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The properties of diluted elastic media in two dimensions are investigated in an isotropic
system in which the ratio between the two Lame coefficients can be varied. Changes in the ratio
between the continuum elastic constants induce significant variations in the behavior of the
system away from the threshold for percolation, but not in the properties near the percolation
transition. We discuss the results in both cases and their relevance to the definition of the
universal properties of diluted elastic networks. It is shown that many features of interest, like
the bulk modulus at intermediate concentrations of voids and the backbone, are very dependent
on the microscopic details of the model, and not only on its macroscopic behavior. Thus, elastic
percolation does not seem to have the same degree of universality as scalar percolation.

I. INTRODUCTION

Most of the existing literature on elastic percolation~
supports the widely accepted view that the critical prop-
erties of the percolation transition are independent of the
macroscopic properties of the system (elastic moduli),
being solely determined by the topology of the medium,
as in the case of scalar percolation. s The latter can be
changed by varying either the underlying lattice or the
interactions within it. Although the dependence on the
lattice of the critical properties seems well founded, it has
recently been claimed that a more general type of uni-
versality exists and that the critical exponents are not
only independent of the elastic constants of the system
but also of the nature of the microscopic interactions. s

The possibility that the critical properties of an elastic
network are independent of the initial (macroscopic) elas-
tic moduli has been investigated by the present authors,
for an isotropic elastic medium with arbitrary elastic
constants. 7 s The elastic system is described by a central-
force Hamiltonian in a triangular lattice. Two de'erent
force constants are used, to allow variations of the ratio
of the Lame coefficients, s which are calculated taking the
continuum limit of the discrete equations. Although in
that work it was concluded, from the numerical results,
that both the percolation threshold and the critical expo-

nents varied with the elastic constants, recent analysis of
that system indicates that at least the percolation thresh-
old does not depend on the elastic constants;s its value
remains equal to that of the unreconstructed triangular
lattice. s ~o The purpose of this paper is to present a thor-
ough investigation of the model introduced in Ref. 7. It
turns out that the system shows a behavior far more in-
tricate than could be anticipated, adding a possible new
source of nonuniversality in elastic percolation problems
to those indicated previously.

The rest of the paper is organized as follows: in Sec.
II we describe the model and indicate the relationship
between the ratio of Lame coefBcients and the ratio of
the two force constants used in the discrete Hamiltonian.
Next (Sec. III) we discuss the most relevant features
of the numerical methods used to solve the equilibrium
equations of the diluted network. The properties of di-
luted networks are analyzed next (Sec. IV), as well as
various test cases used to facilitate the understanding
of the results. An extension of efkctive medium theo-
ries successfully used to describe the simple triangular
lattice4 is also presented. The way the bulk and
shear moduli approach zero is analyzed, as well as the
main features of the backbone, which gives rigidity to
the structure slightly above p„„.The main conclusions
comprise the last section of the paper.
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II. THE MODEL

We describe the elastic energy of the system by means
of the rotationally invariant central force Hamiltonian:

H = -') k;, [(v; —v, ) r,, ]~,

2

(2)

where u;z(i, j = z, y) are the components of the strain
tensor, and Ap and pp are the Lame coefficients. Then,
in order to calculate the bulk Bp ——Ap+ pp and shear pp
moduli, we introduce displacements at the boundaries so

where r;z is a unit vector between sites i and j. The
force constants, k;&, are finite with probability p and zero
otherwise. v; is the displacement vector at site i.

As the only bidimensional regular lattice that gives the
isotropic continuum limit is the triangular one, Eq. (1)
is imposed in that lattice. The ratio of the two Lame co-
efficients is adjusted by using two different values for the
force constants (ka and ki, ), that is, two types of springs.
They are distributed over the lattice in the manner de-
picted in Fig. 1. The unit cell is three times larger than
that of a simple triangular lattice, giving rise to a +Sx +3
reconstruction.

