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Quantized Hall eSect in three dimensions
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When the Fermi level lies in a gap, the Hall conductivity of three-dimensional (3D) electrons in a
periodic potential can be expressed in a topologically invariant form with a set of three integers.
These integers are explicitly found as a solution of a Diophantine equation, the structure of which

relies on the flux of the magnetic field through three areas of the periodic lattice. In a simple

geometry, we detail a tight-binding model which is found to be reduced to a generalized 1D Harper
equation. The existence of a complex gap structure is explicitly shown. The spectrum depends on
the field orientation.

The quantized Hall effect (QHE) in two dimensions has
been extensively studied since the experimental work of
von Klitzing et al. ' Laughlin argued from a general
gauge principle that the Hall conductivity should be in-
tegrally quantized o„=ne /h, n EZ, when the Fermi
level lies in a gap of extended states. Then, from the
Kubo formula, Thouless, Kohmoto, Nightingale, and den
Nijs (TKNN) (Ref. 3) derived an explicit formula for the
Hall conductance of noninteracting electrons in periodic
systems. This expression is independent of the detailed
structure of the periodic potential. The integer is a to-
pological invariant —the first Chem class of a U(l) prin-
cipal fiber bundle of a torus. It relates to the structure of
the magnetic subbands and thus to the flux (() of the mag-
netic field through a unit area of the periodic lattice.

Up to now, very little work has been devoted to the
quantized Hall effect in a three-dimensional (3D) elec-
tronic system. As a generalization of the integer QHE in
two dimensions and following the lines of TKNN, Halpe-
rin showed that, for electrons in a periodic potential,
when the Fermi level lies in a gap, the general form of the
Hall conductivity is given by

2

where G, is the z component of a reciprocal lattice vector
of the periodic potential. The value of it, however, has
not been given explicitly. On the other hand, Avron
et al. found that every quantized invariant on a d-
dimensional torus T is a function of the d (d —I )/2 sets
of TKNN integers obtained by slicing T by the
d(d —1)/2 distinct T . In 3D, the three TKNN integers
are precisely related to the three components of the vec-
tor G.

More recently, Montambaux and Littlewood present-
ed a physical situation in which the Fermi level is pinned
in a gap, in the absence of any disorder. This is the

magnetic-field-induced spin-density-wave (SDW) sub-
phase of a 3D quasi-one-dimensional conductor. Their
description neglected the lattice periodicity along the
direction of highest conductivity.

In this paper, we study 3D electrons in a periodic po-
tential without additional SDW ordering. Our purpose is
twofold: First we describe the gap structure and then we
derive explicitly the Hall conductivity. We have found
that the three integers t, , which define the reciproca1 lat-
tice vector G= g3, t, a;* (a,*, are the primitive vectors in
the reciprocal lattice) in ( I) are the solutions of a
diophantine equation that we are going to give explicitly.

Our starting point is the 3D tight-binding Hamiltonian

H= —t, g cjce "—
tb g c ce "—t, g c ce

(j), (j), '
(ij ),

where c; is the usual fermion operator on the lattice. The
3D Bravais lattice is spanned by primitive vectors a, b,
and c. The summations are taken over nearest-neighbor
sites, respectively, along the a, b, and c directions. The
phase factor 0, = —8; defines the magnetic field. One
can introduce three cruxes P„Pb,P, (instead of one (b in
two dimensions) through the three elementary plaquettes
of the periodic lattice. The areas S of these plaquettes
are given by S =a&X a . The cruxes are written, in units
of the quantum h /e, as

9t = —f 8dsl e

plaquet te

(3)

so that the uniform field B is totally characterized by
these three quantities.

When t, vanishes, the problem reduces to a 2D crystal
in a magnetic field. The spectrum has an extremely rich
structure as shown by Hofstadter. In fact, if (b is irra-
tional, it is a Cantor set that consists of infinitely many
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"bands" with scaling properties. ' For a rational

P =p /q, we have q magnetic subbands and each subband
carries an integer Hall conductivity. If the Fermi energy
is in the rth gap from the bottom, one has a relation
r =ps„+qt„,where s„and —q/2 & t„&q/2 are integers.
The Hall conductivity is given by t„e/h. '

It is interesting to see whether the quantization takes
place in three dimensions. Since the motion of electrons
parallel to the field is not affected by the field, one could
expect some 2D character in 3D system. In fact, if the
magnetic field is parallel to c in three dimensions, i.e.,
t, WO, the third term in (2) decouples and simply gives an
additional term —2t, cosk c in the energy dispersion. So,
if a gap for t, =0 is not closed, the Hall conductivity per
plane is given by the 2D formula but more and more gaps
disappear when t, increases.

