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A so-called “flux-phase” projected-fermion mean-field theory has been shown to give a good ac-
count of the ground state and excitations of the S :% Heisenberg antiferromagnet on a square lat-

tice. In this paper it is shown that random-phase-approximation spin waves (or paramagnons) of
the flux phase have an unusual spectrum, especially near the zone boundary. There is no singularity
in the spin-wave density of states at maximum energy, and the small-momentum spin-wave-velocity
renormalization is obtained. Noninteracting spin waves are shown to give reasonable description of
Raman scattering. It is argued that the conventional picture of strongly interacting, damped
Holstein-Primakoff spin waves may in fact be described in terms of less incoherent excitations in
this new basis. The flux-phase basis arises through considering the antiferromagnet as the large-U
limit of the half-filled Hubbard model. In that model it is suggested that the flux should turn on for

U>U,~3.1.

L. INTRODUCTION

The two-dimensional spin-one-half Heisenberg antifer-
romagnet (S =; AFM) has been made widely accessible
to experimental study recently by the discovery of a large
class of materials possessing large magnetic exchange
constants J~O0O (1000 K), namely, the high-T, oxides.
This system is known to have long-range Néel order in
the ground state.! Holstein-Primakoff (HP) spin-wave
theory predicts a correct sublattice magnetization' of
60%. In this theory spin waves have a spectrum

o(k)=2J[1—y*k)/16]'/%,

(1.1)
v(k)=2(cosk, + cosk,) .

One also obtains this spectrum if one considers a spin-
density-wave (SDW) ground state for the large-U Hub-
bard model.?

It is known however that this spectrum is misleading.
Higher-order corrections (1/S, say, in the HP scheme
and calculated in other schemes') produce a spin-wave-
velocity renormalization J—Z_XJ, Z,~1.15-1.2 and
strong damping for zone-boundary spin waves.’

Interest in the S =1 AFM was of course fueled by
high-T, superconductivity and the proposal of Anderson*
that the large-U Hubbard model described electronic
properties of these materials. The S =1 AFM arises
from this model at half-filling and superconductivity ap-
pears upon doping. Given this motivation it was natural
to try to describe the AFM in terms of the underlying fer-
mions. That allows for a continuous theoretical descrip-
tion linking the doped and insulating states of the Hub-
bard model.

In mean-field treatments® of the Heisenberg model
written in terms of constrained electrons a special saddle
point (among others) was discovered by Kotliar® and
Affleck and Marston,’ which the latter dubbed the “flux
phase.” In this state the orbital motion of electrons is ad-
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justed as if they were affected by a magnetic flux of
&o/2=hc /2e threading each plaquette of the square lat-
tice. If single occupancy is enforced by Gutzwiller pro-
jection (Pg) and the resulting state considered as a varia-
tional wave function then the numerical work of Zhang et
al. and Gros® shows that indeed this state has a good
variational energy.

Our starting point then is the mean-field theory. In
Sec. II we describe the flux phase and co-existing flux and
spin-density wave phases in detail, explaining how to
make spin-wave states and calculating their spectrum. In
Sec. III we consider two-magnon Raman scattering. We
show that noninteracting spin waves based on the flux
phase provide a simple description without need for dras-
tic incoherent scattering effects.

II. FLUX PHASE AND SPIN WAVES

The Hubbard model

==t 3 (cich+ H.c.)+U 3 n;n;,
(i,j),a i

2.1

for U/t>>1 at half-filling may be canonically trans-
formed and projected onto the nondoubly occupied sub-
space’ to become the S =1 AFM,

HAM=—J 3 3 clejoclicin (2.2)
(i,j) o,0'
where J =4t>/U. The mean-field approach assumes a
nonzero expectation value for x;= € c,-’:,c o ), which
resembles a link variable of a U(1) lattice gauge field cou-
pled to the remaining fermions:

Xij = exp if,’A'dl] ’ 2.3)
afjm — 1
He{}" =—J (Z)Xijcitycja‘}‘jlx,ﬂz . (2.4)
ij

We choose to implement the constraint of one particle
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per site by Gutzwiller projecting the mean-field fermion
many-body wave function. This procedure of Gutzwiller
projecting free-fermion states does yield accurate
ground-state properties of the large-U Hubbard model.
Later we shall give a physical picture to motivate this
variational procedure.

