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We present results of detailed simulations of capillary displacement in model two-dimensional
porous media as a function of the contact angle 6 of the invading fluid. In the nonwetting limit
(6=180°), growth patterns are fractal as in the invasion percolation model. As 6 decreases,
cooperative smoothing mechanisms involving neighboring throats become important. The typical
width of invading fingers appears to diverge at a critical angle 6., which depends on porosity.
Above 6, the invaded pattern remains fractal at large scales. Below 6, the fluid floods the system
uniformly. Probabilities of local interface instabilities are analyzed to elucidate these findings.

I. INTRODUCTION

Fluid invasion, displacement of one fluid by another in
porous media, is important in a large number of industri-
al and natural processes.”> Examples include displace-
ment of oil by water in underground reservoirs, and
spread of water or hazardous chemicals through soil or
concrete. In recent years, fluid invasion has also proved a
fertile field for fundamental studies of pattern formation
in growth.3™® As the velocity, viscosity, and pore
geometry are varied, the pattern formed by the invading
fluid changes from compact to dendritic® or to a fractal
characteristic of either percolation*~° or diffusion limited
aggregation.”® Changing the wetting properties of the
fluids may change the structure from self-similar to self-
affine.’

Lenormand and Bories® and Chandler et al.® have pro-
posed a widely used model of fluid invasion known as the
invasion percolation (IP) model. The model starts by
separating the pore space into larger regions called
“pores,” and ‘“‘throats” which connect them. The topolo-
gy of this network can be described by a set of nodes cor-
responding to each pore, connected by bonds correspond-
ing to each throat.

In the IP model, fluid invasion is mapped onto the
problem of percolation”'? on the network of pores and
throats. When the invading fluid is nonwetting (NW),
the pressure P required to push an interface through a
throat increases as the throat becomes smaller. When the
invading fluid is wetting (W), the required P increases as
the opening becomes larger. Since the largest openings
are pores, they will be the hardest regions to pass in W
invasion.

In either case, the number of pores or throats which
the interface can pass through depends on P. One can
think of passable pores or throats as occupied nodes or
bonds on the corresponding network. The regions that
could be invaded correspond to connected clusters on
this network. Increasing P increases the number of occu-
pied nodes or bonds. Conventional percolation theory!°
can be used to predict how the size of invadable regions
increases with P, and to determine the critical value P,
where the fluid can invade from one side to the other of
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an infinite medium.

Several aspects differentiate the IP model from usual
percolation. The first is that the invading fluid can only
reach clusters connected to the region where it enters the
medium. In contrast, in usual percolation one considers
all clusters. A more important distinction arises when
the displaced fluid is incompressible. Then any region
surrounded by the invading fluid is trapped: There is no
path for the displaced fluid to leave and the invading fluid
cannot penetrate into the region no matter how high the
pressure. Trapping depends on the history of growth and
decreases the size of invaded clusters. Studies indicate
that trapping is important in two-dimensional (2D) sys-
tems,” where it may change the fractal dimension of the
invaded clusters.!!

In usual percolation the approach to the percolation
transition is universal. It depends only on the dimension,
not on the network structure or whether one considers
percolation of sites or bonds. Thus studies of the IP
model have not included the detailed geometry of the
porous media. Rather, random numbers were assigned to
represent the pressures at which different bonds or
throats on a lattice could be invaded. Both bond percola-
tion, which corresponds most closely to NW invasion,
and site percolation, which corresponds most closely to
W invasion, gave fractal invasion patterns with pore scale
structure.!!

The basic symmetry between W and NW invasion pre-
dicted by the IP model is at odds with experimental evi-
dence. Studies of flows in etched networks of tubes,'? and
in thin Hele-Shaw cells packed with glass beads,'? show
significant broadening of patterns as the invading fluid
becomes more wetting. When viscous and boundary
effects are negligible, NW invasion produces a fractal pat-
tern with pore scale fingers. In contrast, invasion by a
wetting fluid produces interfaces which are nearly flat.!*
Even at high velocities, viscous fingers in the W case
remain much larger than the pore size.!> There appears
to be a strong smoothing force analogous to a surface ten-
sion at long length scales.’ Similar behavior is observed
in invasion of porous rocks.!’

Lenormand and co-workers*!? provided the first mi-
croscopic explanation for the large difference between W
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and NW invasion of etched square networks. They
showed that the relevant growth mechanisms were
different in the NW and W limits. In particular, indepen-
dent pistonlike motion of a single meniscus through a
throat was found to dominate NW invasion. Mecha-
nisms involving a confluence of two or three menisci at
tube intersections (pores) dominated W invasion. The
latter mechanisms cannot be described by a simple per-
colation picture. There is no well-defined pressure at
which a given throat or pore can be invaded. The pres-
sure depends on the configuration of the interface; that is,
on the other invaded regions.

This experimental evidence led us'® to construct a
model of fluid invasion which explicitly included the mi-
croscopic geometry of the porous medium and the wet-
ting properties of the invading fluid. The wetting proper-
ties determine the contact angle 8 at which the fluid in-
terface intersects the porous medium.!” We choose to
measure 6 through the invading fluid so that 6=180° and
0° correspond to NW and W invasion, respectively. The
porous media was modeled by a 2D array of disks with
random radii (see Sec. II A), and simulations were done in
the quasistatic limit where capillary forces dominate
viscous ones.

In the perfectly NW case, 6=180°, the interfaces pro-
duced were similar to the fractal patterns of the IP mod-
el. Each segment of the interface advanced almost in-
dependently, and the mean width of invading fingers, i,
was of order the pore size. As 6 decreased, i diverged at
a critical angle 6.. The interface contained longer and
longer flat segments. This smoothing was shown to result
from the increasing importance of cooperative invasion
of neighboring pores. Like the mechanisms observed by
Lenormand et al.,'? these cooperative mechanisms can-
not be described by percolation models.

Above 6. gradual increments in P could still yield
stable percolating patterns at a critical pressure P,.
Below 6., cooperative invasion led to a qualitative change
in the invasion process. Increasing P destabilized larger
and larger connected segments of the interface. Above a
critical P,, the entire interface became unstable and the
system was flooded in a compact pattern. We have
shown that this growth is consistent with a critical depin-
ning transition rather than a percolation transition.® Our
findings can be summarized by the generic phase dia-
gram’ shown in Fig. 1. In the region labeled “static,”
there are many possible stable interfaces. In the region
labeled “moving,” no infinite interface is stable. (There
may, of course, be small closed interfaces in locally un-
favorable regions which would be stable.)

