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We use the transfer-matrix method to calculate density-of-states (DOS) functions for fully finite
Ising-model systems. In this way, we obtain expressions for the corresponding partition functions
for systems of sizes up to 12X 12 in zero field and up to 8 X 8 in nonzero external magnetic field. We
also establish a way of representing the DOS functions, in terms of the suitably scaled variables, that
reveals a remarkably rapid convergence of these functions towards their thermodynamic limiting
values as the system size increases. This rapid convergence implies that results obtained for systems
of small sizes contain a surprisingly large amount of information about the behavior of infinite sys-
tems. In particular, we demonstrate that the finite-size-scaling-theory predictions are satisfied for
small systems (treated exactly via this method) comparably well as for much larger systems (treated
approximately via the Monte Carlo method). In addition, applying the method to the square Ising
model in a nonzero field, we discover that the DOS functions for small systems display a regularity
that one ~ould expect to appear only for very large systems.

I. INTRODUCTION

The statistics of the two-dimensional (2D) Ising model
in zero field is considered to be exactly known. However,
there are still many questions that remain to be answered,
in particular in the case of finite-size systems. The exact
solution is well known' for periodic boundary condi-
tions (PBC's), but the solution for systems of arbitrary
size and shape with free boundary conditions (FBC's) is
still unknown. In more complicated cases (nonzero
homogeneous field, random impurities, random field,
etc.), despite the fact that much useful information has
been obtained by various techniques, there are generally
no exact closed-form solutions.

In this paper we use the transfer-matrix method to find
the partition function of fully finite-size systems, by cal-
culating explicitly sets of all possible energy levels and
the corresponding degeneracies. We demonstrate that in
each particular case there is a rapid convergence of the
density-of-states (DOS) functions for systems of increas-
ing sizes, towards their thermodynamic limiting values.
Surprisingly, this convergence sets in for very small sys-
tems and its behavior provides means to learn thermo-
dynamics of the infinite system.

There were attempts to study the DOS functions in the
past, ' but the rapid convergence of these functions was
not observed. In the case of the Ising model on the
square lattice, two decades ago Ono et al. and Suzuki
et al. calculated the DOS functions of the systems up to
sizes 5 X 5 for zero field (H =0) and nonzero field, respec-

tively. A straightforward application of their method '

of calculating the DOS functions using the most powerful
present-day computers would provide results for systems
up to sizes 7 X 7. In this paper we use the transfer-matrix
method ' to calculate the DOS functions for much larger
systems. We have obtained results for systems of sizes up
to SXS in the HAO case and 12X12 for H=O. It
should be emphasized that by using this method on a
present-day supercomputer one could obtain results for
systems up to sizes 16X 16. Finally, it should be observed
that the idea of utilizing the DOS function for learning
the thermodynamics of a system is quite similar to the re-
cently suggested method of using a single Monte Carlo
simulation to obtain complete thermodynamic informa-
tion near a phase transition. In fact, the suggested new
Monte Carlo method is based on a single estimate of the
DOS function weighted by corresponding Boltzmann fac-
tors at a chosen temperature and field.

The rapid convergence of the DOS functions that we
have observed sheds new light on the finite-size scaling of
the thermodynamic response functions. For instance, in
the Monte Carlo approach to testing finite-size scaling
(Landau' '"), the presentation of results is obscured by
both the small size of the systems studied and the statisti-
cal error inherent of the Monte Carlo technique. Our ex-
act data for specific heat and susceptibility calculated
from the DOS functions show a surprisingly regular col-
lapsing tendency even in the critical region pertinent to
the infinite system (although the systems we have studied
are much smaller then those treated by Landau' '").

11 466



41 EXACT RESULTS FOR THE TWO-DIMENSIONAL ISING MODEL IN. . . 11 467

This fact implies, contrary to the general belief, that very
small systems contain a considerable amount of informa-
tion about the limiting behavior of the infinite system in
the critical region. It thus follows that it is more impor-
tant, in the case of approximate studies of finite-size sys-
tems, to reduce the error germane to the method applied,
than to increase the system size.

The structure of this paper is as follows. In Sec. II we
give the general description of the transfer-matrix
method of calculating the DOS functions. We also ela-
borate a specific way of presenting the DOS functions
that yields convergence of the data for systems of
different sizes, and illustrate it in the case of the 1D Ising
model. In Sec. III we apply these ideas to the FBC's Is-
ing model case, in a zero field, on the square and triangu-
lar lattice, whereas the HAO case on the square lattice
we treat in Sec. IV. Finally, in Sec. V we discuss the ob-
tained results and their implications.

II. CALCULATING AND REPRESENTING
THE DOS FUNCrxONS

A. Transfer-matrix method
for calculating the DOS functions

In what follows we discuss the transfer-matrix (TM)
method in the case of a 2D homogeneous Ising model
with nearest-neighbor (NN) interactions, in a zero field.
The basic idea of the TM method ' consists of conceiv-
ing a system of n Xm Ising spins as a set of m mutually
interacting chains of n spins. Each of the chains has 2"
possible configurations labelled by y (y = 1,2, . . . , 2"). If
the spins of the last chain are fixed in one particular
configuration y, summation over all the possible
configurations of all the other spins produces the corre-
sponding partial partition function Z' )(y) (in order to
simplify notation, we have omitted here the index n,
which denotes the width of the system; such collapsing of
notation will be applied wherever it does not cause ambi-
guities). The total partition function is given by

Z(m) y Z(m)(y) (la)

If the system is now increased by adding one new
(m =1)-th chain, the recursive relation for the partial
partition functions is

(lb)

Here P is the reciprocal of the product of the Boltzmann
constant k2) and temperature T and E(y') is the energy
of the added chain in configuration y', with E;„,(y, y')
being the interaction energy of the last two chains.