It turns out that the best projected mean-field fermion
energy® for the half-filled case is given by (modulo gauge
transformations)

_
Aij""-

> (2.5)

X, +y‘,\
This gauge field is that which is produced by a magnetic
flux of ¢y/2=hc/2e through each plaquette. The
effective Hamiltonian becomes
afm — t .
HYf"= S cile,yte, g File, g+e, D+ He.,
r

r+x

(2.6)

where the even sublattice sites are those for which
x +y =even integer and odd lattice sites have x +y=odd
integer.

To construct a variational wave function for the AFM
on a lattice of N sites, we place N /2 up-spin and N /2
down-spin fermions in their kinetic energy ground state
on this lattice pierced by magnetic flux and then
Gutzwiller project. The resulting variational energy was
calculated by Gros et al.® to be E=~—0.319J per link
compared with E ~ —0.334J per link:' the lowest known
numerical variational energy. Without tuning any pa-
rameters we find a wave function having remarkably
good energy.

Now let us briefly consider why a Gutzwiller projected
double Slater determinant could be a good variational
wave function for the antiferromagnet. The point is that
minimizing the kinetic energy of fermions induces a ex-
change hole. Minimizing the kinetic energy of N /2 up-
spin electrons decreases the nearest-neighbor particle-
particle correlation and, since the density is at the com-
mensurate value of 1, increases the amplitude for the up-
spin electrons to (locally) be on the same sublattice.
Down-spin electrons are likewise correlated so that when
the two species are superposed and projected, one finds
an enhanced nearest neighbor (S7S7). Since the up- and
down-spin electrons occupy the same set of single particle
states, we automatically have a global spin singlet so that
(S7S7) and (S}S)) are also enhanced.

To be quantitative let us calculate {n;n;, ) for half-
filled spinless fermions in their kinetic energy ground
state with and without flux. 7 is a nearest-neighbor vec-
tor. Without flux,

(nn; ) =1-0.0411 . 2.7

The correlation for a random fermion distribution is +

and —0.0411 is the exchange hole. Now in the case of

fermions feeling a uniform flux
(n;n; ;. )=1-0.0574 . (2.8)

The exchange hole is 40% larger.
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After Gutzwiller projection numerical calculations
show that the energy of a flux state is improved over a
state with no flux as follows:

E (P, |free electron))=—0.267J per link ,

(2.9)
E (P, |flux phase))=—0.319J per link .

Given that even our flux state is significantly different
in energy from the best known energy, it would seem
then that some crucial correlations are being left out of
our mean-field state before projection. Gutzwiller projec-
tion is actually a very crude operation. It does not gen-
erate off-site correlations that are not present before pro-
jection. What seems to be missing is the effect of U on
nearest-neighbor and longer correlations. If we wish to
include that, we must do so before projection. What we
propose is to include a weak on-site repulsion

VI nin;y (2.10)
1
as a variational parameter. In mean field, this repulsion
may lead to a spin density wave coexisting with the flux
order which is known to improve the energy of the flux
state.

First let us introduce some notation. Using the rela-

tions

S, expliken)=2C[8(k)+8(k +Q)],
r even N (2'11)
3 expliker)="-[8(k)—8(k+Q)] ,
r odd
where Q= (,), we define
cJw=[c' k) +c'k+Q)1/v2,
2.12)

chk)=[cfk)—cTk+Q)1/V2.

Now consider the flux-phase Hamiltonian with a SDW
field m:

H= 2 {CI[Cr+i+cr~i+i(Cr+

r even

?+cr_9)]+ H.c.}

+m, [ 3 ele,— 3 ele, ), (2.13)
r even r odd
Fourier transforming,
H="lc} (k)] (k)
ko
om 2(cosk, +i cosk,)
X 2(cosk, —i cosk, ) —om ]
Ceo(k)
X e, (k)
(2.14)
with eigenvalues
e(k)=+E,, E,=VTi+m?, (2.15)

where
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L=V cos’k, + cos’k, .