In this paper, we present results of comprehensive
studies of the percolationlike invasion patterns obtained
for 6>6,. (For clarity we will only use the term ‘“‘per-
colation” to describe fractal growth characteristic of a
percolation transition rather than simply to imply span-
ning of the system.) We start, in Sec. II, by describing
the model porous systems used in our studies. These sys-
tems are all 2D arrays of solid disks with random radii.
Section II also describes in detail how individual seg-
ments of the interface are calculated, how unstable seg-
ments are identified, and how they are advanced. In Sec.

11 509
6 —————————————
4 - MOVING
~
~ |
&
2 STATIC
o T
0 60 120 180

O (deg)

FIG. 1. The phase diagram for quasistatic invasion of system
A (defined in Fig. 2) as a function of the dimensionless pressure
aP/y and 6. A solid line indicates the critical pressure for the
percolation transition, and a dashed line the pressure of the de-
pinning transition. Filled circles indicate the critical angle
which separates the two types of critical behavior. The diagram
is symmetric under the interchange P— —P and 6—(180°—6)
which corresponds to redefining the direction of motion. Simi-
lar phase diagrams are found for the other systems illustrated in
Fig. 2.

III we present our results. We first discuss percolation
patterns obtained in the perfectly NW limit and show
that they are indeed fractal. We then consider how the
invaded pattern changes as 6 decreases, and analyze the
divergence of the finger width. These results are correlat-
ed with changes in the probabilities of microscopic insta-
bilities in Sec. IV. We close in Sec. V by offering some
concluding remarks.

II. MODEL

A. Porous media

To model the nearly 2D flow observed in Ref. 13, we
use a 2D array of disks with random radii. This should
be similar to a cross section through a random bead pack,
and allows for a full solution for the interface shape. In
2D, the interface consists of circular arcs connecting
disks. In 3D, interfaces are complex curved surfaces,
which are not amenable to an exact analysis.

Despite its simplicity, this model has several advan-
tages over tube network models. There is no artificial
division of the pore space into throats and pores. The
orientation of solid walls varies continuously, rather than
discontinuously at the juncture between tubes. Such
discontinuities can artificially decouple neighboring
throats.

For simplicity we place the disks on a triangular or
square lattice with lattice constant a. There are L atoms
per row and L rows on the lattice with L between 300
and 1300. Thus the overall dimensions are La by La for
square lattices and La by LaV'3 /2 for triangular lattices.
Figure 2 shows fragments of four distinct L =300 sys-
tems which were studied. Radii were uniformly distribut-
ed within the intervals indicated in the figure and in
Table 1.
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FIG. 2. Small sections from the 2D porous media used in our
simulations. Disks are on a triangular lattice in systems A, B,
and C, and on a square lattice in D. The lattice spacing is a.
Radii r are randomly distributed within an interval. In samples
A and D the interval is large, r/a €[0.05,0.49]. For B, the
mean radius is the same but the range is small,
r/a€[0.22,0.32]. For C, disks with the mean radius nearly
touch, r/a €[0.38,0.48]. Small initial interfaces are shown in
the center of each sample.

All of the invasion patterns shown in this paper were
obtained for system A which is the most disordered. The
porosity @, defined as the fraction of area not covered by
disks, is 0.67 in this system. The average radius of disks
in system B is the same, but the dispersion is reduced.
This makes the porous network much less random and
more spacious: ®=0.73. System C has the same disper-
sion as B, but a larger mean radius. This decreases the
throat sizes and gives the lowest porosity, ®=0.32. Sys-
tem D has radii in the same range as in system A, but the
disks are placed on a square lattice. Here, ®=0.71,
which is roughly halfway between the values for A and B.

The network describing the pore space is the dual lat-
tice of the lattice of disk centers. In the triangular sys-
tems, the triangular pores between disks lie on the ver-

TABLE I. Parameters of systems studied. Quoted values of
6. and v are those used in Fig. 13. Uncertainties in these values
are discussed in the text.

System Range of radii Porosity 6. v
Triangular A [0.05,0.49]a 0.67 49° 2.1
Triangular B [0.22,0.32]a 0.73 69.715° 1.8
Triangular C [0.38,0.48]a 0.32 20.5° 2.1
Square D [0.05,0.49]a 0.71 59° 2.1
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tices of a honeycomb lattice. The throats between disks
connect nearest-neighbor vertices. For system D, the
pores and throats form a square lattice with nearest-
neighbor bonds. In analyzing the width and area of in-
vaded regions we consider only the number of pores in-
vaded. This corresponds to counting the number of sites
on the dual lattice which are covered by the invading
fluid.

We have also studied systems in which the disk centers
were randomly shifted from lattice sites. This decreases
the influence of the symmetry of the lattice, but increas-
ing the variation in radius has a similar effect. The varia-
tions with 6 exhibited the same trends as the systems de-
scribed below.

Several generalizations of the model can easily be
made. We have not considered the case where disks
overlap. Allowing this may help to simulate the effects of
grain consolidation'® which occurs in sintered bead packs
or sandstones. Real porous media often contain many
minerals with different wetting properties. One can mod-
el this by assigning disks different contact angles. Such
generalizations will be considered in future work.

B. Fluid interface geometry

The interface consists of a sequence of arcs between
pairs of disks. Stable interfaces at a fixed pressure drop P
consist of arcs with radius y /P, where v is the coefficient
of surface tension between fluids. Each arc must also in-
tersect both disks at the proper contact angle 6.

Figure 3 shows examples of stable arcs for several con-
tact angles. Dashed lines indicate the arc at the highest
pressure P, where a stable interface exists. At higher
pressures, the interface is too curved to intersect both
disks at the proper 6. Solid lines show arcs for
P=P_ .. /2and P_,, /4 at each 0.

Note that for NW invasion, 6=180°, all arcs are hid-
den within the throat between the two disks. In contrast,
arcs for W invasion, 6=0°, spread around the disks.
These arcs are more likely to intersect neighboring arcs

180°
50
// \\
/ \
OO

FIG. 3. Interfacial arcs between two identical disks of radius
0.25a for the indicated contact angles 6. The last stable arc at
P, is marked by a dashed line. *Solid lines correspond to arcs
for P, /2 and P ,,, /4. P.., decreases from 4y /a at 6=180° to
4y /3a at 6=0°.
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and become unstable. This is the origin of the coopera-
tive smoothing mechanism mentioned in the Introduc-
tion.

Consider two disks whose centers are, in general, a dis-
tance d apart. The geometry and notation used is shown
in Fig. 4. Let the left- and right-hand side disks have ra-
dii r; and r,, respectively. The contact angles may also
differ, and we denote them by 6, and 6,. The arc of ra-
dius r, between disks is characterized by its center (x.,y,)
on the x-y plane, and by the points at which it contacts
the disks. These points are specified by angles ¢, and ¢,
measured clockwise from the axis joining the disk
centers.