In Ref. 7, it has been stressed that an interesting situa-
tion could take place as soon as the field B is not aligned
along one of the cristallographic axes. This is essentially
due to the fact that we have three parameters P„P&,P,
(instead of one (() in two dimensions). In such a case, the
t, term does no longer decouple and a more complex

structure occurs in the energy spectrum with many nore
bands (see Fig. 1). Let us first, for simplicity, restrict our-
selves to a simple geometry. Vectors a, b, B form a rec-
tangular triad and c axis is tilted with an angle 0 in the
B-b plane. The fIux through a plaquette in the a-b plane
is P, =eBab /h and the flux through a plaquette in the a-c
plane is P&=eBac sin8/h. Note that there is no flux

through the b-c plane in this geometry.
A site on the square lattice i has coordinates (n, m, l)

where n, m, and I are integers. A gauge is chosen in
which 8, =0 for the links along the x direction,
8,, =2~ng, for the link between i =(n, m, i) and

j =(n, m +1,1) along the b direction and 8,"=2m.nfl, for
the link between i =( n, ml) and j =(n, m, i +1) along
the c direction. This corresponds to the Landau gauge in
the continuum case. A rather straightforward calcula-
tion transforms (2) to

H= Jd kH(k)
(2m )

with

H(k)= —2t, cosk, ct(k)c(k) —
tt, [e 'c (k, +2m/„k tk, ) (ck)+e 'c (k, 2m/„kt„—k, )c(k)]

t, [e —'c (k, +2irg&, k&, k, )c(k)+e 'c (k, 2ng&,—k&, k, )c(k)], (4)

where c(k) is a fermion operator defined by c„t= 1/(2m) J d kexp[i(nk, +mki, +1k, )] c(k). We have defined

k, =k a, kb =k b, k, =k c. There is no coupling between different kb's and k, 's, and k, couples to
k, +2~/„k, 2m/„k—, +2m/i„k, 2n.P&. We—choose the magnetic field 8 so that the fluxes have rational values

p, =p/q and p& =p'/q'. Therefore, the Schrodinger equation H lip ) =El% ) is reduced to

2t, cos(k, +—2' /Q)f —
tl, [e 'g +e 'p + .] t, [e 'f— +e 'p + ]=E(k, , k&, k, )g, (5)

where Q =qq', k, is written as k, +2m j/Q and i(J+& =f/ Astate is .given by

(6)

where l0) represents the vacuum state. This equation has Q eigenvalues for fixed values of k, , k&, and k, . Therefore
the original single band for the tight binding -model has Q bands due to the application of the magnetic jteld and each
band has a reduced Brillouin zone: —v/Q &k, &n/Q, —it &k&.&n., n&k, &n— .The overla. .pping of these Q bands
depend on the couplings t„t&, and t, The larg. est number of gaps available is Q —1 and this is certainly realized when
t&, t, « t, . Figures 1(b} and 1(c) show the structure of these bands for a choice of parameters There a.re more gaJtsin
the spectrum.

By a transform f = gg i
e' Ji~~f&, Eq. (5}becomes

—BIO—t, [e 'fi, +e 'ft+, ] [2t&cos(k&+2ml—gt, }+2t,cos(k, +2mlg, )]f&=E(k,,kt„k,)fi .

This generalized Harper equation describes a 1D tight-
binding model with two commensurabilities P, and P&,
and has interesting localization phenomenon in incom-
mensurate limits. "

In a different approach, one starts with the energy
dispersion without magnetic field, E(k) = —2t, cosk a,—2tbcosk-b, —2t, cosk.c and makes the Peierls-Onsager
substitution k~(p+e/c A)/itt'. Here p is the quantum-
mechanical momentum operator and A is a vector poten-
tial. The two approaches give the same energy spectrum

k,'=k, +2m. t+
q q'

and states.
When tb, t, « t, one can calculate the Hall conduc-

tance explicitly. The unperturbed energy dispersion (i.e.,
for tt, =t, =O} is simply the first term of (5}:
Eo(k, )=—2t, cos(k, ). The second and third terms give
coupling between different k, 's
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The unperturbed spectrum is doubly degenerate. The
gaps open when Eo(k, ) =ED(k,') (namely, k,' = —k,
+2ms for an integer s). So k, and k,' couple by ~t~th or-
der in tb and ~t'~th order in t„and the size of the gap is

of order of t tlt1& l &f z &s chosen appropr&ately k &s put
between 0 and n and is written as k, =(r/Q)m with