We find the relation between the Lame coefficients and
the force constants of the discrete model by calculating
the density of the elastic energy under hydrostatic com-
pression and shear, both for the lattice and the contin-
uum model. In the latter case, the energy density is given
by9

as to induce a uniform dilation or a pure shear distortion.
In the latter case, special care is required to ensure that
all the nodes in the reconstructed lattice are at equilib-
rium. I et us call b the magnitude of the strain field. In
the continuum limit we have

' 2(Ap+ pp)6'2

3Po~ (3b)

k, ki,

, 4(ki, +2k, ) (4b)

for dilation and shear, respectively; thus, by equating the
ratio between the energy densities for shear and compres-
sion in the two cases, we findis

Ap 4m~+ z+ 4

Pp QQ

The ratio Ap/pp does not vary when k, and ki, are ex-

changed. Notice also that the shear modulus vanishes
when either k, or kp tend to zero. This behavior is easily
understood by noting that when k, = 0 the remaining
bonds lie in a honeycomb lattice, which has no shear
in the central-force model, whereas, for kq ——0, the mor-

phology of the bond structure is isomorphic to the square
lattice, for which also pp

—0 within that model.
The model allows us to vary Ap/pp continuously be-

tween 1 and infinity, and it is, therefore, well suited to
study the properties of elastic media whose macroscopic
moduli lie in a rather wide range. The discrete sys-
tem, however, is different from the combination of bond-
bending and bond-stretching forces more commonly used
in the literature to derive media with arbitrary elastic
constants. 2

for dilation and shear, respectively, whereas in the dis-
crete case, the elastic energy per bond is given by

' 2ki, +k, z

(4a)

III. NUMERICAL METHODS

FIG. 1. The ~3 x ~3 reconstruction of the triangular lat-
tice utilized in this work.

The crucial importance of the accuracy of the numer-
ical procedures used to investigate the properties of di-
luted networks near the percolation threshold is widely
accepted. Two types of methods can be clearly differ-
entiated. In the first place we mention those methods
that use finite samples of arbitrary shape, and we solve
the equilibrium equations by means of a given iterative
procedurei (i.e., letting the system go towards equilib-
rium step by step). The second class of methods is based
upon the transfer-matrix approach first applied to the
scalar percolation problem; in this case the samples are
long strips of varying width. The most important short-
coming of these later methods is that they do not keep
the information of the spatial distribution of stresses and
are therefore not suited to studying the properties of the
backbone; on the other hand, they seem to be most pow-
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erful in investigating the critical properties at the perco-
lation threshold. The first group of methods seems to be
less accurate than the second one in calculating the crit-
ical exponents and percolation threshold, although they
are commonly used to study the stress distribution of the
backbone.

In this work we use finite hexagonal samples of the
triangular network, characterized by the length of the
side of the hexagon L, expressed in units of the distance
between nearest neighbors. The boundary conditions (di-
lation or shear) are imposed by fixing the displacements
of the nodes at the border of the hexagon, which im-

plies the corresponding rearrangement of all the internal
nodes in order to keep the system in equilibrium. The
use of a dilation boundary condition is done to preserve
the isotropy of the system. Other works use uniaxial
boundary conditions, in particular those that use the
transfer-matrix method. This can have some implica-
tions in the size dependence of the problem, but not in
the numerical method used (transfer-matrix and iterative
methods should give the same size dependence provided
that boundary conditions are the same).

After removing a fraction 1 —p of the bonds of the
sample [each sample has 3L(3L —1) bonds that can be
removed], the equilibrium equations are to be solved. We
have tried two iterative methods of solving these equa-
tions: the conjugate gradient method (CGM) and the
relaxation method (RM). The appropriateness of both
methods has been checked in two ways: the first and
more simple one is to look at how much stress each node
accumulates, and the result is that, after a small number
of iterations, CGM shows better precision. Another way
of checking numerical methods is to look at the distribu-
tion of stresses once the diluted network is relaxed. In
this distribution, and for the case Ao/po ——1 (triangular
unreconstructed lattice), two peaks are found (see the fol-
lowing): one placed at a stress that is almost independent
of the accuracy of the method and that corresponds with
the backbone that supports elastic energy, and another
peak, formed by unstressed bonds, that should be located
at zero stress, but, because of numerical accuracy, stays
at a finite value. When solving the equilibrium equa-
tions by means of RM, these two peaks are merged into
a broader one even after a huge number of iterations (the
number of bonds that contribute to the stiffness of the
network is increased only by numerical errors), whereas
for CGM a clear two-peak feature is observed even for
relatively large values of the CGM error. Moreover, the
soft-mode's peak can be displaced by varying this CGM
error, so it can be a means to fix a minimum error that
will allow a confident savings of computer time. The
numerical calculations for percolation samples presented
in this work were performed by CGM with a maximum
allowed error of 10 9 (CGM standard error). Hexago-
nal samples of sides in the range 6—48 (in units of bond
length) were considered, the number of realizations for
each size being in the range 10—200 (the higher the num-
ber, the smaller the size). The number of CGM iterations