Let B denote the angle between the two contact points
as seen from the arc center, and b the difference in their y
(vertical) coordinates. It is straightforward to show that

b,=¢,—0,—0,+B+2m (1)
b=rsing, —r,sing, , )
b=[d —r,cos¢,—r,cos(m—¢,)Jtanu , (3)
b=2r,sinu sin(3/2) , 4)

with
p=0,—¢,—m/2—B/2 . (5)

Equations (2)-(4) allow us to solve for 8 and ¢,. Sim-
plifying to the case 6,=6,=6, we find

d(1—pzcoszn)1/2+2rpsinﬁ/2=(rl +r,)siny , (6)
cos(¢,+m)=pcosn , (7)

where »=p/2—0 and p=(r,—r,)/d. Equation (6) can
be reduced to a biquadratic equation which facilitates the
calculation of 7 and hence 8. Once ¢, is obtained, from
Eq. (7), the coordinate ¢, of the other contact point is
readily obtained from Eq. (1). The center (x.,y.) can also
be readily calculated given the coordinates of bead
centers.

For P > P_,, there is no solution to the above equa-
tions, and no stable arc between beads. This segment of
the interface is temporarily represented by the arc calcu-
lated for P,,,. Values of ¢,, ¢,, x., and y. are used to
check for other instabilities of the interface as described
in the next subsection.

FIG. 4. Geometry used to calculate interfacial arcs. The dis-
tance between the centers of two disks is d.
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C. Instabilities and growth mechanisms

The growth algorithm used is the same as in Ref. 16.
Consider an initial interface which is stable at an applied
P. Increasing P above a threshold value will cause a sec-
tion of the interface to become unstable and initiate flow.
In principle flow should be simulated by solving for the
viscous pressure drop in the medium, and integrating the
velocity for each section of the interface. However, in
the quasistatic limit and at constant P, the interface
moves rapidly between nearly stable configurations of the
interface. One may model the dynamics as a stepwise
process where each unstable section of the interface
moves to the next stable or nearly stable configuration in
turn. Growth continues until a stable interface is found,
or the system is flooded.

Detailed examination of microscopic configurations of
thci6interface reveals three basic types of instability (Fig.
5):

(1) “burst” —there is no stable arc connecting two
disks (P >P_,.);

(2) “touch” —the arc connecting two disks intersects
another disk at the wrong 6, or extends beyond a disk
which has not yet been on the interface;

(3) “overlap” —two neighboring arcs on the interface
intersect.

Burst instabilities are eliminated by moving the inter-
face forward to connect to the nearest disk as shown in
Fig. 5(a). This disk is selected so that its center is closest
to the center of the arc evaluated for P =P_,,, and lies in
the angle subtended by this arc (Fig. 4). Two new arcs
are created between the new disk and each of the original
disks.

When the initial disks are nearest neighbors on the

(a) (b)

FIG. 5. Local mechanisms of growth. In each case the lower
arc or arcs are unstable and growth is upwards. Dashed lines
indicate arcs which would burst and thus are drawn at P =P, .
Panel (a) illustrates burst of an unstable arc to connect to the
disk in front of it. Panel (b) shows an arc which touches the
upper bead, and the two new arcs created. Panel (c) shows two
overlapping arcs being replaced by one arc connecting two ex-
tremal disks. The new arc is unstable against touches and burst.
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square lattice, the above prescription is ambiguous.
There are two equidistant neighbors which form the oth-
er corners of the square whose base is formed by the ini-
tial disks. For the relevant range of 6, we found that
bursting to either corner always produced an unstable arc
across the diagonal. This in turn led to filling of the en-
tire square. We thus simplified the procedure by replac-
ing the initial arc by three arcs surrounding the square in
one step.

Touches are a local mechanism which are very similar
to bursts. Unlike bursts, however, occurrence of touches
depends on the size of the forward disk and thus on the
direction of flow. Touches are eliminated by replacing
the initial arc with two arcs connecting the initial disks to
the touched disk [Fig. 5(b)]. To identify touches we
check disks within the angle subtended by the initial arc.
If the sum of the arc and disk radii is larger than the dis-
tance between arc and disk centers, the disk is “touched.”
If several disks satisfy this condition, the one closest to
the arc center is chosen.

The removal of overlaps proceeds as shown in Fig. 5(c):
The disk which is common to the intersecting arcs is re-
moved from the interface. Two distinct types of overlap
can occur. Figure 5(c) shows two arcs which overlap on
a disk—the points where the arcs hit the disk have
moved past each other. Arcs may also intersect in the
pore space. The former case is most likely for W invasion
where the arcs extend around the disks. The latter only
occurs in NW invasion where the interfaces are more
curved (higher P) and avoid contact with the disks.
Overlap on disks plays the crucial role in changing the
growth pattern as 6 decreases. Overlap in the pore space
has less effect, but is included for completeness.

Both types of overlap depend strongly on the interfa-
cial angle a between the axes connecting successive pairs
of disks along the interface. We measure this angle
through the displaced fluid, so that in Fig. 5(c) a=120".
It is evident from the figure that if @ were decreased, the
arcs would overlap more, while if a were sufficiently in-
creased, overlap would cease. On the hexagonal lattice
a=n X60° if both arcs connect nearest neighbors. Arcs
between more distance disks give rise to other values of
a, but are generally less important except at very small 6.

Testing for overlap on disks is done in the following
manner. Suppose the arc between disks (m —1) and m
contacts disk m at ¢,, and the arc between m and (m +1)
contacts disk m at ¢, (0 <¢; <2m). These angles are cal-
culated relative to the axes connecting the respective
pairs of disks. Since these axes differ by an angle a, the
arcs overlap on disk m if ¢,— ¢, <a—.

Overlap in the pore space only occurred for a =90°.
One condition for this type of overlap is that the distance
between the centers of successive arcs is less than the sum
of their radii. The second is that the angles subtended by
the arcs overlap. This was always true for ¢ <90°. Thus
only the first condition needed to be checked.

D. Growth algorithm

The interface was specified by the sequence of disks
connected by consecutive arcs. Growth was initiated
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from a ring around a disk near the center of the porous
media. This avoided effects due to container walls, which
possess their own wetting characteristics. It also
simplified analysis of the fractal dimension of invaded
patterns.

The interface was initially stable at some applied P. P
was then increased by a small step, and all resulting insta-
bilities on the interface were identified. Stability against
bursts and touches does not depend on the configuration
of other arcs. If these local instabilities were detected, we
set a flag determining the new disk to which the interface
would connect. We also tested for overlaps and set a
similar flag. Since overlaps depend on neighboring arcs,
the angles ¢; were stored.