From this point one may proceed to calculate the set
Z("(y ), y = 1,2, . . . , 2", for a single chain, and using (lb)
find the set Z' )(y). The partition function is then found
using (la). This is the usual procedure of the TM
method. The power of this method lies in the fact that
in order to find the partition function one needs to per-
form roughly speaking m2" operations compared to

sweeping over 2" different spin configurations. ' The
largest systems that have been studied using the TM
method had n =18 (see Ref. 7). One should observe that
the direct calculation of the partition function of a system
with 18X 18 spins would require sweeping over
2 =3X10 configurations, which is far beyond any
conceivable present-day computer power! On the other
hand, the limitations of the TM method are set by
memory requirements as well as CPU time. Also, a new
computer run, in the TM case, has to be made for each
given value of temperature and interaction strength.

The idea of the TM method may be pursued further
by considering the sets of possible energy levels at each
stage of the construction of the lattice, and the recursion
relations for the corresponding degeneracies. At a given
stage of construction the system has m chains of length n,
with altogether N6 '=2nm —n —m bonds. The ground-
state energy level corresponds to the fully ordered spin
configurations. All the excited states are obtained by
upsetting k bonds (0(k (N& ') Abo. nd is considered
to be upset, in the ferromagnetic case, if its end spins are
antiparallel, whereas in the antiferromagnetic case the
bond is upset if its end spins are parallel. Thus for the
partition function one can write

~(m)JN'' b
Z(m) Pl&l&b ~ g)( m) 2kPIlI—

k=0
(2a}

Ek '=iJi( Nb '+2k)—, [k=0, 1,2, . . . , Nb ') . (2b)

Besides, since the total number of spin configurations is
2", the following relation holds

N(m)
b

g)(m) 2nm
k

k=0

For the partial partition functions the analog of (2a) is

~(m)

Z(m)(~) —e b g D(m)(~)e —2kPIJIp I J i ~ ( l1l ) b

k=o
(3)

where Dk )(y) are the corresponding degeneracies of en-

ergy levels (2b). If the system is increased by adding one
new chain, the number of bonds becomes

Nb +"=2n(m+1) n —(m+1)—,
and the energy spectrum is given by the following analog
of (2b):

E', +"=
i Ji( N' +"+2k'}, —

k'=0, 1,2, . . . , N6 (4)

For the increased system the partial partition functions
have the form

Z(m+1)( i
)

bpi J[pf(~+» & +
D(m+ i )

(
& )e

—2k'Pl Jl

k'=0

Here
i J i is the absolute value of the exchange energy of

the nearest-neighbor spins, while 2)(k ' is the degeneracy
of the energy level with k upset bonds
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Inserting this formula and (3) into (lb) the recursion re-
lations for the degeneracies are found to be

2" b
N( )

D(m+1)( ) y y D(m)(y)5(E(m+1) [E(m)+E(y )
@=1k=o

strength, which means that the resulting equation for the
partition function is a closed-form expression containing
at most Nb+1 terms. This is a considerable advantage
comparing with the numerical TM approach which pro-
vides the partition function only in a tabular form

+E;„,(y, y')]), (sa) B. Convergence of the DOS functions

with

(5b)

Here 5 is the Kronecker 5 function, E(y') is the energy
of the new chain in configuration y', and E;„,(y, y') the
interaction energy of the last two chains. It should be ob-
served that the value of 5 does not depend on the value
and sign of the interaction strength J, but only on the
particular combination of k, k', y and y'. In other
words, in analogy to (2b) and (4) one can write

E(y')=
l Jl[ (n —1)—+21»], 0~ l» ~ n —1,

E;,&(y, y')=IJI( N+2j»—» ), O~j»». &n, (6b)

where l is the number of upset bonds in the added chain
in configuration y', whereas jz z is the number of upset
bonds connecting the last two chains in their
configurations y and y'. Equations (6a) and (6b), togeth-
er with (2b) and (4), imply the new form of (5a)

N(m)
2 b

D„' +"(y')= g g D„' '(y)5(k' —k —I —j ~ ) .
y=1 k=o

(6a)

(7)
This formula was first derived by Binder in 1972.