When m —0 a notable feature of the spectrum is extrema
at k=(0,0),(0,7) and two ‘“Fermi points” at
k§=(1r/2,i1r/2)(mon) where the energy goes to zero
linearly as |k —k g |. That is, the fermion spectrum is rel-
ativistic. The staggered chemical potential looks like a
fermion mass. The eigenfunctions are

V., ,(k)=g (k) —2(cosk, —i cosk,)c,,(k)

+lom +E;)c,,(k)]/Dx ,, (2.16)
am +Ek
Ceolk)=— D, Vio(k)
7" B i
D_, -7 ’
(2.17)
2(cosk, —i cosk,)
o olk)=— v, (k)
D+,a
2(cosk, —i cosk,)
D_, v_,(k),
where
D, ,=Q2r%+2M*+20mE,; )"
=[2E,(E,tom)]'?
and
g (k)=2(cosk, +i cosk,) /T .
Note that since m,_;=—m_,_,, the sets of states filled

by up- and down-spin electrons will not be identical and
the overall state (pre and post projection) is not a pure
singlet.

Lee and Feng'® and Gros® have done a Monte Carlo
calculation with staggered magnetization in the flux
phase as a variational parameter. In both cases a best
variational energy —0.332J was found for a sublattice
magnetization of about 70%. If one allows Néel order
with no flux, as was considered by Yokoyama and Shi-
ba,!! the best variational energy is —0.321J per link with
a sublattice magnetization of 84%. The energy is
significantly higher than the best Neel states with flux.
So at least from this particular variational point of view it
is favorable to introduce a magnetic flux.

At this point let us introduce an analytical approxima-
tion to Gutzwiller projection which qualitatively repro-
duces the Monte Carlo results quoted above. In this ap-
proximation we focus on two or four sites and calculate
the configuration probabilities at these sites after
Gutzwiller projection in terms of probabilities before pro-
jection. This approximation is controlled in that we
could apply this procedure to larger and larger clusters of
sites using multinoninteracting particle correlation func-
tions to get better and better approximations. However
we shall show that agreement with Monte Carlo simula-
tions is quite good at our level of approximation. We
shall then, with some confidence, assume that using this
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method to calculate various quantities gives answers ac-
curate to within numerical factors ~O(1).

Let P( - -- ) be the probability of a spin configuration
on two adjacent sites after projection and Py( - - - ) the
probability of some electron configuration (usually of
noninteracting electrong) on the same two sites before
projection. Let 1,1, ﬁ, denote up-spin electrons,
down-spin electrons, up-spin holes, and down-spin holes,
respectively. Then the probability of having two parallel
or antiparallel spins, respectively, on adjacent sites after
projection is

P(1H=PU =Pyt 1)xPL D)
=Py L)xPy( I =1 —x 7

" 2.18)
P(th=P =Pyt hxpy(l 1)
=p, (L hxpy I =1 4+x2,
where, in the absence of SDW say,

—_1 2
* 16N2 [occuzpied o ]

=0.0411 no flux

=0.0574 with flux . (2.19)

The nearest-neighbor spin-spin correlation is then ap-
proximated by

HPOIN+PUD]—E[P(TLH+P(LIT)]

S = T PG DT P(TVFPUT)
2
T 1+16x2

~ —0.080 projected without flux

~—0.109 projected flux phase . (2.20)

As we are dealing with singlet states our estimate for the
projected variational energy is (JS;-S;)=3J(S/S})
~—0.327J for the flux phase, about 3% off from the
Monte Carlo value.

To show that this method can be accurate, we now cal-
culate analytically the optimal value after Gutzwiller pro-
jection of the mass parameter m with respect to the spin
Hamiltonian. This method has been extended to estimate
also the energy of electron particle-hole excitations after
projection. We begin with the density-density correlation

1
AN :27 (nin; 1)

1

=47 27l —p" el (k —p +p"Ie (k) (pleg(p’))

k,p,p’

(2.21)

and break it up into the direct and exchange pieces. (The
prime denotes summation on the reduced Brillouin zone.)
The direct piece, which contains terms like

(VL ow_ (kv (p)w_(p))

from the ¢, ; operators, contributes a term
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m
1+
E

p

X (2.22)

VIR

The exchange piece, coming from extracted terms like
(WL(p W, (P (p)W_(p"))

gives a contribution

L |sD 2 (2.23)
16N* |4 E, '
In the presence of a staggered magnetization

(S*S F+S7SY ) must be calculated separately. For this
one can show that

4N 2 (cheivmeline) =% (2.24)

One more ingredient we need is the sublattice magnetiza-
tion,

5=2 2 cinciT— 2 CiTTCiT
N i odd i even
=2 ST} —0m —EP)/DL 1O (k0w _ k)
k
2
N3 E'"k— (2.25)
Defining
a=;—3b?

and putting all the terms together we have new probabili-
ties

P(tD)=(a—x)*,
P(1L)=(1+15
PUD=(1—1p

—a+x)?,
—a+x)?.