We then proceeded to remove instabilities through the
local changes described in the preceding subsection.
Starting from some point on the interface, instabilities
were removed sequentially around the interface. Each
time a new arc was created, it was tested for stability.
Any new instabilities were not removed until the
remainder of the interface was traversed, and preexisting
instabilities were removed. This process continued until
all arcs on the interface were stable.

In some cases a given arc had several types of instabili-
ty. For example, in Fig. 5(c) the final arc would burst,
and it also touches the two disks on the upper left.
Touches imply that the calculated arc has advanced too
far. In Fig. 5(c), the arc must pass through two disks be-
fore reaching the configuration shown. Thus the invad-
ing fluid would touch the nearest disk before reaching the
bursting configuration. For this reason touches must be
eliminated first. Overlaps also imply that the arcs have
moved too far forward. They were eliminated before
bursts, but after touches. Examination of many possible
interface growths showed that this hierarchy always led
to physically reasonable growth kinetics.

Advancing an unstable arc may cause it to intersect a
nonadjacent arc. This forms a closed loop around the in-
vaded fluid. As in the IP model,>%!! we assume that the
fluid trapped in such loops is incompressible. Then no
further growth can occur and the loop is removed from
the interface. Growth is also stopped when the interface
reaches the boundary of the system.

When a stable interface was obtained, the pressure was
again incremented, until the invading fluid spanned the
system. Small increments in P were used to simulate qua-
sistatic motion. The sequence of P’s did not change the
main characteristics of the invaded pattern, but did
change the fraction of trapped fluid slightly.

The pressure required to span the system depended on
the central starting ring, as expected from a percolation
model. If one starts in an unfavorable region, large pres-
sures are needed to overcome the local barriers. Once
these are overcome, P is sufficiently high that the fluid
can invade almost all throats. In percolation models, one
must start on the infinite percolation cluster to span the
system at the lowest possible P. We thus varied the loca-
tion of the central starting ring until the system was
spanned at the lowest P.

For large 6 one may start from rings of unit radius, as
shown in Fig. 2. In the vicinity of 8,, starting rings of ra-
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dius = 10a were needed to produce stable percolating in-
terfaces. Otherwise the pressure to initiate flow exceeded
the percolation pressure P.. As shown below, invasion is
correlated over an increasing length scale as 8—6,.. The
starting ring must be larger than this characteristic scale
to allow correlations in the initial stages of growth. If it
is not, the pressure required to initiate growth is greater
than P,. This dependence on the size of the starting ring
is related to the effective surface tension observed below
6, in recent work.” As discussed in Sec. IIIC, using a
finite starting ring always increases the pressure needed
to span the system when 6 <6..

This growth algorithm differs in several ways from the
IP model.*" ¢ The microscopic configuration of the inter-
face is not calculated in IP. Instead each throat is as-
signed a critical pressure where the arc becomes unstable,
which is independent of the configuration of the interface
and the direction of invasion. In general, this model can
only describe bursts. Touches depend on flow direction,
and overlap is a cooperative mechanism which depends
on both flow direction and the configuration of adjacent
arcs. As shown below, this cooperative character leads to
large changes in the growth morphology.

Another difference is that in the IP model growth
occurs at the least stable throat at each step, while we ad-
vance all instabilities together. Both algorithms are
relevant to experiments. The IP algorithm corresponds
to growth at constant infinitesimal flow, while our algo-
rithm corresponds to growth at constant P. The IP algo-
rithm has the important advantage of automatically seek-
ing out the infinite percolating cluster and P.. If one
starts at an unfavorable site, the pressure will automati-
cally rise to overcome local obstacles. When the fluid
reaches the infinite percolating cluster, the pressure will
decrease to reflect the lower barriers. In our algorithm,
we must search for appropriate starting sites as described
above. However, the computational effort to determine
whether there is an instability or not is substantially less
than that to determine at what P each possible instability
will occur. We compare the types of patterns produced
by these two algorithms in the NW limit below.

III. RESULTS

For a uniform system (equal radii) our algorithm al-
ways yields a regular faceted pattern with the lattice sym-
metry, which is in agreement with experiment.’> The pat-
tern formed in disordered systems depends strongly on
the contact angle, as described below.

A. Nonwetting invasion

In the NW limit, growth is well described as percola-
tion. Figure 6 shows several stages in the growth of the
final percolating cluster shown in Fig. 7. As with the fol-
lowing patterns, system A is shown, but results for other
systems are similar. The value 6=179° rather than 180°
was used to represent NW invasion for numerical
reasons.

For system A, the critical pressure P.=5.585y /a.
The largest cluster shown in Fig. 6 was obtained at
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FIG. 6. Stages of growth in an L =300 sample of system A at
6=179°, where P.=5.585y /a. The deviation from criticality,
(P,—P)/P,, for clusters of increasing size was equal to 0.194,
0.069, 0.047, 0.033, 0.026, and 0.022, respectively.

P =5.46y /a. Each increment in P was small enough
that only a few arcs on the interface became unstable.
The pressure increments decreased as P— P, but the re-
sulting invaded regions are noticeably larger. As dis-
cussed in Ref. 9, the area invaded when a single arc be-
comes unstable diverges as P—P.. The exponent can be

FIG. 7. The percolating cluster obtained as the final stage of
growth in the sample of Fig. 6.
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related to percolation theory.

In this NW limit, growth occurs almost exclusively by
bursts. At a given P, the interface can only move
through throats whose width is greater than 2y /P. As
noted above, the network of throats forms a honeycomb
lattice. On this lattice, bond percolation occurs when
65% of the bonds are present,'® if the presence of neigh-
boring bonds is uncorrelated. We find that the fraction of
throats which can be invaded at P, is 0.7140.01 for sys-
tems A, B, and C. We attribute the small discrepancy to
correlations between throats: The size of one disk affects
the six surrounding throats. The effect of correlations is
stronger for the square lattice. We find that 60% of
throats can be invaded at P, whereas the bond percola-
tion probability is 0.5.

As a further illustration that bursts control NW in-
vasion, media with radii in the ranges for systems B and
C were obtained by rescaling the radii of each disk in the
medium shown in Figs. 6 and 7. This maintains the
hierarchy of relative throat sizes which control bursts,
but would affect the other instabilities. The percolating
patterns in these media at 6=179° are identical to the one
presented in Fig. 7. The only change is in the value of P..
For the highly porous system B, P,=4.604y /a, and for
the denser system C, P.=17.47y /a.