Hence one may proceed to find the degeneracies of the
initial system, that is of a single chain, then apply the re-
cursion relation (7) m times, and finally apply (5b) to ob-
tain the degeneracies of the full n Xm system. In imple-
menting this algorithm, it is useful to observe that when
applying (7},for a given combination of y and y, it is not
necessary to scan all possible combinations of k and k' in
order to see which of them give a nonzero contribution.
Instead, for each particular set y, y' and k, the 5 function
in (7}should be used to find that value of k' for which the
degeneracy Dk +"(y') is increased by the term Dk '(y ).
In this way the total number of necessary operations is
reduced roughly from

N(m)N(m+1)22n (nm }222n+2
b b

to

]2 "—nyyg2
"+

Compared with the numerical TM approach, represented
by the formulas in (1), this approach increases both the
memory and CPU time requirements. Thus the size of
the largest sytem that can be studied is reduced, roughly
speaking from the linear size n =18 to the size n =16.
However, within this approach a single computer run is
sufhcient to generate all necessary information for all
temperatures and all possible values of the interaction

Ek '=lJl( N(, +2—k), k=0, 1,2, . . . , N(, ,

and the sum of all degeneracies satisfies the condition

(8b)

Nb

g(N) 2N

k=o
(8c)

In what follows it is convenient to introduce the di-
mensionless energy variable

k =(E(N) —E(N) )/E(N) E(N) )=k/—N

where the minimum and the maximum energy levels are
given by E';„' = —

lJ lNb and E' ' =
l J l Nb, respectively

The new variable k takes values in the interval 0~ k ~ 1,
regardless of the size and shape of the system. At this
moment we define the function 2)( '(x },of the continuous
variable x K [0,1],by the requirement that it interpolates
the density of states function Sp), which is itself defined
at the points x=k=0, 1/Nb, 2/Nb, . . . , l. Of course,
there is an infinite set of functions that satisfy the inter-
polation requirement, but here we suppose that we are
dealing with one of the functions whose derivatives at
each x follow local behavior of the set of values Sp).
The introduction of the function S( '(x} is necessary
only for comparison of difFerent discrete sets 2)P) (calcu-
lated for systems of difFerent sizes), because the latter are,
in general, determined for disjoint sets of points.

If the system is increased by adding one new spin in
such a way that it interacts with the spins of the old sys-
tem through s bonds, the analogs of (8) are given by

Nb+s
(N+1) Pl Jl &Nb+s) ~ ~(N+1) —2k'Pl Jl=e Z, mk e

k'=0

E' +"=
l Jl[ (Nb+s)+2k'], —

(10a)

Nb+s
g)(N+ 1) 2N+1

k'=0

k'=0, 1,2, . . . , Nb+s, (10b)

(10c)

Here we present the argumentation that reveals the
convergence of the DOS functions for systems of increas-
ing sizes, towards their thermodynamic limiting values.
Let us study an Ising system with N spins on a lattice of
arbitrary geometry, in a zero field. In analogy to (2) the
partition function of the system is

Nbz()= "'" yn(), — ~) ~ (8a}
k=o

where Nb is the number of bonds, and 2)p' is the degen-
eracy of the energy level with k upset bonds
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It should be noticed that the energy spectrum is increased
by s new levels, while the total number of spin
configurations is doubled. Now we can compare the two
DOS functions by defining the ratio

~(%+1)(x) g)(N+1)(x)/cg(N)(x)

For N so large that the variables k and k' can be con-
sidered effectively continuous, the quantity a' '(x) in fact
describes the way the number of spin configurations with
energies close to x changes when one new spin is added to
the system. Furthermore, for large enough systems,
when the boundary conditions can be neglected, we may
expect that a' '(x) becomes independent of size of the
systems. In other words, we assume that for any given
accuracy of determining the DOS functions there exists a
minimum number of spins M, such that

Rewriting (17) in the form

Z~&) 2e (&—&)Pl&l—
( 1+e

—&Pl I I )&
—

&

we find

Z(N) 2 (N —1)P(J)
kk=o

e
—2kP/ J/ (19)

the quantity lrLDP'/Nb may be regarded as the entropy
per bond associated with the energy level Ek.

We will now illustrate how this approach of represent-
ing the DOS functions works in the simple case of the 1D
Ising chain in zero field. The partition function of the
chain of N spins with free boundary conditions
(N&=N 1)—is

Z' '=2 cosh '(PiJi) .

a' '(x) =a(x), N )M .

Using (11)we proceed by writing

N
n'"'(x) = ga"'(x)

and from (12) we obtain

'(x) =c(x)[a(x)]
where

M
c(x)= ga"(x)/[a(x)] .

(12)

(13)

(14a)

(14b)

Thus we see that the degeneracies 2)P' of the energy lev-
els Ek '= —

~
J~(N —1 —2k) are given by binomial

coefficients ( k '). In Fig. 1 we depict the sets

N —1
S' '(k)—:ln (N 1)—

versus variable k =k /(N 1), —where
k =0, 1,2, . . . , N —1, for systems of sizes
N=4, 8, 16,32, 64, 128,256. In the limit N~00 the vari-
able k =x becomes continuous, and using Stirling formu-
la we find

Thus it follows that the functions

lnS' '(x)/N =Inc(x)/N+lna(x),

and the corresponding sets

ln2)'k '/N, k =0, 1,2, . . . , Nq,

(15) s™1

N4gSI l6g 32' 64 ~ 128~ 256
~ 80 ~ ~ s I v I ~ s I ~ I & s e I ~ s l I J I t ~ 1 ~ ~ s ~ ~ J 1 \ s ~ ~ ~ ~ ~ ~ ~ ~ I I s t 1 ~ ~0

0,70-

0.60

0.50

should become independent of N for large systems. In
other words, for sufBciently large systems we can expect
convergence of the sets

ln5'„'/N, k=0, 1,2, . . . , Ni, ,

when these sets are represented graphically as functions
of the variable k = k /Nb. Rewriting (Sa) as

