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We study a three-dimensional classical XY model with strongly fluctuating, spatially uncorrelat-
ed, bond disorder. Finite-size scaling analysis of Monte Carlo simulation data has been used to
determine critical exponents. Evidence for a possible shift in exponents from the pure XY case is
found. Connection to recent experiments on the superfluid phase transition of *He in porous media

is discussed.

The superfluid phase transition of liquid *He in porous
structures has been a topic of long-standing interest.! ™’
Much effort has been devoted to understanding the onset
of superfluidity at T =0 as a function of increasing heli-
um density.>* Another problem has been the critical be-
havior at the very low transition temperatures seen in
low-density thin films, which has been described in terms
of a crossover to ideal-Bose-gas behavior.>* At the
higher transition temperatures seen in saturated pores,
the nature of the superfluid transition has also been ex-
tensively studied experimentally."> In Vycor glass, a
suppression of the normalized superfluid density
ps(T)/p,(0) as compared to bulk, is observed as T, is ap-
proached from below, but the critical exponents appear
to be the same as bulk.’> Recent experiments in silica
gels,5 however, have reported different critical exponents
for p,, suggesting that the random host may shift the
transition to a new universality class.

Theoretically, the superfluid transition in this higher-
temperature case of saturated pores may be modeled by
the classical XY model. The complex order parameter of
the superfluid transition has the same symmetry as the
planar spins of the XY model. Only a few attempts®’
have been made to model the behavior of the superfluid
density in this case. Modeling the porous media as a set
of interconnected one-dimensional chains, Fishman and
Ziman® studied a regular bond-decorated spherical mod-
el. Garg et al.’ carried out simulations on bond and site
diluted 3D XY models, with dilutions as large as 55%. In
such spin models, the helicity modulus Y(T) (spin-wave
stiffness constant) plays the role of the superfluid density.
As T—T, from below, Y vanishes as Y~ |t|¥, with v
equivalent to the superfluid density exponent §. In both
the preceding models, no substantial change in
Y(T)/Y(0) (apart from a linear rescaling of the tempera-
ture) was observed when compared with that of a regular
periodic lattice, for all temperatures from 7, down to
T =0. Thus these models did not observe the suppres-
sion in p(T)/p,(0) near T, characteristic of helium in
porous media, nor any changes in critical behavior. The
critical behavior of the 3D XY model is expected by the
Harris criterion® to be unaffected by weak amounts of un-
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correlated bond disorder. Weinrib and Halperin® intro-
duced a model in which algebraically correlated disorder
may affect critical exponents. However, no explicit mod-
el calculation was carried out for helium. In this paper
we study a new random-bond-decorated 3D XY model.
The disorder we introduce, motivated by a simple physi-
cal model of a porous media, is uncorrelated but very
strongly fluctuating. We observe for the first time a clear
suppression of the normalized helicity modulus near T,
from that of the regular periodic case, consistent with re-
sults on helium. A finite-size scaling analysis of Monte
Carlo simulations is carried out to compute critical ex-
ponents, and we find results suggestive of a new univer-
sality class.

Our model is as follows. First, consider a regular 3D
cubic lattice with one planar (XY) spin per node. Ran-
domness is introduced by “decorating” each bond with a
random number n of planar spins. n is taken from the
probability distribution

—n/l,

p(n)= Ae ) (1)

where [/, sets the average number of spins on each bond
and A is the normalization factor. All spins on this
decorated lattice interact through nearest-neighbor cou-
plings. The Hamiltonian of this model is given by
nij—l
H=—J 3 | 3 all_j-a,ijﬂ+s,~-al+a,,‘_j-s-

(2)
] b
Gjy |1, =1

where s; is the spin at node i of the lattice, and {0, } are
Uj

the n;; spins on the bond-connecting nodes i and j. As
usual, the sum 3 (;;) is over all nearest-neighbor nodes of
the cubic lattice.

The model (2) resembles some key features of
superfluid *He in silica xerogel. For the xerogel in Ref. 5,
the distribution of the pore diameters is sharply peaked
at d,~10 nm which is much smaller than the coherence
length of the superfluid *He in it, £~10? nm near T.,.
The spatial variation of the phase of the macroscopic
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wave function may be neglected over length scales much
smaller than the coherence length £. Therefore, one may
treat the superfluid “He in one pore as a one-dimensional
system and model it by a linear chain of planar spins. We
simplify the very complicated topology of highly inter-
connected pores by modeling it as the connection of
bonds on a 3D simple cubic lattice. The distribution (1)
which we use, is suggested by the broad range of length
scales believed appropriate for gels (Vycor in contrast,
seems characterized by a narrower length distribu-
tion).>1°

Before numerically simulating the model (2), we first
integrate over the degrees of freedom of the bond spins
{o Iij} in the spirit of the real-space normalization group.