In a percolation picture, the invaded pattern in Fig. 7
represents the percolating cluster of connected bonds.
Some of the bonds are missing because trapping stops
growth into surrounded regions. However, this only
affects the inner regions, not the outside interface of the
cluster. Growth starting from any site on the cluster
should reproduce it, except for changes in the trapped re-
gions near the initial site. We find that the pattern shown
in Fig. 7 is indeed nearly reproduced for any starting ring
on the invaded area. At P=P_, the only differences are
in the trapped regions near the starting ring. Growth
from any ring which is not on the invaded area will not
overlap this area until P exceeds P,. Such starting rings
are on finite clusters in the percolation picture. Starting
from such locally unfavorable regions may increase the P
needed to span the system by as much as a factor of 2.

The most convincing evidence that the invaded pat-
terns in the NW limit represent percolation comes from
analyzing their large-scale fractal structure. This fractal
character is evident in Fig. 8, which shows the pattern in-
vaded using our algorithm in a system with L =1000.
Figure 9 shows the invaded pattern in the same medium
using an algorithm more like IP where the most unstable
arc (widest throat) was advanced at each step. The algo-
rithm differed from IP in two ways. First, as noted
above, the widths of neighboring throats are correlated
because they depend on the same disk radius. More im-
portantly, in IP simulations growth stopped as soon as
the pattern spanned the system. We continued growth
until all throats which were more unstable than the criti-
cal percolating throat width had been invaded. Thus the
external interface is identical to the one shown in Fig. 8.
However, since the IP-like algorithm allows some regions
of the interface to get far ahead of others, more fluid is
trapped.

The fractal dimensionality d, of invaded patterns was
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FIG. 8. The percolating cluster in an L = 1000 sample of sys-
tem A for 6=179°. The central 300X 300 array of disks had the
same set of radii as in Fig. 6.

determined in three ways. First, we found the invaded
area inside circles of increasing radius r about the center
of mass. Each pore is associated with a site of the dual
honeycomb lattice. The area was found by counting the
number of sites on this lattice which corresponded to in-
vaded pores. Trapped regions were excluded, and results
were averaged over four different L =1000 patterns. The
number of invaded pores M (r) is plotted on a logarithmic
scale in Fig. 10. Over a little less than a decade in 7, the
data for both growth algorithms lie on straight lines
whose slope d,=1.89+0.02. This is consistent with the
value' for normal percolation d,=91/48~1.896. Lines
with the latter slope are plotted in the figure. The cutoff
in M (r) at large scales is a result of finite system size.
Deviations at small scales are related to the finite finger
width described below. There is also less self-averaging
at small scales.

We also calculated the length of the total interface
(internal and external) as a function of the length of the
measuring ‘“‘yardstick.” The scaling with yardstick

FIG. 9. The percolating cluster at §=179° for the sample of
Fig. 8, but grown with an invasion percolationlike algorithm.
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FIG. 10. The scaling of “mass” vs radius for L =1000 sam-
ples of system A. The upper dotted line shows results averaged
over four samples grown with our usual growth algorithm. The
lower dotted line shows results averaged over three samples
grown with the invasion percolationlike algorithm. The solid
lines are fits with slope 1.896, which is the value of d, for nor-
mal percolation.

length gives the caliper dimension of the interface’ which
equals d, for self-similar fractals. Our results for both
growth algorithms, df= 1.89+0.04, were consistent with
the value of d, obtained from M (7).

Finally, we evaluated the box dimension of the clus-
ters.>!® This was smaller, df= 1.84+0.03, than the other
values. However, analysis of normal percolation clusters
on comparable size square lattices also gave smaller
values d=1.86+0.03, and previous work indicates that
this measure is often too small.!”

Thus all our results for d, are consistent with the frac-
tal dimension of normal percolation. While one might
expect d; to be universal, Wilkinson and Willemsen'!
found different values for IP clusters in 2D: d,=1.82 for
honeycomb and square lattices, and 1.88 for triangular
lattices. Our data are clearly inconsistent with the value
1.82, and consistent with the value for normal percola-
tion. Since both of our growth algorithms gave the same
d 1 the discrepancy does not result from the order in
which instabilities are advanced. However, it may be
that continuing growth after the pattern first hits the
boundary increases d,. Also, the IP simulations were ac-
tually done for random site probabilities rather than ran-
dom bonds, and this may affect d r if it is nonuniversal in
2D. A final possibility is that d is universal, but previ-
ous IP simulations were influenced by finite-size effects.

The conclusion of our studies of NW invasion is that
they are well described by percolation ideas. The issue of
possible variations in d, remains open, but secondary.

B. Divergence of finger width as 0 decreases to 6,

We now consider how the invasion patterns evolve as 6
decreases—the invading fluid becomes more wetting.
For type-A samples, the pattern remains almost identical
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as 0 changes from 179° down to 110°. Noticeable changes
begin in the vicinity of 90°, and soon all similarities to the
NW pattern are lost. Figure 11 shows L =300 patterns
obtained for 6=70°, 60°, and 58°. To isolate the effects of
changes in growth mechanism, all figures are for the same
set of disk radii as were used in Figs. 6 and 7. Note that
the size of contiguous invaded regions, or fingers, be-
comes broader as 9 decreases. The percolating pressures
show a systematic decrease (e.g., P.=1.677y/a for
6=58°). Furthermore, the patterns generated turn out to
be increasingly dependent on the position of the starting
ring as well as on the history of applied pressures. It is
no longer true that starting from different rings within an
invaded pattern will reproduce the same pattern.

These observations provide evidence of marked

FIG. 11. Invasion patterns in the sample of Figs. 6 and 7 at
(a) 6=170°, (b) 6=60°, and (c) 6=58°. The corresponding values
of P, are 1.995, 1.736, and 1.677y /a. The average finger widths
w are 9.9, 31.9, and 53.7a, respectively.
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changes in the growth process, but are qualitative. Sta-
tistical measures of the growth are needed, which are in-
dependent of the particular realization of the porous
media, the history of pressures, and the starting site.
Several such measures can be derived from the distribu-
tion D (w) of finger widths w.

To measure w, we make parallel slices through each
pattern. The slices are along lines of nearest-neighbor
disks, and the set of all slices covers the whole area of the
system. These slices are broken up into segments which
lie entirely within the invaded region. The width w of
each segment is found by counting the number of adja-
cent invaded pores [which lie on the sites of the dual lat-
tice (Sec. II A)], and multiplying by the pore spacing.
For triangular lattices the pore spacing is a /2 and for
square lattices it is a.

We found that the distribution D (w) was generally
well described by an exponential. At some values of 0
there were deviations at small w, but the large w tail al-
ways had an exponential form. The mean value @ at P,
gave the most reproducible measure of the width, and is
plotted in Fig. 12. In general, fluctuations with the distri-
bution of radii, choice of starting ring, sequence of pres-
sures, and stage of growth (P) were of order 5%. Other
measures of the width are discussed below.