Nb

Z' '=e ' g exp[Nb( 2kP~J~+lnB'k '—/Nq)],
k=o

0.40

0.30

0.20

0.10

0.OO

0.00 0.20 0.40 0.60 o.eo 1.00

(16)

we see that for representing the DOS functions it is more
convenient to use the sets ln2)~k '/Nb, which should also
exhibit the above-mentioned convergence for large N,
since Nb/N~constant when N~~ for any given lat-
tice. Namely, using these sets to compare the terms that
appear in the expression (16) one can identify, for each
given temperature and interaction strength, those energy
levels and corresponding spin configurations that give the
predominant contribution to the partition function. This
fact will be demonstrated in the second part of the paper.
Also, from the point of view of microcanonical ensemble,

FIG. 1. The DOS functions of the Ising chain in zero field
with N =4, 8, 16,32,64, 128,256 spins. The sets

X—1
S(~'(k) —= ln k (N —1)

vs variable k =k/(X —1) (where k =0, 1,2, . . . , N —1) are
shown so that the individual points are connected with straight
lines to guide the eye. The dashed curve represents the limiting
DOS function S(x) given by (20). One can observe a rather fast
convergence of the finite-size system DOS functions towards the
dashed curve which is pertinent to the infinite system (N~ ~).
This convergence of the DOS functions is more rapid in the case
of the 2D Ising model.
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S(x)=—x lnx —(1—x)ln(1 —x) . (20)

From Fig. 1 we see that the sets S(k) do exhibit the con-
vergence towards the curve determined by (20), when the
size of the spin system becomes ever increasing. We shall
see later that this convergence of the DOS functions be-
comes more rapid in the 2D Ising model case.

III. CASE d =2,H=O

(n)

g 4 g ~ ~ ~ g 12

0 50 I I ~ I I ~ I ~ ~ I I I I ~ 1 I I I I I ~ I ~ ~ I ~ ~ T ~ I I I ~ I I ~ I ~ I I I I ~ ~ ~ I 1 ~ ~

We first apply the above presented approach to the
case of the Ising model on the square lattice with fully
free boundaries. Thus we have calculated the DOS func-
tions for the Ising systems with n X n spins, where
n=3, 4, . . . , 12. Surprisingly, the obtained results are
completely new, as the previously reported results ' were
obtained up to n =5, and were pertinent to systems with
periodic boundary conditions. Our results for n =4, 5, 6
are given in Table I. On the other hand, in Fig. 2 we plot
the entropy S'"'(k) =InSP'/N& versus the scaled energy
variable k=k/N& for all studied systems, that is for
n =3,4, . . . , 12. From this figure we can see that the cor-
responding curves for n & 3 merge into a bundle whose
elements are hardly distinguishable, which vividly
demonstrates the convergence discussed in the previous
section. Such a behavior of the DOS functions could

have been expected for very large n, and what comes as a
surprise is the fact that it is observable already for n )3.
Consequently, it will appear that in applying the finite-
size-scaling method, ' ' one may use information that
comes from studying systems smaller than those used in
the past. ' '"

In Sec. II we have observed that by comparing terms of
the expression (16) one can identify, for each given tem-
perature and interaction strength, those energy levels and
corresponding spin configurations that give the predom-
inant contribution to the partition function. Having the
specific results presented in Fig. 2, it follows that for any
given fixed value P~J ~

one should draw a straight line
with the slope 2P~J ~, and locate the maximum difFerence
between this line and the limiting entropy curve. This
difference and the pertinent value k,„determine the
maximum term in (16). It should be noticed that even
those terms in (16) which correspond to values of k very
close to k,„, have much smaller contribution than the
term with k,„. This is due to the fact that all terms in
(16) are in fact exponential functions of the differences
S—2kP~ J

~
multipled by N&, which is a large number. In

Fig. 2 we draw the line 2kP, J for P,J=ln(1+V2)/2,
which corresponds to the critical temperature of the
infinite system. Hence, if we suppose that the entropy
curve for infinite system cannot depart much from the
bundle of curves depicted in Fig. 2, one can infer that in
the critical region the dominant energy levels are those
which are associated with configurations consisting of
roughly 80% satisfied bonds.

We have also performed calculations for the Ising sys-
0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.00 0,20 0.40

n=3

0.60 0.80 1.00

(b)
Oe40 g I e ~ & I s ~

0.35-

0.30

0.25

0.20

0.15

b=4, 5, . . . , 15

FIG. 2. The entropy per bond S'"'(k)=lnSq"'/Xq vs the
scaled energy variable k =k/Nb for the square Ising model in
zero field with n X n spins (n =3,4, . . . , 12). The merging of the
curves for n )3 into a bundle whose elements are hardly distin-
guishable, demonstrates the rapid convergence of the DOS
functions, with increasing system size, towards their thermo-
dynamic limiting values. The dashed line has the slope 2k13,J
with P,J=ln(1+&2)/2 which corresponds to the critical tem-
perature of the infinite system. The maximum difference be-
tween this line and the limiting curve, approximately represent-
ed by the n = 12 curve, reveals the dominant contribution to the
partition function at T, . Thus we learn that at the critical tem-
perature the spin configurations with roughly 80% of satisfied
bonds give the dominant contribution to the partition function,
and thereby to the thermodynamics of the system.

