiow iterates, in general, towards a fixed
point J „(J„'t) which is called an infrared-stable (IS)
[ultraviolet-stable (US)] fixed point. Now Eq. (4.4) leads
to

[J(p=1)=Jo]. Equations (4.4) and (4.5) are similar to
the standard Gell-Mann —Low (GML) equations. ' '
There is, however, a difference. On the right-hand side of
Eq. (4.4) the function I' depends on p via the fiowing cou-
pling J(p). This fact prevents one from separating, in a
general case, a factor with the external physical variable
(frequency or temperature, see the following). In the usu-

al GML formulation one supposes that this separation is
always possible.

In two important cases Eq. (4.4) reduces to the GML
hypothesis. In the first possibility one is at the beginning
at a fixed point of the RGFE. Then Jo =J, and

I'"' '(Ice), V J,A}=[c;„„,(p))"p " '"'"'I'"' '([p 'a)I, V J„„,, A), p 0, (4.8)

where c (p) is, m general, a smooth function of p. [IfJ*
is a double zero of }t3J this factor is of the form (lnp)',
v~(dyd/dJ), . ] In this case one would have only

asymptotic scaling (i.e., for p~0, ~ ).
By considering that all the external frequencies are of

the same order [which is the case specified by the renor-
malization condition (3.8)], cu, =-co, one can take p as fol-
lows: E,

C.
in, ul

n
n, m V&n, ul

Xconst,

desired limit is. If one is interested in studying low-
(high-) energy scattering processes or low- (high-) temper-
ature behavior, according to Eq. (4.9) the IS- (US-) fixed
point is then required. One obtains, from Eq. (4.8)

I'"' '(e V J A)

(4.9a)
g~Q, ao . (4.1 1)

On the other hand, if the absolute temperature (T) of
the system is not zero, then the frequencies of the exter-
nal lines are of the form co, =(2n, +1)T, as results from
the Matsubara diagrammatic technique for fermions.
Then one chooses p to be equal to

Now we apply these ideas to the two approximations we
have made.

(i) Two loops approxim-ation In this case .the relevant
functions are given by Eqs. (3.22) and (3.23). The RGFE
is then

In any case, Eq. (4.7) gives

(4.91) =2J (1+J) .
ds

(4.12)

dn m +&V

r'™(Ev J* A)= —' Xconst (4.10)

(a=co or T).
In the general Aowing case, one must specify what the

There are two fixed points: J, =0 and J, = —1. The
first one is a double zero of PJ and it is IS (US) for Jo )0
(Jo (0). The J» = —1 is, on the other hand, an IS fixed
point. The anomalous dimension calculated from Eq.
(3.23) is in the two cases
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—2V, J, =O

—2(U2+ —,'), J, = —1 . (4.13a)

(4.13b)

d, , =0. The exponent of p reduces now to Eq. (4.13a), in

agreement with the corresponding MND result.
Now we discuss what happens when Jo&0.

Specifically we are interested in the case Jo & 0, l Jo l
« 1.

The initial behavior is dictated by

dJ/dS =—2J2,

N
X (co)=

A
Jo=O (4.14}

When Jo=0, one is already at the start in a fixed point.
The corresponding Hamiltonian is our slightly general-
ized version of the x-ray absorption problem. It is in-

teresting to analyze now some particular cases of Eq.
(4.10}. When m=O and n=1 the vertex reduces to the
pseudofermion self-energy Xd(co), being d, o =1. So,

1 —2V

J(p) =——,
' ln

PI

p

Here

1
pk exp

p-PI

which is integrated to give
' —

1

(4.15a)

(4.15b)

This is the well-known Mahan-Nozieres-De Dominicis
(MND) result' at leading order in V; see Eq. (2.5).
Analogously, in the case n =m=1 the vertex is I and

I

is the Kondo dimensionless temperature. ' ' By com-
puting the function Pi (J), Eq. (4.5a), we can write Eq.
(4.11) in the ultraviolet limit as follows:

I" (s, V,J,A) = —J X'
(&»Pk)

b(J) 1 ——' ln
8

p
—2V

b(Jo, V)
Pk

+ 0 ~ ~

VXO

, V=0 (4.16a)

(4.16b)

&d(ai) —=
CO

A
~ «pk, (4.17)

from which the associated propagator would be not
singular. For the vertex functions in the pure Kondo
model ( V=O) the behavior should be

' —3/2

r 1O

A
E«Pk . (4.18}

This, however, cannot be the case. In fact, from Eq.
(4.18) one concludes that the electrical resistance (which
is related to lI l ) should have a strong divergence at
T=O. This magnitude has a known finite limit. ' To
see what the problem is here, we must note that J, = —1

is in fact a finite value for the coupling constant. We are
not justified, therefore, to neglect the higher-order terms
in the RGFE: all the powers of J"could be important to
determine the true flow at p «pk. Equations (4.17} and

(b and b are functions of Jo and V). Therefore, the initial
behavior is controlled by the (J„=O)-US fixed point.
Equation (4.16a) resembles the naive extrapolation one
makes from perturbation theory. ' On the other hand,
according to Eq. (4.16b), for VAO the vertices should
vanish in the ultraviolet limit with a critical index equal
to the associated MND's one.