For all systems studied, @ increased markedly as 6 de-
creased. For example, the finger width of the pattern
shown in Fig. 11(c) is about 12 times larger than in the
NW pattern of Fig. 7. The value of i appears to diverge
at a critical angle 6,. Dotted lines in Fig. 12 are guides to
the eye which indicate the power-law divergence: '’

(0)x(0—6,)"", (8)

with 6, and v equal to the values shown in Table 1.2

Precise determination of 6, and v is difficult because
both are unknown, and memory and computational time
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FIG. 12. Divergence of the finger width @ as 6 decreases for
the four systems illustrated in Fig. 2. Error bars are indicated,
and the dotted lines are guides to the eye indicating the power-
law divergence. The value of 8, appears to decrease monotoni-
cally with porosity. The data points corresponding to system D
would be roughly halfway between those corresponding to A
and B.
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limited us to cases with @ < 150. While this allowed us to
observe a decade and a half increase in w, 7=(0—6,)/6,
changed by less than a decade. Even if 8, were known
exactly, we estimate that corrections to the leading order
divergence could cause errors of order £0.2 in fits to v.
When 6, is unknown, uncertainties are much larger.

In two systems we were able to place limits on 8, that
decreased our uncertainties in v. In system A, we saw a
clear depinning transition (see Sec. III C) at 45°, and per-
colation with @ =144a at 54°. Extrapolating from both
sides indicated 48°< 6, <51°. For this range of 6., best
fits for v were between 1.6 and 2.5. Figure 13 shows the
best fit to the largest range of data points which gave
6.=49°and v=2.1.

In system B we were able to find an exact lower bound,
6, = 69.715°, by examining the variation of the probabili-
ties of different types of instabilities with P and 6. This
will be explained in more detail in Sec. IV. Here we just
mention that below 69.715° there is a range of P where no
new instabilities occur, and that P, lies in this gap. No
gap occurs in other systems, so that similar bounds could
not be found. If 6, is equal to the lower bound, system B
may be in a different universality class.

An upper bound for 6, comes from the last data point
in Fig. 12: 6, <72°. We were unable to determine from
our data whether 6 is equal to the exact lower bound or a
fraction of a degree larger. For 8, =69.715° the best fit to
Eq. (8) gives v=1.8. The data are reasonably fit for 8, up
to 70.5, where we find v=1.4. As above, we estimate
that corrections to the leading divergence might cause
additional errors of order 0.2 in our determination of v.

In Fig. 13 we show fits to Eq. (8) with v=2.1 for sys-
tems A, C, and D, and v=1.8 for system B. The corre-
sponding 6,’s are listed in Table I. Given the uncertain-
ties described above, all of our data could be fit with a
universal exponent between about 1.7 and 2.2. We have

logyo(w/a)

log,(6/6.~1)

FIG. 13. Log-log plots of the data in Fig. 12. The straight
lines have slopes 2.1 for systems A, C, and D, and 1.8 for system
B.
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chosen to use a different exponent for system B because
of the difference in growth mechanisms. We hope to
study simplified lattice models which include cooperative
mechanisms. This would allow a more precise deter-
mination of v, and a test of universality.

One may ask whether 0 is the only characteristic

length in the invaded patterns. In order to answer this
question we have studied other measures. The simplest
of these is the dispersion, o, =[{(w —©)?)]'"% of the
finger width distribution. For a perfect exponential dis-
tribution o, should equal . Another measure W, was
defined as the decay length describing the exponential tail
of D(w). Still another scale may be defined by treating
all trapped regions whose perimeter contains less than n
disks as filled, and recalculating widths. This corre-
sponds to using a less precise tool to study the structure.
Average widths calculated in this manner are denoted by
.
The above measures all involve cross sections of the
pattern and are sensitive to the size and number of
trapped regions. An independent measure can be ob-
tained by studying correlations in the surface normal # of
the external interface. For each arc, i is defined as the
direction normal to a line between the centers of the con-
nected disks. We define S (/) as the average of the dot
product between surface normals of all points on the in-
terface which are separated by Cartesian distance /. This
correlation function decays exponentially:

S(l)~exp(—2l/w) . 9)

The parameter @ characterizes length scales over which
the interface turns over, and thus is also a measure of the
finger width. [Note that S decays over a length of order
the radius of curvature while i represents a characteris-
tic diameter, hence the factor of 2 in Eq. (9).]

Figure 14 shows o, , @, and w; plotted versus & on

1.5

logio(w'/a)

1.0 +

0.5 1.0 1.5 2.0

logio(w/a)

FIG. 14. Other measures of the finger width. Here, w' stands
generically for the following: o, is the dispersion (squares), i is
the length characterizing the exponential tail of D (w) (stars), @03
is the mean width when three-disk traps are considered invaded

(circles), and @ is the length characterizing surface normal
correlations (triangles).
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a log-log scale. It is clear that all these lengths scale with
0 as 06— 0,.. Similar results are found for @, with n > 3.
Thus a single length scale characterizes the diverging
finger width in these simulations. Note however, that
very close to 6. we see some indication that i may satu-
rate due to a fixed low density of trapped regions which
occur during growth. We hope to explore this with
larger simulations.

In the NW limit, we found fractal structure charac-
teristic of percolation at scales larger than i (Sec. IIT A).
The patterns and growth mechanisms are almost un-
changed in all systems as 0 decreases from 179° to around
110°. At smaller 6, it is difficult to determine whether the
large-scale structure remains percolationlike. Quantita-
tive studies would require increasing system size with i,
which is beyond our current computer power. However,
Fig. 15 provides an indication that the large-scale struc-
ture remains similar. Invaded patterns for the indicated
values of 0 have been scaled so that @ /L is the same in
each panel. The value of @ varies by a factor of 8, but the
qualitative structure of the patterns remains unchanged.
Except for the spurious variation in the intensities of the
black invaded regions, it is difficult to tell which picture
is at which scale.

These results suggest that although the lower length
scale cutoff in fractal scaling, w, diverges as 6—6,, the
large-scale structure remains that of a fractal percolation
pattern. While we have not ruled out a change in fractal
dimension with 6, results on other systems suggest that
this is unlikely for 6>6,. At 6., the fractal region is
pushed out to infinity, and new large-scale structure can
occur below 6.. We now briefly describe the behavior
below 6.