0.10

0.05

0.00
0.00 0.20 0.40 0.60 0.80 1.00

FIG. 3. The scaled DOS functions for the Ising model on the
equilateral wedge of the triangular lattice with b =4,5, . . . , 15
spins on a side, in zero field. The individual points are connect-
ed with straight lines to guide the eye. The convergence is less
rapid than in the square lattice case {cf.Fig. 2), which can be at-
tributed to the larger ratio of the number of spins on the edges
vs the number of interior spins. The asymmetric form of the
curves corresponds to the topological frustration of the Ising
antiferromagnet on the triangular lattice at low temperatures.
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TABLE I. The partition functions Z'"', n =4, 5, 6, of the fully finite (n X n) square Ising system with

free boundary conditions and in a zero field, represented according to formula (8a). One should observe
that the line which would connect all the "exp" signs within each term of Z'"' would be, in fact, a rep-
resentation of the DOS function curve 2)'"' versus unscaled energy variable. Besides, one can see that
the three such curves (for n =4, 5, 6) have notably different widths and heights. However, via a proper
scaling (cf. Fig. 2), with increasing system size all these curves rapidly converge towards their thermo-
dynamic limiting values. Finally, it should be mentioned that no expression for Z'" and Z' ' has been
reported in literature so far. The same is true for Z'"', with n =7,8,9, 10, 11,12, which are available
from the authors upon request.

Z' '=2exp(24PJ)
+ Sexp(20PJ)
+32exp(18PJ)
+72exp(16PJ)
+224exp( 14P J)
+584exp(12PJ)
+ 1216exp( 10PJ)
+2638exp{SPJ)
+4928exp(6PJ)
+7344exp(4PJ)
+9984exp(2PJ)
+ 11472exp(OPJ)
+9984exp( —2PJ)
+7344exp( —4PJ)
+4928exp( —6PJ)
+2638exp( —SPJ)
+ 1216exp( —10PJ)
+584exp( —12PJ)
+224exp( —14PJ)
+72exp( —16PJ)
+32exp( —18PJ)
+8exp( —20PJ)
+2exp( —24PJ)

Z" ' =2exp(40PJ)
+Sexp(36PJ)
+40exp{34PJ)
+78exp(32PJ)
+256exp(30PJ)
+884exp(28PJ)
+2312exp(26]V)
+5962exp(24PJ)
+15554exp(22PJ)
+37 412exp(20PJ)
+84424exp( 18PJ)
+ 180616exp( 16PJ)
+362 136exp(14PJ)
+672 908exp( 12PJ)
+ 1 157 160exp(10PJ)
+ 1 837 876exp(SPJ)
+2 658 328exp(6PJ)
+3 474 900exp(4PJ)
+4 108 408exp(2PJ)
+4 355 924exp(OPJ)
+4 108 408exp( —2PJ)
+ 3 474 900exp( —4PJ)
+2 658 328exp( —6PJ)
+ 1 837 876exp( —SPJ)
+ 1 157 160exp( —

10P J)
+672 908exp( —12PJ)
+ 362 136exp( —14PJ)
+ 180 616exp( —16PJ)
+ 84 424exp( —18PJ)
+37 412exp( —20PJ)
+ 15 544exp( —22PJ)
+5 962exp( —24PJ)
+2312exp( —26PJ)
+884exp( —28PJ)
+256exp( —30PJ)
+78exp( —32PJ)
+40exp( —34PJ)
+ 8exp( —36PJ)
+2exp( —40PJ)

Z' '=2exp(60PJ)
+8exp( 56PJ)
+48exp(54PJ)
+ 100exp(52PJ)
+288exp(50PJ)
+ 1132exp(48PJ)
+ 3168exp(46PJ)
+ 8824exp(44PJ)
+25 744exp(42PJ)
+71 064exp(40PJ)
+ 186 624exp(3SPJ)
+484 210exp( 36P J)
+ 1 214 336exp(34PJ)
+2931 560exp(32PJ)
+6 853 760exp( 30PJ)
+ 15 """.302exp(28PJ)
+ 33 435 520exp(26PJ)
+69 487 240exp(24PJ)
+ 138 380 976exp(22PJ)
+263 185 168exp(20PJ)
+476 852 512exp( 18P J)
+821 190292exp(16PJ)
+ 1 340056 928exp(14PJ)
+2065 952 532exp(12PJ)
+3 000 507 536exp( 10')
+4093 604 824exp(SPJ)
+ 5 230 849 920exp(6PJ)
+6 244 335 166exp(4PJ)
+6 951 501 824exp(2P J)
+7206345 520exp(OPJ)
+6951 501 824exp( —2PJ)
+6 244335 166exp( —4PJ)
+5 230 849 920exp( —6PJ)
+4093 604 824exp( —SPJ)
+3 000 507 536exp( —10PJ)
+2 065 952 532exp( —12PJ)
+ 1 340 056 928exp( —14PJ)
+821 190292exp( —16PJ)
+476 852 512exp( —18PJ)
+263 185 168exp( —20@J)
+ 138 380 976exp( —22PJ)
+69487 240exp( —24PJ)
+33 435 520exp( —26PJ)
+ 15 ".".". 302exp( —28@J)
+6 853 760exp( —30PJ)
+2 931 560exp( —32PJ)
+ 1 214 336exp( —34PJ)
+484 210exp( —36PJ)
+ 186 624exp( —38PJ)
+71 064exp( —40PJ)
+25 744exp( —42PJ)
+ 8824exp( —44PJ)
+3168exp( —46PJ)
+ 1132exp( —48PJ)
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TABLE I. (Continued).