0 ~ r ~ Q. Thus we obtain

—'=s+&t+ ~t, (9)
Q 0„,=— [s+tp, +t'p, ]= (t+Rt'),

V BB ' bccosO
(10)

where ~t~ ~q/2, ~t'~ ~q'/2, and O~r~Q. A gap is la-

beled by an integer r from the bottom of the spectrum.
A convenient way to obtain the Hall conductance

when the Fermi energy is in the rth gap is to use the Stre-
da formula o„=ed%/BB,where X is the total density

of states below the gap. It is simply given by N =r /QV,
V=abc cos8 being the volume of the unit cell. Since

p/q =P, and p'/q' =Pb, one gets, from (9)
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FIG. 1. Evolution of the spectrum with increasing t„(a)
when the field is aligned along the c direction (p/q= —,'); (b)

when the c axis is tilted with the angle 8 given so that p'/q'= 5;
(c) with 8 so that p'/q'= —,. Here, t, =1, tI, =0.3.

FIG. 2. Hall conductivity o. in a plane (a) when the field and
the c direction are colinear; (b) when the direction c is tilted
(p'/q'= —,'); (c) when p'/q'= 5. The lines are guides for the

eyes: The Hall conductivity is only computed in the gaps. The
conductivity is expressed in units of e /h.
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where R =p'q/pq' is the ratio of the two fluxes P, and

Pb. Then the Hall conductance per a plane is

2ot""'= (t+Rt') .xy

tb. The Hall conductivity is shown in Fig. 2.
We have chosen a special geometry in which only two

cruxes are nonzero. One can easily generalize this result
to the most general form if the three fluxes are rational

Note that we assumed s, t, and t' do not depend on B.
This can be understood for tb, t, &(t, where t and t' are
number of steps to connect the two degenerate points in

k, space and s is the winding number. Note that k,
space is topologically a circle. So those integers do not
change when the magnetic field is changed infini-
tesimally. '

In another approach, one writes the contribution to the
Hall conductivity as

h

(2~}~i RBz

B1(; Blt,

ak„gko

(12)

This is a generalization of the 2D result. ' The integral
is performed on the reduced Brillouin zone. This is a to-
pological expression since the integrand is related to the
phase of the wave function. The determination of the
phase in k space is a delicate procedure that can be
achieved explicitly in the weak-coupling limit. The ener-
gy dispersion is doubly degenerate. The wave function
changes character across the boundaries of the Brillouin
zone. For the rth band, it gets a phase O„=t„kb+t,'k, on
one side and 8„&on the other side. We apply Stokes
theorem and get

2w
dk g (8„—8, , ),c cosO 0

(13)

which also leads to the result (10).
In the following, we show an example, in the simple

geometry we have discussed. We choose the field B so
that its Aux through the a-b plane is given by
P, =eBab /h =

—,'. We first assume 8=0 so that
P, =Pb =0. The spectrum has three bands. The c direc-
tion decouples and the Hall conductivity has the struc-
ture of the 2D result (c is the distance between a-b planes)
o„~=ne /hc. There are three bands in the spectrum
and the gaps tend to disappear if l, is too large [Fig. 1(a)].
Now, assume that the c axis is tilted with an angle 8
given by c sin8/b =—,'(or —', ) so that the flux through the
a-c plaquette is now Pb =eBac sin8/h =

—,
' (or —', ). We now

bouc 15 bands in the spectrum. Figures 1(b) and 1(c) show
the evolution of these bands when t, increases, for fixed

e2 3

hV. , BB
'Y t,

2 3

g t, a,'k,
27T

(14}

where the t,. are solutions of the diophantine equation
(~=nq, )

'

r—=s+ (15)

In order to study a simple example, we concentrated
on the tight-binding approach. As in two dimensions,
our results could be very easily generalized beyond this
approach and in particular to the weak lattice potential
limit. '

In conclusion, it is worth again stressing that our result
cannot be reduced to a 3D picture, since the reciprocal
lattice vector G of Eq. (1) belongs to a 3D space. Its
orientation changes for the different Hall plateaux. This
means that, for a given field, the conductivities carried by
each subband are characterized by noncolinear vectors.

As in two dimensions, the observation of the lattice
effects described in this paper requires enormous fields for
a lattice of atomic units. These effects will be probably
observable with the evolution of new microelectronics.
However, this may already be a useful framework for the
study of the SDW 3D systems in which additional period-
icities may conspire with the lattice periodicity to give in-
teresting effects. '

Finally, let us emphasize that such effects do not neces-
sarily require a special geometry but can be found even in
an orthorhombic symmetry if the field is tilted and that
the spectrum uaries dramatically with thejeld orientation.
When the field is not perpendicular to the x-y plane
where o„is measured, calculation of o„hasto be done

carefully and p„~is different from 1/o„.
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