IV. ELASTIC PROPERTIES
OF DILUTED NETWORKS

A. Hexagonal rings

We first discuss the results obtained for a small concen-
tration of broken bonds, far from the percolation thresh-
old. These results show a pronounced dependence on the
ratio Ao/ps, and also on the way in which this value is

obtained, that is, the choice of discrete lattice (notice
that Ao/ps is invariant under an exchange of k~ and ky).
Hence, we think that they are relevant to the question of
which properties of elastic percolation are genuinely uni-
versal and which ones depend on the microscopic details
of the model and cannot be easily generalized.

As a first check that our lattice describes the contin-
uum elasticity equations at large scales well, we have
analyzed the elastic moduli of hexagonal samples from
which a smaller hexagon has been removed from the cen-
ter. This situation is well approximated, in the contin-
uum limit, by a ring under applied pressure. Then, the
bulk modulus B varies as a function of the relative size
of the internal void as

~oP
1+(1+Ap/po)(1 —p)

' (6)

where Bo is the bulk modulus when p = 1. Numerical
results and analytical curves obtained from (6) are shown
in Fig. 2. There is a good agreement for very different
values of Ao/pp, which indicates that the model correctly
reproduces the continuum limit.

The results presented are relevant to the percolation
problem, when the concentration of broken bonds is
small. Then the system can be regarded as containing
a few small cracks, which independently infiuence the
macroscopic elastic constants. Effects associated with
the interaction between voids are proportional to the
square of the concentration of voids. Each of these voids
gives an additive contribution to the softening of the sys-

needed to achieve the convergence was found to increase
with the size of the sample and with the k, /kq ratio. The
investigation of the properties of the backbone was car-
ried out on samples of size 30 (around ten realizations
were considered). The CGM error was fixed at 10
which corresponds on average to a maximum force on
the nodes 10 times the displacement on the boundary
nodes. The number of iterations required to achieve this
accuracy was found to depend strongly on p and k, /k~
For instance, for k, /k~ ——1, between 400 and 700 itera-
tions were required for p far from the threshold; instead,
at p = 0.65 the fixed accuracy was obtained only after
5000—10000 iterations. For k, /kg = 0.05, the number of
iterations had to be increased by a factor of 3; those real-
izations for which the desired accuracy was not attained
after 30000 iterations were not included in the analysis
of the stress distribution.
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FIG. 3. Plot of the effective medium relation of Eq. (11).
See the text.

FIG. 2. Bulk modulus vs p for circular rings of the contin-
uous isotropic media (continuous lines) and hexagonal rings of
the reconstructed triangular lattice (discrete values) as given

by Eq. (6) and numerical calculations, respectively.

tern, and the overall change can be obtained from (6) by
linearizing around p = 1:

B Aol= 1 —(1 —p)12+ —~.
Bo Po)

kP k, a'(p —a')
kP ks (1 —a')(2p —2 —a') '

where we also have

,

(kgb,
(kefv)

and

(10)

culated from the dynamical matrix of the reconstructed
triangular lattice. Inserting (9) into (8), and dividing, we

obtain

Thus, the decrease of B is enhanced by a large value of
Ap/pp. This trend is present in the results obtained using
a discrete lattice, although, as will be discussed, there are
also modifications that not only depend on Ao/po but also
on the way in which the continuum limit is implemented
in the discrete lattice.

a'(0) = 0,

a'(1) = s

a'(oo) = l.

(12)

B. Random voids: Effective medium theory
and numerical results

We can proceed further analytically by extending the
effective medium theory developed in Refs. 4, 11, 12, and
15. In order to generalize it to our reconstructed lattice,
we have to define two effective couplings, kes and kf,

to replace the initial values. In terms of these couplings
we can calculate the dimensionless constants a' and b',
which describe the infiuence of the homogeneous lattice
(with springs k;+ and k~P) on bonds of type a and b

Once this is done, the effective medium reduces to the
solution of the equations:

jeff

1 —a''

1.0

08—
K(1/ Kb

s

10.9
0.09

22 2

0.045 0

0.2—

The general features of the solution of these equations
can be inferred from the graphical representation of the
function defined in Eq. (11). This is done in Fig. 3.
The percolation threshold, determined by k;+/k~P = 1,

I eff

ky 1 —6'

s

Q 0 i ~ a a a k k s

0.5 0 6 Q.7 0.8 0.9 1.0

with the additional constraint

a'+2b' = 2.