+288exp( —50@J)
+ 100exp( —52@1)
+48exp( —54PJ)
+ 8exp( —56PJ)
+2exp( —60PJ)

TABLE II. The partition functions Z' ', b =9,10 of the Ising system on the fully finite equilateral
wedge of the triangular lattice, with free boundary conditions and in a zero field. Here one can make
the same comment, concerning the representation of the DOS functions, as in the caption of Table I.
The new point in this table, compared with the Table I, is the fact that the curves connecting the exp
signs are asymmetric with respect to the center of the energy scale. This fact can be related to the re-
sidual entropy (Ref. 14) of the Ising antiferromagnet on the triangular lattice (see the text).

Z' '=2exp(108PJ)
+6exp( 104PJ)
+66exp(100PJ)
+284exp(96PJ)
+ 1524exp(92PJ)
+6816exp(88PJ)
+29 374exp(84PJ)
+ 121 722exp(80PJ)
+478 944exp(76P J)
+ 1 823 924exp(72PJ)
+6 649 848exp(68PJ)
+23 348 880exp( 64P J)
+78 567 870exp(60PJ)
+253 527624exp(56PJ)
+782 097 738exp(52PJ)
+2 302 568 918exp(48PJ)
+6 449 220 270exp(44P J)
+ 17 132 714 196exp(40PJ)
+43 009 989 732exp(36PJ)
+ 101 618 632 900exp( 32PJ)
+224 923 586 992exp(28PJ)
+463 948 349 952exp(24PJ)
+886 492 447 232exp(20PJ)
+ 1 558 302 256 512exp(16PJ)
+2 499 881 356 672exp(12PJ)
+3 625 589 506 560exp(8PJ)
+4 700 549 738 496exp(4PJ)
+5 374 295 023 616exp(OPJ)
+5 328 810812 928exp( —4PJ)
+4486979 323 136exp{—8PJ)
+3 123 272 658 048exp( —12PJ)
+ 1 735 088 988 704exp( —16PJ)
+733 979 231 256exp( —20'J)
+221 791 575 960exp( —24PJ)
+43 730 599 644exp( —28PJ)
+4 859 988 896exp{ —32PJ)
+220 240 306exp( —

36/ J)

Z" '=2exp(135PJ)
+6exp( 131PJ)
+72exp(127PJ)
+ 322exp(123PJ)
+ 1806exp(119PJ)
+ 8514exp(115PJ)
+ 38 106exp(lllPJ)
+ 165 732exp(107PJ)
+678 780exp(103PJ)
+2 718084exp(99PJ)
+ 10454 808exp(95PJ)
+39 101 634exp(91PJ)
+ 141 628 968exp(87PJ)
+497 491 620exp(83+i)
+ 1 693 596 834exp(79Pl)
+5 582009274exp(75PJ)
+ 17 798 416274exp(71PJ)
+ 54 823 098 984exp(67PJ)
+ 162 901 158 938exp(63PX)
+466 124 104712exp(59PJ)
+ 1 281 950 329 620exp(55/ J)
+ 3 381 468 336 320exp(51PJ)
+ 8 534 700 516704exp(47PJ)
+20 558 823 116544exp(43PJ)
+47 130354080000exp(39PJ)
+ 102 502 065 432 576exp(35PJ)
+210758 700 341 248exp( 31PJ)
+408 115654279 168exp(27PJ)
+741 060 633 092 096exp(23PJ)
+ 1 255 720 425 046 016exp(19PJ)
+ 1 974 784 974 782 464exp{ 15PJ)
+2 864 301 246 447 616exp(11PJ)
+3 804 216 148 230 144exp(7PJ)
+4 588 063 201 689 600exp( 3PJ)
+4 975 636 328 218 624exp( —1@J)
+4 795 773 478 502 400exp( —5PJ)
+4 051 043 946 856 448exp( —9PJ)
+2 948 121 001 787 392exp{—13PJ)
+ 1 809 714 791 284 736exp( —17PJ)
+912 536 471 986 064exp( —21PJ)
+365 453 279 170 560exp( —25'J)
+ 111283 316092 160exp( —29PJ)
+24 309 178 272 608exp{ —33PJ)
+3 503 944 500 290exp( —37PJ)
+289900 567 622exp( —41PJ)
+ 10032 960 838exp( —45PJ)
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Z(n)
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k T Z'"'
B

with

tems on the equilateral wedges of the triangular lattice,
with b =3,4, . . . , 15 spins on a side. A selection
(b =9,10) of obtained results is shown in Table II. In Fig.
3 we depict the results for b=4, 5, . . . , 15. The asym-
metric form of the entropy curves in Fig. 3 corresponds
to the intrinsic difference in the behavior of ferromagnet-
ic and antiferromagnetic systems on the triangular lat-
tice. This difference stems from the topological frustra-
tion of the antiferromagnetic system at low temperatures.
The intercepts of the entropy curves with the right verti-
cal axis (cf. Fig. 3) should be associated with the residual
entropies in zero field of the finite Ising antiferromagnets
on the traiangular lattice. The comparison of the values
that correspond to the mentioned intercepts with the ex-
act residual entropy calculated by %annier' for the
infinite system, is presented in Fig. 4. Hence, we can see
that the results obtained for small fully finite systems con-
verge rather well to the result found' for the infinite sys-
tem. A similar observation was recently made in the case
of residual entropies of the 2D Ising antiferromagnet in
the maximum critical field. '