A strict decimation over bond spins would result in an
effective node-node interaction which is no longer a
cosine. We simplify this by replacing the decimated bond
spins by a cosine interaction with a coupling K;; deter-
mined as follows: We require {Sy'S, )k, the spin-spin
correlation function of the chain with n intermediate
spins at coupling K =J /T, to be equal to that of a two-
spin chain with coupling K, i.e., (S,S, >K:‘j' These K;;
are given in terms of the number of bond spins n;; by
solving!!

LK) /TK ) =[1,(J /T /I(J /D" 3)

I, is the nth order modified Bessel function. Thus we
reduce the decorated-bond problem to a random-bond
XY model

Wetf/T=—2K,~jcos(9,-“0j) ) (4)
Cij)

where 6; is the angle of the node spin s;. An interesting
feature of the bond distribution generated by this pro-
cedure is that it is algebraic at small K. From Egs. (1)
and (3) we find at small X that the probability density to
have a bond K;; =K is given by
J
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PT(K)~K_U ’
: (5)

= mi, /DI,

a

The probability distribution, and in particular the ex-
ponent a, vary with temperature. As T varies from O to
o, a varies from — o to 1. In the neighborhood of T,
we will find 0<a <1, and hence Pr(K) is divergent at
small XK.

We have carried out Monte Carlo simulations of this
random XY model on simple cubic lattices of size N =L>.
Simulations and analysis have been carried out as in our
prior work on the pure 3D XY model, and details may be
found in Ref. 12. To reduce critical slowing down, we
have used the over-relaxation method. For each data
point, we have averaged over four different realizations of
the random-bond configuration, and for each
configuration we have averaged over two independent
runs. Within each independent run, the system is cooled
down from the disordered phase at high temperature. At
each temperature, 500 passes through the lattice are dis-
carded for equilibration, and 2000 passes used to com-
pute averages. Each of the above “passes” consisted of
eight over-relaxation steps followed by two Metropolis
Monte Carlo sweeps through the lattice.

To characterize the critical behavior, we have comput-
ed the helicity modulus Y and the ‘“order parameter”
|M|? as a function of temperature T and size L. The or-
der parameter we chose is the magnetization squared,
given by

|M|2=$<<‘§exp(i9i)‘2>>, N=L?, 6)

where {( -+ )) represents a combined thermodynamic
average and average over random-bond configurations.
The helicity modulus, in direction fi, is given by'>

(ij) {ij)

We average Y over i=X, §, and Z to achieve better
statistics. In Fig. 1 we show our results for normalized
helicity modulus versus 7 /T,, for the size L =10. We
show the pure XY model and our random-bond model
with distributions (1) given by /=3, 5, and 10. We see
clearly the suppression of Y(T)/Y(0) near T, for the ran-
dom case as compared to the pure case.

To analyze critical behavior, the results of the helicity
modulus Y and order parameter |M|? have been fitted to
second-order expansions of the finite-size scaling func-
tions,'*

Y(K,L)=L~"“[H,+H,L'"(K —K,)
+H,L*"(K —K,)?], (8)
M (K,L)]*=L"%#"[®,+®,L'(K —K_)
+®,LYYK —K,)?], 9)

[
where K=J/T. In our fits to Y, we have assumed the
Josephson scaling relation v=(d —2)v (v=v in d =3).1°
Our fitting procedure has been described in detail else-
where.!?

Simulation of the model (4) has been done for bond dis-
tributions (1) characterized by /,=3, 5, and 10. For
l,=35, even sizes L =6-14 were simulated. To test that
we are in the scaling regime, we drop data from the suc-
cessively lowest values of L until the fitted parameters
remain unchanged. We have used only the data from
L =10, 12, and 14 for the final fits. For /;=3 and 10,
only sizes L =10, 12, and 14 were simulated. The fitted
curves for Y and |M|?, for the case /,=S5, are shown in
Fig. 2. The fitted parameters are shown in Table I. Re-
sults from the helicity modulus and order parameter
fittings agree within statistical error. While exponents
for the case /=3 agree with those of the pure XY model,
the exponent v is seen to increase from the pure XY value