Our choice for the sign of m favors 1 spins on the odd
sublattice. We follow a convention that the first arrow in
the parentheses P( - - - ) refers to an odd lattice site. The
new normalization factor is

Z=P(t11)+P(LL)+P(11)+PUT)
=2[(@—x)+(1—-a+x)?+1p7].

The spin correlations are

(SiSF)=(a—1—2x—1b?/4Z , (2.26)

(S7SF+S)S)y=—x%/Z . 2.27)
The sublattice magnetization after projection is

2i—a+x)b 228

Z (2.28)

In fact the actual numerical computation was carried out
extending the above method to four adjacent sites. In
this case there are 16 possible spin configurations. The

THEODORE C. HSU 41

weight of each was computed according to the same pro-
cedure as before. For example,

vt (e v
Ply 4 |TPor 1 |P '
(2.29)
I 1 :
olr 1 |=2PIDPo(11)

I

T
T T

—2(1+15)Y(1—1b),

+P, P,

where we have chosen the upper-right and lower-left sites
as favored by up spins in the presence of a spin-density
wave.

The results of our calculation of energy and sublattice
magnetization as a function of mass is shown in Fig. 1.
For the flux phase, we compute an energy minimum of
about —0.331J occurring at m =0.5. At that point the
sublattice magnetization is 60%. These results are in
rough agreement with the Monte Carlo results of Lee and
Feng, and Gros, confirming the accuracy of our analyti-
cal approach. In the uniform phase we found a variation-
al energy minimum of E =—0.292J with a sublattice
magnetization of 85%, agreeing roughly with Yokoyama
and Shiba.!! The fact that our simple short-range
Gutzwiller projection has such a good energy implies that
the flux plus Néel state can obtain almost all of its
ground-state energy from adjusting short-range correla-
tions before projection. In this system energy is not sen-
sitive to long-range order. For the same reason it is in a
property such as sublattice magnetization that different
numerical studies of the AFM in general have the poorest
quantitative agreement. Zero-point spin-wave fluctua-
tions make corrections to the ground-state energy in two
dimensions which are miniscule but greatly affect sublat-
tice magnetization.

Let us now turn to the calculation of the spin-wave
spectrum. Our plan is as follows: we shall first create a

-0.28 T T 1
=) c
5 -0.29 S
g | 5
[ = -v. -
: :
< .0.31 a
£ ] E
13 S
g -032 F 8
> : £
3 <
2 .0.33 F I
) s 3
[ 3 [72]
W .0.34
0 0.5 1 1.5
SDW parameter m
FIG. 1. Gutzwiller projected variational energy and sublat-

tice magnetization of the flux phase as a function of the mass
parameter m.
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spin wave in the SDW ground state of the flux phase with
weak U. (The flux background will be fixed throughout.)
The usual RPA-type calculation of the pole of S?==1
particle-hole Green’s function gives a preprojected spin-
wave energy spectrum €,. In addition the residue at €,
gives information about the composition of momentum-q
spin waves in terms of plane-wave states. We are assum-
ing that projected spin waves are approximate eigenstates
of the large-U Hamiltonian. One indirect check of the as-
sumption is to calculate the effect of P; on the norm of
the spin-wave state.

We begin with the Hamiltonian (2.14) and suppose that
there is a weak repulsion
J

|k,n,a)=V2/N [ 3 ™[ —2(cosk, —icosk,)]/D,,|x even)+ 3 e*om —nE,)/D,,|x odd)]

X even
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S Vagn,y, VI=NT'SEST. (2.30)
i k

The weak repulsion is denoted by V to distinguish it from
the repulsion U of the physical Hamiltonian (2.1). In our
mean-field approach V is chosen to given rise to the ap-
propriate value of m, the SDW staggered potential.