C. Invasion for 6 <0,

Fluid invasion for 8 < 8, is described in detail in Ref. 9.
Here we merely summarize the results to elucidate the
nature of the transition at .. Suppose we start from an
infinite stable interface at some P and 0, and increment P
until a single arc on the interface becomes unstable. A
segment of the interface around this unstable arc will ad-
vance as the interface moves to a new stable
configuration. We define a correlation length £ as the
average Cartesian distance between the end points of the
segments which advance. Above 6., £ is nearly indepen-
dent of P and provides yet another measure of the aver-
age finger width. Below 6., £ diverges as P increases to a
critical value P,. This behavior is characteristic of a de-
pinning transition.?!

The static interfaces produced as P increases to P, are
much smoother for 6<60,. One way of characterizing
them is through their scaling properties. We find that in-
terfaces are self-affine with a roughness exponent of
0.75+0.04 below 6., and self-similar with a fractal di-
mension characteristic of percolation above 6.. Recent
experiments'* find a similar roughness exponent
(0.73£0.03) for W invasion, and the percolation charac-
ter of NW invasion is well established. Because the inter-
faces are self-affine below 8, there is a well-defined aver-
age surface normal for the interface. Thus the large /
limit of the surface-normal correlation function [Eq. (9)]
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has a nonzero value which increases as 8 decreases.’

Another indication of smoother growth below 6, is a
marked decrease in the amount of trapped fluid. For an
L =1000 realization of system A the fraction of trapped
fluid is a few percent at 45°, and two orders of magnitude
smaller at 25°.

A more exciting discovery is that the pressure needed
to initiate flow depends on the average curvature of the
interface. This reflects the cooperative nature of invasion
below 6,. Suppose one starts from a random initial ring.
Increasing P leads initially to small rearrangements of the
interface. There is a final stable finite interface with ra-
dius of gyration R at some pressure P,. Further in-
creases in P cause flooding of the entire system,; it is not
possible to construct a stable percolating interface. We
find that the average value of P, satisfies P,=P.+ /R,
where P, is the pressure for flooding from an infinite in-
terface and T' has the dimensions of a surface tension.
Indeed, an effective macroscopic surface tension would
have exactly this effect on the pressure needed for flow.
The difference is that a true surface tension would be able
to decrease the invaded area as well as limit its expansion.
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This effective surface tension may be responsible for the
scaling of viscous finger widths with velocity.”!?

The phase diagram shown in Fig. 1 summarizes the
values of the critical percolating or depinning pressures
found for system A. In the region labeled “static,” there
are many possible stable interfaces. In the region labeled
“moving,” infinite interfaces would grow indefinitely.
Above 0., one may think of this as being above the per-
colation threshold. Below 6,, the divergence of the
correlation length £ at P, implies that the entire interface
determines the onset of growth. As discussed above, the
pressure required to initiate flow depends on the curva-
ture of the interface.

IV. ANALYSIS OF LOCAL INSTABILITIES

To understand the divergence of @ at 6., we examine
how the different microscopic growth mechanisms
change in importance as 0 decreases. Figure 16 shows
the fraction of bursts, touches, and overlaps which occur
during growth at P, in system A. As noted above, almost
all growth in the NW limit is due to bursts; only for

FIG. 15. Scale invariance of invasion patterns as 6—6.. The top left figure corresponds to L =800, it ~79a, and 6=56°. The top
right figure corresponds to L =400, @ ~39a, and 6=59°. The bottom left figure is for L =200, & ~20qa, and 6=62°. The bottom
right figure is for L =100, & ~ 10a, and 6=70".
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1.0

PROBABILITY OF MODES

FIG. 16. Relative importance of various growth mechanisms
at P, in system A as a function of the contact angle.

6 <120° do other mechanisms begin to play a role. The
widest throats always burst at the lowest P. Since the
hierarchy of throat widths remains the same, the invaded
pattern is nearly unchanged for 6> 120°. Only the value
of P, is affected (Fig. 1). Bursts are well described by per-
colation models, and thus so are the invaded pattern, its
dependence on starting ring, etc. (see Sec. III A).

As 0 decreases below 120°, overlaps and touches rise
rapidly in importance. Below about 90° they dominate
bursts, and the invaded pattern loses all similarity to the
NW pattern. The finger width begins to increase rapidly.
Bursts no longer occur at all for 6 within about 10° of 6,.
Since overlaps and touches are not well described by per-
colation models, many aspects of the growth change. For
example, the invaded pattern becomes more sensitive to
the position and size of the initial starting ring, as well as
the sequence of growth pressures (Sec. III B).

As discussed above, the pressure for overlap is smallest
when the interface makes the most acute angle (small a).
As 0 decreases, overlaps at larger and larger values of a
occur before bursts or touches. Removing regions with
small a produces smoother and smoother interfaces.

The smoothing action of overlaps is demonstrated in
Fig. 17 for system A. The fraction f, of interfacial an-
gles with a=n X 60° was calculated for large stable inter-
faces at each value of 6. Arcs between non-nearest neigh-
bors can produce different values of «, but the fraction of
such bonds was negligible.

In the NW limit both acute and obtuse angles occur in
roughly equal proportions. There is a substantial fraction
(~10%) of a=60° bond angles. As 6 decreases, there is a
sharp reduction in the fraction of 60° bonds. For 6 <75°
they are completely eliminated. Because the interface is
large and self-avoiding, the number of a=120° bonds
must be balanced by 240° and 300° bonds. As 6 decreases
to 6., the fraction of these bonds decreases, and the inter-
face contains an increasing fraction of straight, a=180°
segments.

In the above discussion we have focused on system A.
In all systems the approach to 6, is heralded by an in-
crease in the probability of overlaps. However, there are
differences in the details of growth statistics (Fig. 16). In
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FIG. 17. Fraction f, of each interfacial angle a on percolat-
ing interfaces in system A.

system B, bursts remain important down to 6,. The most
dense system, C, shows pronounced structure in the
growth statistics; for a narrow range of 6 (55°-65°) about
95% of growth is by touches. A corresponding peak in o
is seen in Fig. 12. Touches should continue to increase in
importance as porosity decreases. Since they do not
reflect cooperation by neighboring arcs they should not
lead to a divergence in @. It is possible that by supersed-
ing overlaps they may depress 6, or even remove the
transition in some systems.

Let us now discuss a more detailed characterization of
the relevance of various instabilities to the creation of a
percolating pattern above 6,.. Rather than looking at the
fraction of each type of instability during growth, we
consider the fraction of all possible local configurations
which are unstable to each mode at a given P. The typi-
cal behavior is as follows. Below a lower bound P;, a
given mode is inactive: There are no local configurations
which are unstable. Above P,, the fraction of
configurations which are unstable to the given mode
grows monotonically, until it saturates at some upper
bound P,. The saturating fraction is generally unity, but
may be smaller. (For example, since arcs at pressures
greater than the bursting pressure are represented by the
critical arcs, there is no change in the probabilities for
other mechanisms once bursts have saturated.) Since the
interesting region is where the probability changes, we
focus on the pressure derivatives p of the probabilities.
These derivatives can be interpreted as the number of
new unstable local configurations in a unit pressure inter-
val, or a density of instabilities.