Both a' and b' are functions of kP/kP that can be cal-

FIG. 4. Effective medium (lines) and numerical results for
the bulk modulus vs p (discrete values). Results for different
values of k~/kq are shown. The side of the hexagons in the
simulations is 24.
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is found to occur at p«„——s, which can also be ob-
tained by counting the number of constraints. ii This re-

sult is independent of Ap/pp. Moreover, the ratio of the
elastic moduli of the percolating network is such that
A' /p' = 1 at p«„, in agreement with arguments based
on other models, and also numerical simulations (see
the following).

Close to p = 1 we can linearize Eq. (8) and obtain

( 1 p
1 —a'(k, /ki, )

1.0

08-

0.6-

0.4

0.2-

00, g ~

0.5 0.6 0.7 O.S 0.9 1.0

a'(k. /kb)y

An explicit expression for the bulk modulus can also be
obtained:

B a'(k. /ks —4) + 4

Bp (1 —a')a'(k, /ki, + 2)
' (14)

When comparing these equations to the continuum ap-
proximation [Eq. (7)], it is worth remembering that both
k, /kg and ki, /k, correspond to the same value of Ap/pp.
Thus, Eq. (14) is not uniquely determined by the con-
tinuum properties of the lattice. This is an indication
that, contrary to scalar percolation, discrete lattice ef-
fects change the qualitative features of the solution. We
further note that the slope at p = 1 [see Eq. (14)] is
larger for k, /ky ( 1 than for k, /ki, ) 1; this can be eas-
ily checked for k, /ky 1 by noting that around this value

Eq. (11) takes the simple form logip(ke/ki, ) 3a' —2.
A complete plot of the solutions of Eqs. (10) and (11)

is given in Figs. 4-6 for various initial values of ke/ki, .
The results are in reasonable agreement with the numer-
ical simulations (also shown in Figs. 4—6) over the entire
range of values of p. The rate at which the macroscopic
constants approach zero depends on the initial ratio of
Ap/pp, although not on the percolation threshold (p«„)
nor on the ratio A/p at p«„. This can be more explic-
itly seen in several ways. First we look at the effective-
medium-theory results. Near the threshold (p«~ ——s)
the elastic moduli take the form

FIG. 5. Same as Fig. 4 for the shear modulus.

scopic details of the model (ke and ki, ). As regards the
numerical results, we note that they also indicate that the
threshold occurs near s, and that, at this point, A/p 1,
both results being independent of k, /ki, To m.ake this
point stronger, and, as finite-size scalingi7 cannot be per-
formed within the present approach without excessive nu-

merical errors (see the following), we have calculated the
bulk modulus for a very large value of k, /ky (50); the
results are shown in Fig. 7. We note that 8 approaches
zero at a value of p very similar to that corresponding
to k, /ki, = 1, supporting the preceding conclusions. It
is worth remarking that the actual behavior of B is very
well approximated by Eq. (7) when k, /k& = 1 (Ap ——pp)
up to very near the percolation transition (see Fig. 7),
whereas, when k, /ks g 1, spatial correlations seem to
become more important and the two curves deviate ap-
preciably even far from p«„.

These results are in agreement with continuum models
that indicate that the critical properties of elastic per-
colation are independent of the macroscopic properties
of the system, and also with rigorous argumentss that
demonstrate that the percolation threshold for discrete
models with only nearest-neighbor central forces should
always be at the same value (whatever reconstruction of
the lattice is chosen).

B- 6up(p —J- ),

I 3pp (p peen) &

B—= 2.
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These results are independent of the microscopic de-
tails of the model (ratio of k /ks); moreover, the critical
behavior of the moduli (typical of mean-field theories) is
also independent of the initial values of the macroscopic
elastic constants. On the other hand, the actual value of
p„„(Ref.4), z, is close to the result of numerical simula-
tions ( 0.65) and independent of both the macroscopic
properties of the media (Ap and pp) and of the micro-
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FIG. 6. Same as Fig. 4 for A/p, .
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FIG. 7. Normalized bulk modulus as a function of p.
Dots represent the results of our numerical simulations for
a hexagon of side 48 [continuous lines are drawn as a guide to
the eye, and dashed lines correspond to the approximation of
Eq. (7)]. Two different values of k /kq, I and 50 are shown.