The one-particle bare Green’s function is

, lk,n,o ) k,n,ol

Gol2)= 2 z—nE(k)

k,n,o

(2.31)

where

(2.32)
x odd

is a plane-wave state of momentum k, spin o in the n == (upper/lower) Landau level. The particle-hole Green’s func-

tion is
T 1 0
, |k, +1,0;k',—1,0") z—E(k)—E(k') (k,+1,0;k',—1,0'|
Gol21=2" ||k, ~1,0;k", +1,0") 0 _ 1 (k,—1,03k',+1,0' | » 233
’ z+E(k)+E(k')
where primed variables refer to the hole.
We shall consider a S?=+1 spin wave consisting of an up-spin particle and down-spin hole (0 = +1, o’= —1 above).

They feel an attractive interaction — 3, ,|x,y ) ¥8(x,){x,y | where x and y are coordinates of the up particle and down

hole, respectively. Using the relation

> (p,n;p’,—nlii)iilk,n';k’, ——n’)=v:(p,p’)%(1+‘r3)v,,,(k,k')8(p —p'—k+k'),

i =even

where

v,(p,p")=V2/N

(2.34)

[2(cosp, —i cosp, )2(cosp, +i cosp,)]/D _,1(p)D 4, (p")
[(m —nE,(—m +nE,)1/D _,1(p)D 4, (p")

(2.35)

and also a relation obtained by substituting “even” for ‘“odd” and (1 —;) for (1+7;), the Fourier transform of the in-

teraction Vis

3 S S lknk',—n vl (k,k")WVo,dp,p")p,n'sp', —n'|8(k —k'—p +p’) .

k,k' p,p’ n,n’

The full propagator is

(2.36)

TrG(k,k';z)= Tr |Gy(k,k';2) — Gyl k,k';2)0(k, k') VD T(k,k')Go(k,k';z)

+Golk,k';2)5(k,k" )W S T (p,p")Go(p,p";2)5(p,p )Wo'k, k)Gl k, K ;2) - - -

pp'

Vo Yk, k" )Golk, k';2)Golk, k';2)D(k, k')

= TrGylk,k’;z)— Tr

pp'

where

7' p,p =[v4 (p,p" v _(p,p")]

1+Vy'v T(P,P’)Go(p,p';z)ﬁ(p,p')

(2.37)

(2.38)

is a 2X2 matrix. Given a total momentum of the particle hole g =k —k’, G has poles at z =*t¢g, of positive and nega-
tive residue, respectively. The smallest z for which G (k,k —gq;z) has a pole determines the bound pair or spin-wave ex-

citation energy €,. The trace diverges when

detA =0,

(2.39)
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where
A=1+ Vz'5T(p,p')Go(p,p’;z)ﬁ(p,p')S(p —p'—q) .

p.p’

In order to calculate the spin-wave energy after Gutzwiller projection, we will need to know the spatial distribution
of the relative coordinate of particle and hole for a given spin-wave momentum g. In our analytic projection scheme
the spin-wave energy comes from 1/N corrections to pre-projection-like spin correlation such as Py(11) and 1/N corre-
lations between opposite spins before projection Py(1 1) due to the presence of the spin wave. The probability for a

bound pair to be in a plane-wave state |k, +;k —gq, — ) is simply

Vo Tk, k" )Golk, k';2)1(1+ 7304 " Gyl k, k';2)0(k, k')

ResG(k, +,k =g, —;2)|, - =Tr

d,1n det.ﬂlz=5q ’

(2.40)

k'=k —q; p’=p —q. This residue may be verified to satisfy the sum rule

Z'Reszzgq[G(k, +;k —q,—;2)—G(k,—;k —q,+;2)]=1.
k

(2.41)

With the Gutzwiller projection we make use of quantities such as the probability for an 1 particle and | hole to share a

site on the even sublattice,

go= Resl

N S G(x,+;y,—;2)8(x —y)

X,y even

==V 3y (pp—q)5(1+73)v, (k,k —q) Tr3(1+73)Go(k, k —q;¢,)0(k,k —q)

k,p
‘)q—l

=1
Xo— _ .
3,In decﬂlz:eq” (P, —9)Golp.p —4;¢,)

and so on for other diagonal and off-diagonal amplitudes
for particle-hole configurations. Any such residues must
be divided by the norm of the spin-wave state

> ResG(k, +,k —q, —;¢,) . (2.43)
k

We have calculated the fraction of the RPA spin wave
which survives Gutzwiller projection to be R 50% —not
too small—ensuring the robustness of our procedure.