Now we look for the infrared limit. Equation (4.12)
shows that J(p)~ —1 for p &&pk (J is at the vicinity of
J„=—1 already for p &

pk ). From Eqs. (4.11) and
(4.13b) one obtains

—1/2 —2 V2

(4.18) must then be checked.
(ii) Three loops approxim-ation In th. e next improved

version the relevant functions are given by Eqs. (3.35) and
(3.36). The RGFE is now

=2J (1+J+J +4V )
S

(4.19)

Consider first the case V=O. It is clear that PJ does
not have a nonzero fixed point for real J. So, starting
from an arbitrarily small negative J the Bow now reaches
the strong-coupling limit (J= —oo ). However, here
there is a serious problem. Indeed, for J« —1 the solu-
tion of Eq. (4.19) can be written as

p~J(p)= 61n-
p

—1/3

(4.20)

Then the J= —~ limit is reached for a finite change of
scale p=p, (or, roughly speaking, in a finite "time"
1 —lnp, ). Now, if one attempts to extrapolate Eq. (4.20}
for the scales p «p, an impossible physical behavior is
obtained: the coupling becomes ferromagnetic and
iterates ultimately towards the trivial fixed point. It fol-
lows that the infrared limit cannot be studied from Eq.
(4.20).

The one-loop approximation also has this same prob-
lem. However, by comparing Eq. (4.15) with (4.20} we
note that a slight improvement has been made: for small

Jo one has p, «pk, and therefore smaller scales could be
considered. With this in mind, we now observe a rather
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=2J /(1 —J) . (4.21)

Now, as it has been recently proved by Barnes, this
equation is just the exact RGFE for the Kondo problem.
Equation (4.21) now gives a correct crossover from the
weak-coupling to the strong-coupling region.

In a finite form Eq. (4.21) is

———ln I Jl =2(s —lnp, ),1
(4.22)

where p, = ~ Jo~p„. In the infrared limit, it reduces to

P~J(p) =- —p,exp( —2s)=-
8

(4.23)

In other words, the point J = —~ should be the IS fixed
point for the Kondo model with negative initial coupling.

To find the scaling law one should calculate, according
to Eq. (4.11), the anomalous dimension at the strong-
coupling regiine. In particular, if yd(J —+ —~ ) turns out
to be a positive quantity, the vertex functions will exhibit
a smooth behavior for e~0. Such a calculation, howev-
er, goes beyond from the possibilities of any finite-order
weak coupli-ng perturbation theory, and therefore it will
not be attempted here. Note that only the two-loops con-
tribution to yd is known. So, for this quantity not even a
simple extrapolation like Eq. (4.21) is available.

To understand the reason for the absence of three-
loops corrections in yd, we can look for the pure
potential-scattering case (J=O). Then, according to the
exact solution of Ref. 4, the anomalous dimension is

yd(g)= — [@g)l' g=NF~2
(4.24)

5 being the scattering phase shift at the Fermi surface.
Taking into account Eqs. (39) and (44) of Ref. 4, one finds
the expansion (NF has been taken as a constant)

crucial feature of Eq. (4.19): the coefficient a4 of the J
term is also 2. This particular value strongly suggests
that the generalization of the RGFE to all the orders in J
is, for V=O,

dJ/ds=2J (1+J+J +J + .
)

dictated by the potential-scattering coupling, see Eq.
(4.16}. The form of the singularities for p~ oo is again
independent of the initial Jcoupling.

In the renormalization-group language, one describes
this situation saying that for p~Q the coupling J is
relevant (irrelevant) at the US (IS) fixed point. The oppo-
site happens for p~ ao.

V. CONCLUDING REMARKS

The original purpose of this work was to find the
RGFE and scaling laws for the x-ray and Kondo prob-
lems borrowing the formal renormalization-group
machinery of field theory. Items such as renormalization
conditions, the relation between the bare and renormal-
ized theories, Callan-Symanzik equation, fixed points,
asymptotic scaling, and critical indices have been
developed in some detail. Although here one has a quan-
tum problem, the procedure works exactly as in, for ex-
ample, a classical P" theory in field theory.