We now proceed to study the specific heat of the 2D Is-
ing systems in a zero field. It is a straightforward task to
express any higher derivative of the partition function in
terms of the degeneracies 2)(k") defined by Eqs. (2). By
differentiating (2a) twice with respect to temperature we
obtain the expression for the specific heat

Z 1
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Using previously calculated degeneracies 2)'k"' to evalu-
ate (21b) and (2lc), for the square and triangular lattice,
we have obtained the relevant specific heats from (21a).
The corresponding curves are shown in Figs. 5. Here it
should be stressed that, since within the presented ap-
proach we do not perform any numerical differentiation,
the specific heats can be calculated with any preset accu-
racy.
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FIG. 4. Convergence of the zero-field residual entropies of
the finite Ising antiferromagnets on the equilateral wedges of the
triangular lattice with b =3,4, . . . , 15 spins on a side (open cir-
cles), towards the exact value (Ref. 14) for the infinite system
(solid circle). The data points (open circles) are derived from
the intercepts of the curves depicted in Fig. 3 with the corre-
sponding right vertical axes. The solid and the dashed lines
serve as guides to the eye.

FIG. 5. The specific heat for fully finite lattices with free
boundaries for: (a) the square lattice with n X n spins
(n =3,4, . . . , 12) and (b) equilateral wedges of the triangular
lattice with b =3,4, . . . , 15 spins on a side. The dashed vertical
lines represent the critical temperatures of the corresponding
infinite systems. The drawn curves are exact, in the sense that
they do not represent a table of numerical data, but stem from
the exact expression (21).
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Results obtained for finite-size systems have been gen-
erally correlated to the description of the critical behav-
ior of the infinite systems by the finite-size-scaling
method. ' ' One of the most fascinating predictions of
this method is the data collapsing of scaled thermo-
dynamic response functions. This prediction has been
checked using data obtained by the Monte Carlo calcula-
tions, ' "' and a fairly good confirmation has been ob-
tained. The systems we have studied here are much
smaller than the systems used to check the finite-size
data-collapsing prediction. Nevertheless, it turns out
that our data do support this prediction. In Fig. 6 we
present the data from Fig. 5 in the form which should
render data-collapsing according to the finite-size-scaling

theory prediction. ' We can see that although there is no
total data collapsing, the curves for increasing system
sizes display a strong merging tendency. In fact, the
merging of the scaled specific heats that can be observed
in Fig. 6 is the manifestation of the data collapsing. This
data collapsing is by no means worse than the data col-
lapsing provided by the Monte Carlo simulations for
much larger systems (cf. Fig. 19 of Ref. 11). Thus the ob-
servable deviation from a total data collapsing in the
Monte Carlo approach should not be ascribed primarily
to the smallness of the systems studied, but rather to the
intrinsic statistical error of the method used. In other
words, it follows from our exact calculations that in the
case of approximate studies of finite-size systems it is
more important to reduce the error pertinent to the
method applied, then to increase the system size.

IV. CASE d=2, H+0
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In this section we generalize the method of calculating
and representing the DOS functions, elaborated in the
first part of the paper, to the case of nonzero magnetic
field (HAO). The energy levels are now characterized by
both the number of unsatisfied bonds k (0&k &Nb ')

and the number 1 (0&1&N,' ') of spins antiparallel to
the field, where N,' '=n m is the total number of spins.
The corresponding partition function is given by the fol-
lowing analog of (2a)

g(m) N(m)
~(m)+H~( ) b

Z(pg) ii~ ~~~+$ +++s ~ ~ ~(m) —2P(klz~+iH) (22 )a
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FIG. 6. The speci6c-heat data from Fig. 5 presented in the
form which should render data collapsing according to the
6nite-size-scaling theory prediction (Ref. 13). Although there is
no total data collapsing, there is a surprisingly strong merging
tendence of the curves with increasing system size, both in the
square lattice (a) and the triangular lattice (b) case. Thus, one
should observe that in both cases the last few curves almost
coincide. Furthermore, even if one considers all presented
curves, the separation between them is no greater than the
scattering of analogous data obtained by the Monte Carlo tech-
nique (Ref. 10) for much larger systems.

E(y')=
~ J~[ (n —1)+21&—.]+H( n+2s~, ),— (24a)

and the energy levels of the interaction between the add-
ed chain and the rest of the system

~(m) ~(m)
( JN +HZZ(m)( )

~ b s ~ ~ ~(m)( )
2P(k~J~+IH)—

k=o 1=0

(23)

At this point we follow the algorithm behind formula (lb)
and first find the energy levels of the added (m+ 1)th
chain
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substantially change with further increasing of n. To
provide a more complete display of the DOS surface we

present in Fig. 8 our results for the 8 X 8 Ising model in a
differently positioned system of coordinates.

Having concrete results for HAO, we are going to
study the corresponding magnetization and susceptibility.
For a system of size n Xn we adopt the standard
definition" of magnetization (order parameter)
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FIG. 10. The exact zero-field susceptibility of the fully finite

square lattice Ising model, with n X n spins (n =3,4, . . . , 8), cal-
culated according to the formula (29). The dashed line corre-
sponds to the critical temperature of the infinite system.