11 390
Q
—“[ao o3 a
° «©
o o Pure XY
® oA o =3
CH e a ¢.=5
° ¢t =10
o
4o
© o
~° T n °
% oI Ao
sl - :
N’ o
& e a
or o °
- o
o o o
o a
] “ o o
oI LY
LN %
g ! % o _ 8 %%
@
) 0.9 1.0 11 o
o ! l L 1 I
0.0 0.2 0.4 0.6 0.8 1.0 1.2
T,

FIG. 1. Normalized helicity modulus Y(T)/Y(0) vs T./T
for the pure 3D XY model (Ref. 12) and our random model with
the bond distribution (1) characterized by /,=3, 5, and 10.
Suppression of Y(T)/Y(0) near T, is clearly observed in the
random case. Data is for a lattice of size L =10. Inset shows
data on finer scale.

as [, increases. Our values compare with the exponents
£~0.8—0.9 found in experiments® on “He in silica gels
((=v,v=vind =3).

The effects of uncorrelated bond disorder on critical
behavior is generally discussed in terms of the Harris cri-
terion.? This argues for the irrelevance of weak disorder if
the specific-heat exponent a <0, as is the case for the
pure 3D XY model where o= —0.007+0.006.'® For our
random bond XY model, however, disorder is strong. In
Table I we show the value of the bond strength fluctua-
tion, ((AK;;)*)./(K;; )2, at the critical temperature. We
also show the value of the exponent a(T,) of the bond
probability distribution (5) at small K. As one can see,
the fluctuation is stronger and ?TC(K ) is more divergent

at small K as [, gets larger. These observations suggest

that the Harris criterion may not be applicable to such a
strongly disordered system. A random Heisenberg model
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FIG. 2. The finite-size scaling behavior (a) of the helicity
modulus Y(7,L), and (b) of the order parameter |M(7,L)|? for
the bond distribution characterized by /,=5. Symbols with er-
ror bars represent the Monte Carlo simulation results. The
solid lines are the results of the fits to Egs. (8) and (9) using data
from sizes L =10-14. In (a), v=0.74 is used in making the hor-
izontal axis of the plot. In (b), v=0.72 and B=0.43 are used in
making the axes of the plot. The values of the fitted parameters
are shown in Table I. T,=1/K_~0.613.

with a similar bond strength distribution diverging alge-
braically at K ~O0 has been studied at the percolation
threshold.!” There it is found that both critical exponent ¢
describing the vanishing of helicity modulus at the per-
colation threshold and the thermal-percolative crossover
exponent ¢ vary with the power of the algebraic distribu-
tion.

To conclude, we have proposed a physical model for
the superfluid transition of “He in porous media, which
we reduce to a random-bond 3D XY model [Eq. (4)]. Dis-
order is strong and the Harris criterion may not apply.
We have carried out Monte Carlo simulation of the mod-
el, and used finite-size scaling to find the critical ex-
ponents. We find that the normalized helicity modulus
(superfluid density) is suppressed near T, from the pure
(bulk) case, as is observed experimentally. For the more

TABLE 1. Table of simulation results for different bond distributions. v'’ and K¥’ are the thermal exponent and the critical cou-

pling as determined bg fits to helicity modulus Y, Eq. (8). '

2 2
M) (M*)
» Ko

, and order parameter exponent 3 are determined by fits to

IM|2, Eq. (9). O M%) and KO, KMP) agree within statistical error. ((AK;;)?)./{K,;)?2 is the fluctuation in random-bond strength
at T,. a(T,) is the exponent of the small-K bond distribution, Eq. (5), at T.. Results for the pure XY model come from Ref. 12.

((AK;)?)
1 1) SM2 K KC(MZ) -y a(T,)
0 b (K,
Pure 0.68+0.02 0.67+£0.02 0.4543+0.0006 0.4533+0.0006 0.36+0.01
3 0.70%0.05 0.65+0.04 1.199 +0.006 1.200 +0.006 0.37+£0.04 0.86 0.50
5 0.74+0.04 0.72+0.03 1.63 +0.01 1.61 =£0.01 0.431+0.04 1.1 0.57
10 0.85+0.06 0.92+0.08 246 +£0.02 2.51 £0.02 0.42+0.05 14 0.64
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strongly disordered cases that we studied (/,=5,10), we
find a helicity modulus exponent v =v which is larger
than the pure XY value. This larger exponent is con-
sistent with the experimental trend for helium in gels.
While this is suggestive of a new “random” universality
class, we cannot rule out the possibility that our simula-
tions are still in a crossover regime, and that for larger
system sizes L, the pure XY values could be obtained.!®
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