Finally, let me recapitulate the inain factors about our
treatment, comparing this with other approaches. (i) In
the papers by Fowler and Zawadowski and by Solyom
the RGFE were derived via a Lie differential equation.
Although elegant, the underlying idea is perhaps some-
what opaque for readers not familiarized with the theory
of the Lie algebras. In addition, their procedure must
solve equations self-consistently. (ii) At the two-loops ap-
proximation the present approach gives scaling equations
in agreement with those obtained by Anderson and by
Solyom and Zawadowski via the so-called "poor man' s
renormalization-group method. "

(iii) Our approach is very similar to the one made by
Abrikosov and Migdal in their classical paper. As al-
ready mentioned, there are, however, two important
differences. The first one refers to the scaling law. The
Callan-Symanzik equation gives only asyinptotic scaling,
in disagreement with the ideas of Gell-Mann —Low from
which the dependence on the temperature of a physical
magnitude could always be factorized out. The second
difference is our neglect in the diagrammatic series of
terms of the form (0/AginA/Q~, p & 1. They would in-
duce, in the P functions, contributions of the form

yd(g)= —2(g ——3m g + . ), (4.25)
(II/A)(1 —p in~A/fl~ ),

and there are no three-loops corrections.
To close this section we make a comment about the

general case in which both couplings J and V are
nonzero. At least up to the three-loops calculation here
performed, the coupling Vis an invariant, see Eq. (3.35b).
The exact Eq. (4.24) gives a critical index that exhibits a
dependence on the constant V. In the statistical mechan-
ical models this happens only when the corresponding
coupling is a marginal variable. ' So, one must con-
clude here that the line J=O is, as a whole, a fixed one.
Taking into account this and our results, it is natural to
suppose that V should also be an invariant when JWO. If
this is the case, it is clear that the infrared properties of
the model cannot depend on V: for p~O the general
Hamiltonian (2.3) should exhibit an universal Kondo be-
havior. On the other hand, the ultraviolet properties are

which explicitly depend on the renormalization point
(0). We have neglected such terms, although in the end
the choice A=A was made. Note that by the same
reasoning the nonsingular terms of the form (0/A),
p ~1, have also been neglected. Proceeding in this way
we found Eq. (3.35) for PJ up to the three-loops order,
which is different from the corresponding result of Ref.
(16). In addition, we now know the contribution of the
potential scattering at this order. More interestingly, by
making a naive extrapolation one is led to Eq. (4.21}, in
agreement with Barnes' work.

(iv) Another relevant point is the connection with
%'ilson's ideas. Indeed, as has been explained earlier, by
taking the external frequencies near to the renormaliza-
tion point, Q,-=-x, one can construct a renormalized
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theory free of A dependence. The Callan-Symanzik equa-
tion is just the expression of this fact. The choice x =A,
Eq. (3.18), for the renormalization point implies the
effective cancellation of the stronger singularities in the
perturbative series. The P functions turn out to be (A/x)
independent and therefore f'tnite. Suppose one is interest-
ed in knowing the true behavior of a response function
when the system undergoes a proof at the external fre-
quency A. By combining the two previous conditions it
is clear that the physical answer emerges when one takes
A of the order of 0, A -=Q. Now, taking into account the
meaning of A, this is seen to imply that only the scatter-
ing processes in which a/I the involved electrons have en-
ergies smaller than 0 are relevant to determine the
response at the frequency Q. In other words, we have
effectively separated the energy scales x in two sets:
x &0 and x &Q. Only the first set is involved in the
physical behavior. This is in a spirit similar to Wilson's
separation of the scales. ' ' Another point in which
the results of those works can be related to ours is the
asymptotic limit. Indeed, from Eqs. (4.9), (4.11), and
(4.23) one concludes that when the limit T~O is taken
the system iterates towards the strong-coupling regime,

no matter what may be the negative initial couphng.
(v) We emphasize that at the level of this paper the Eq.

(4.21) for the Kondo model is only a conjecture. To
rigorously establish this there are probably two routes.
One could intend to perform weak-coup/ing perturbation
theory at all the orders in J, summing up the resulting
series.

Although such a calculation could be an extremely
diScult task, the true infrared limit should be available
from this method. In fact, in a remarkable recent work
Berkovich and Lowenstein have proved that the Kondo
problem is Borel summable, showing that the crossover
between weak- and strong-coupling regimes is essentially
perturbative in nature. So, in principle, the strong-
coupling regime is accessible to perturbative methods
based in weak-coupling series. A more rational pro-
cedure to obtain the infrared limit is perhaps to construct
a strong coup-ling perturbation theory (i.e., power series in
1/J). In this way one would avoid the technical problems
involved in summing up infinite series. Both expansions,
the weak- and the strong-coupling series would be
matched at J=——1 as a final step. Work in such a direc-
tion is in progress.
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