C. Mean deviations in the bulk modulus

We have also calculated the mean deviation in the bulk
modulus (b B/Bo) as a function of sample size for dif-
ferent values of p and Ap/pp. The results are shown
in Fig. 8. For Ao/po

——1 (unreconstructed triangu-
lar lattice), this function has a maximum near p„„, in
agreement with the intuitive expectation that fluctua-
tions should be most important near p«„. When the
two types of springs are very different, a second peak de-

velops at smaller concentrations of broken bonds. This
peak approaches the point p = 1 as the ratio k, /ki, is

either zero or infinity (note that b, B/Bp is always zero
for p = 1). This effect is due to the fact that, when
the bonds are very different, the elastic properties of
the lattice are strongly dependent on the ratio of the
bonds that are missing, which can deviate from the av-

erage value 2. As expected, the values of b.B/Bo de
crease with increasing sample size, as these deviations
diminish. However, this anomalous peak in b,B/Bo for
intermediate sample sizes makes a finite-size scaling anal-
ysis of the elastic properties difficult. Spurious crossings
in the graphs of In[8(L)/B(L')j/ln(L/L') versus p may
appear, which was one of the reasons for the erroneous
conclusion that p«„depended on Ao/po.

7 s This behav-
ior of b,B/Bo is also related with the finite-size effects
and with the particular boundary conditions. The finite-
size errors decrease considerably with increasing sample
size, so it seems reasonable that finite-size scaling could
be done confidently with larger system sizes in future
works. Also the transfer-matrix approach could be done
to determine more exactly the percolation threshold and
the exponents. In this case, care should be taken because
the boundary conditions do not generate a uniform dila-
tion but rather uniaxial stresses, which could have some
implications in the isotropy of the results.
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A similar eR'ect can be observed in the distribution of
stresses among the bonds of the lattice, as shown in Fig.
9. When all the springs have the same force constant this
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FIG. 8. Deviations of the bulk modulus (AB/Bo) vs p
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FIG. 9. Stress S (units of kq) distribution in logarithmic
scale. Results for an hexagon of side 30 and k /ki, = l.
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distribution has a pronounced maximum near p = l. As
the percolation threshold is approached, stresses become
evenly distributed, signaling, as before, an increasing im-
portance of fluctuations near the critical point. When the
two types of bonds are very different (Fig. 10), close to
p = I, the stress distribution has two peaks for the back-
bone, reflecting the fact that, for homogeneous strains,
the two bonds store different stresses. As the concen-
tration of broken bonds is increased, this doubly peaked
structure dissappears, which suggest that the stresses,
and not the strains, are more homogeneously distributed.
The values at which this crossover takes place correlate
with the maximum in b,B/Bo discussed before. Thus,
for values of Ao/ps very different from one, we can define
a region of concentrations for which fluctuations are very
important and where the elastic behavior of the lattice
resembles that near the percolation threshold.

These anomalous features, which are closely associated
with the microscopic details of the lattice, suggest that,
unlike scalar percolation, elastic percolation most likely
does not show a universal behavioris valid for different
systems with the same long-range properties.

In this work we have investigated the properties of two-
dimensional percolating networks in a model description
of isotropic elastic media that combines a central-force
Hamiltonian with a reconstructed triangular lattice (two
different spring constants, k, and kb, where needed); the
model allowed us to vary the ratio between Lame co-
efficients from unity to infinity. We have analyzed the
behavior of diluted networks away from and near to the
percolation threshold by means of an effective-medium
theory and numerical simulations. We think that we have
presented conclusive evidence indicating that, contrary
to previous results, 7 the percolation threshold is neither
dependent on the macroscopic elastic properties of the
system (Ao and po) nor on the microscopic details of the
model. s Moreover, at p«„, A/tt also has the same degree
of universality, being equal to unity. Instead, away from
the percolation transition, our results suggest that the
behavior of diluted elastic networks might strongly de-
pend on how the voids are distributed. For concentrated
voids the elastic properties are uniquely determined by
Ap and pp. On the other hand, in the case of randomly
distributed voids (percolating networks) the elastic prop-
erties also depend on the microscopic details (k, and kb)
of the model used to describe the elastic medium with
coefficients Ap and tso. Thus, we may conclude that elas-
tic percolation does not seem to have the same degree of
universality as scalar percolation. is
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