Figure 18 compares instability densities for system A
in the NW limit (6=179°), and near 6, (6=50°). All den-
sities were calculated for arcs connecting disks at
nearest-neighbor positions, since these account for almost
all of the growing interface. Statistics on 10000 local
configurations were used. In the NW limit, only bursts
are unstable for P < P.. Integrating p to P, yields a frac-
tion 0.71 of unstable bonds as mentioned in Sec. III A.
At 6=50°, the relevant mechanisms are touch, overlap at
a=120°, and overlap at a=180°. Bursts start to be
relevant only for P > P, while overlaps at a=60° are all
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FIG. 18. Probability density of instabilities as a function of
pressure at the indicated values of 6 in system A. Curves are la-
beled by b for bursts, ¢ for touches, and oa for overlaps at inter-
facial angle a. Vertical lines indicate P, (obtained by extrapola-
tion for 6=50°). The densities are pressure derivatives of the
fraction of arcs which are unstable and were calculated numeri-
cally using 10* local configurations.

unstable at much lower pressures. Despite the clear
difference between the densities for the two values of 6
shown, it is not obvious how the diverging finger width
arises.

System B turns out to be much simpler to analyze as
testified by Fig. 19. In the vicinity of P, and 6, there are
only two relevant modes: bursts and overlaps at a=120".
Just above 6., e.g., at 6=72° (Fig. 19), P, lies in a region
where the densities of the two modes overlap. For
6<69.715° a gap between the two densities opens up. It
is easy to show that growth can no longer be percolation-
like in this range of 6.
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FIG. 19. Similar to Fig. 18 but for system B. The top and
bottom panels are for 6 above and below 8., respectively. A gap
between densities for bursts and overlaps at @ =120° occurs for
0=<69.715°.
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Consider any initial interface. For P in the gap be-
tween densities for bursts and overlaps all bond angles
less than 180° are unstable. Thus the only stable inter-
faces are infinite straight lines or finite convex shapes
such as hexagons. If P is increased until the first burst
occurs, a small segment of the straight interface will
move forward. Two new 120° bonds will be formed on ei-
ther side. Since all such bonds are unstable, they will
overlap, producing two new 120° arcs farther along the
line. These will also be unstable, producing new arcs, etc.
Thus as soon as P reaches the bottom of the density of
bursts, the pattern will grow forever. Above 69.715°,
there will always be some stable 120° bonds at pressures
where some bursts are unstable. If one starts from a
straight line and a single burst initiates growth, it will
only be able to spread along the line until a stable 120°
angle is reached on each side. The distance between
these stable angles will diverge as the number of stable
120° bonds below P, goes to zero.

This simple picture would suggest that 6, must coin-
cide with 69.715°. However, it is a 1D model which only
considers the first row of growth. There will be arcs on
this new row which are unstable against bursts. These in
turn may create a new row and another. It is possible for
the interface to bulge forward and surround unfavorable
bonds, as long as there are not too many. This definitely
occurs for system A where there is no gap and some 120°
bonds are always stable at P,. System B may be different.
We cannot determine whether 8, =69.715 or whether it
is slightly larger. In the former case, the critical behavior
may be different than for system A. The disorder in sys-
tem B is much smaller, and we can think of it as analo-
gous to a clock model with well-defined separate densities
for each discrete angle. System A is so disordered that
some 180° bonds are unstable before other 120° bonds.
One may think of this as washing out the lattice anisotro-
py and thus changing the order parameter from discrete
to continuous. More work is needed to establish whether
these systems are in different universality classes.

Systems C and D appear to be in the same class as sys-
tem A, because no gap opens in the density of instabilities
near 6.. However, the instabilities which dominate
growth are different in the two systems. In system C,
overlaps with a=120° and touches are important. In sys-
tem D, stable arcs connect both nearest and next-nearest
neighbors. Thus a takes values n X45°. The important
mechanisms near 6, are overlap at 135° and 180°.

These results indicate the rich variety of mechanisms
which can produce a divergence in @. The only unifying
feature is that overlaps must be present to smooth the in-
terface.

V. CONCLUDING REMARKS

In conclusion, we have presented a detailed study of
fluid invasion of model 2D porous media. For 0 greater
than a critical angle 8., growth is characteristic of per-
colation. The fractal dimension of the invaded pattern in
our simulations is consistent with normal percolation.!®
Previous studies!! concluded that trapping lowered d rto
a nonuniversal value. However, these studies were all for
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site percolation models and smaller systems. More work
is needed to determine when trapping may produce
nonuniversal behavior.

As 6—6,. the dominant local growth mode changes
from bursts to overlaps. Since overlaps are cooperative,
this leads to a diverging length over which invasion is
correlated. This was quantified by measuring the width
of fingers in the percolating pattern. Below 6, the entire
interface becomes correlated and the fluid advances in a
uniform flood. The existence of the transition from per-
colation to uniform floods appears to be independent of
the exact pore geometry. However, the value of 6, varies
with porosity. Examination of the probabilities of local
growth modes indicates the origin of the transition, and
suggests that there may be two different universality
classes.

We have studied this transition in the lowest dimension
where it can be defined. The interface is 1D, and will be
roughened by arbitrarily weak disorder. By analogy with
equilibrium critical phenomena, we expect the transition
to also occur in higher dimensions. Indeed, the greater
connectivity of interfaces in 3D should facilitate diver-
gence of the finger width, leading to higher values of 6,.
One may also expect smoother advancing fronts below
0

c*
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Experiments* %%1213 i the NW and W limits show a
marked change in growth patterns, which is consistent
with our results. However, measurements over a range of
contact angles are needed to establish the existence of a
critical phase transition. Recent studies?? have varied 6
by using varying mixtures of ethanol and methanol (al-
cohols) for one of the fluids, and hexadecane (an oil) as
the second. These studies indicate a critical transition
does occur, and that 6, is larger in 3D than in 2D. A
sharp rise occurs in 0 as 6— 6,., but more work is needed
to determine the critical behavior.
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FIG. 15. Scale invariance of invasion patterns as 8—6.. The top left figure corresponds to L =800, @ ~79a, and 8=56". The top
right figure corresponds to L =400, i ~39a, and 6=59°. The bottom left figure is for L =200, i@ ~20a, and #=62°. The bottom
right figure is for L =100, @ ~ 10a, and 6=70°.