Using our data for Qk(t"' and Ekt' we have calculated
magnetization and susceptibility according to the preced-
ing formulas. The obtained results are presented in Figs.
9 and 10. In Fig. 11 we present the data from Fig. 10 in
the form expected to exhibit data collapsing according to
the finite-size-scaling theory. "' Similarly to the case of
specific heat (cf. Fig. 6), there is no total data collapsing
for all n but the curves for n =7 and n =8, in Fig. 11,
practically coincide Furth. ermore, comparing our Fig. 11
with Fig. 18 of Ref. 11 which was obtained for much
larger systems using Monte Carlo method, one can notice
a similar deviation from total data collapsing. Thus one
can infer the same conclusion as in the specific-heat case,
that is to say in checking and applying the finite-size-

FIG. 11. The susceptibility data from Fig. 10 in the form that
should render data collapsing according to the finite-size-scaling
theory prediction (Refs. 11 and 13). It is surprising that data for
such small systems, when calculated exactly, exhibit such a
strong merging tendency even in the critical region pertinent to
the infinite system.

scaling predictions via approximate methods it is more
important to improve the accuracy than to increase the
size of the systems studied.

V. CONCLUSION

In this paper we use the transfer matrix (TM) method
to calculate the density-of-states functions of fully finite
Ising model systems with free boundaries. As a result of
this approach expressions for the partition function for
systems up to 12X12 spins are obtained. Although the
applicability of this approach is in general restricted by
the performance of present-day computers to studying
relatively small systems, there are several advantages
compared to strictly numerically and approximate
methods. One advantage over strictly numerical methods
is that the study of thermodynamic properties is facilitat-
ed by the fact that all higher derivatives of the partition
function are obtained as analytic functions of T and H.
Thus, only one computer run is suScient to obtain neces-
sary information for all temperatures, all fields and all
values of the interaction strength, compared to the nu-
merical TM approach which yields results in a tabular
form for discrete preset values of T and H.

An interesting finding achieved via the TM approach is
the fact that the DOS functions for systems of increasing
sizes display in each particular case a rapid convergence
towards their thermodynamic limiting values. This con-
vergence has been first demonstrated in the case of the
simple Ising chain in zero field (cf. Fig. 1), but it appears
to be more rapid in the case of the two-dimensional Ising
model (cf. Figs. 2 and 3). In the H =0 square lattice case
we have calculated the DOS functions for n X n systems
with n =3,4, . . . , 12. Expressions for the partition func-
tion for n =4, 5, 6 are given in Table I, while the scaled
DOS functions are depicted in Fig. 2. The rapid conver-
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gence is manifested through merging of the curves for
n & 3 into a bundle whose elements are hardly distin-
guishable from each other. In the H =0 triangular lattice
case we have calculated the DOS functions for Ising sys-
tems on equilateral wedges of the triangular lattice, with
b =2,3, . . . , 15 spins on a side. A selection of expres-
sions for the partition function is given in Table II, while
in Fig. 3 we depict the scaled DOS functions, which again
exhibit rapid convergence. In the HAO case we have cal-
culated the DOS functions for n X n Ising systems on the
square lattice with n =2, 3, . . . , 8. In Fig. 7 we depict the
scaled DOS functions which are represented as surfaces
over two independent variables k and T The. convergence
is now manifested through rapid smoothing of the sur-
faces with increasing size of the system.

One of the most fascinating features related to the
discovered convergence of the DOS functions is the fact
that it is observable already for small systems studied in
this paper. This allows one to learn certain properties of
the infinite systems. For instance, from the bundle of the
scaled DOS function curves (see, e.g., Fig. 2 and the relat-
ed text) one can learn those energy levels that give the
dominant contribution to the partition function for each
given temperature and field. Besides, in the case of the
triangular lattice, the intercepts of the scaled DOS func-
tion curves with the right vertical axis (cf. Figs. 3 and 4)
can be straightforwardly related to the residual entropy
of the infinitely large Ising antiferromagnet' in zero field.
Furthermore, one may argue that the observed DOS
functions convergence is a precursor of the data collaps-
ing of the response functions predicted by the finite size
scaling theory. ' Indeed, starting with our data for the
DOS functions we have also calculated the specific heats
for both the square and the triangular lattice, the results
being shown in Fig. 5. In Fig. 6 we present the same re-
sults in the form which should exhibit data collapsing ac-

cording to the finite-size-scaling theory prediction. ' We
can see that there is no total data collapsing, but the
curves for increasing system sizes display a strong merg-
ing tendency. The fact that this merging is comparable
to data collapsing obtained" for much larger systems by
Monte Carlo simulations, implies that in the approximate
studies of finite size systems it is more important to
reduce the error pertinent to the method applied than to
increase the system size. A similar conclusion can be
drawn from our results for zero-field susceptibility
presented in Figs. 10 and 11.

At the end, it should be emphasized that additional
new results can be easily achieved by applying the
presented approach using more powerful computers
which are available nowadays. This approach of calcu-
lating and analyzing the DOS functions can be also easily
extended to other situations, such as three-dimensional
Ising systems, impurities, random fields, or other models.
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