The above procedure is quite tedious. But it was useful
in confirming'? the following much simpler, less rigorous
derivation of the spin-wave spectrum. In the limit when
m is large (i.e., we impose classical Néel order,
V—2m +(4/m) and Eq. (2.39) has the solution

z(g)=(4/m)V1—v%q)/16 . (2.44)

This is, as expected, the HP spectrum of Eq. (1.1) with
J=4/V =4t>/U as we have set t =1. We see therefore
that if classical Néel order is imposed, flux phase spin
waves continue to HP spin waves. Moreover, the solu-
tion of (2.39) has the correct normalization. Thus we
guess (and confirm through the more involved, approxi-
mate, calculation) that the correct energy after projection
in units of J away from the classical Néel state (we use
m =0.5, the result of our variational calculation) is just
the numerical value of the pole of (2.39). Schrieffer et al.?
discuss a similar appearance of an analytical expression
for spin wave energy for all U in a SDW theory of the
Hubbard model (no flux).

The calculated spectrum is plotted in Fig. 2, along the
momentum directions (0,0)—(0,7)—(7,7)—(0,0). The
spectrum at ¢ —0 shows a spin-wave-velocity renormal-

(2.42)

[

ization Z.~1.20 relative to the HP value:
w=V2Jk XZ,. This agrees with previous work.! The
high-energy region of the spectrum differs significantly
from the HP spectrum. The HP spectrum peaks at
w=2J for all q such that ¥(q)=0. The flux-phase spec-
trum, in the direction (0, ), peaks well before (0,7) and
at a lower energy than at (7 /2,7 /2). This peculiar spec-
trum arises as a result of the peculiar spectrum of the un-
derlying fermions. The density of states does not diverge
at the maximum energy. Rather, as plotted in Fig. 3, it
has a peak at about 1.8J. The density of states is rather

25 : :

Energy (units of J)

0.5

0 1
(0,0) (0,m)

Spin-wave momentum

(m,m) (0,0)

FIG. 2. Spin-wave spectrum from ¢ =(0,0) to (0,) to (m,m)
to (0,0).
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Spin-wave density of states
(arb. units)

1 i L

0 0.5 1 1.5 2 25 3
Energy (units of J)

FIG. 3. One-spin-wave density of states. Wiggles are finite-
lattice effects.

reminiscent of the single-particle density of states of the
flux phase, which was plotted by Hasegawa et al.'> This
is consistent with the fact that m is very small compared
to the bandwidth and hence does not affect the spectrum
of high-energy excitations very much.

One interesting speculation is that if the flux state co-
existing with Néel order is indeed the correct fermionic
description, Néel order, for large U, on the square lattice
is not driven by nesting. That is, we imagine that the lat-
tice is slightly doped and move towards half-filling. Be-
fore Néel order sets in, there is already a flux order in the
doped state. The flux removes any density of states at the
nesting vector. Perhaps a flux type of order is a generic
picture for real itinerant antiferromagnets like chromium
which have large contributions to the large SDW mo-
ment from density of states away from any nesting vector
present in band structure calculations.'*

If one supposes that the ground state of the half-filled
Hubbard model has a spin-density wave for all values of
U >0, then an interesting prediction can be made. The
existence of flux is incompatible with a spin-density wave
if U is too small because of the lack of nesting. In mean
field (which overestimates long range order anyway) the
minimum U is given by

U7'=N"'S'TY, U.~3.12. (2.45)
k

For U < U, a flux phase description of the SDW state is
not possible.

III. RAMAN SPECTRUM

In Raman scattering!>!%!” experiments on insulating

crystals of high-T, material a beam of monochromatic
light polarized parallel to some axis in the a-b plane is
scattered and observed at some other in-plane polariza-
tion. The light leaves behind energy but essentially zero
momentum. In higher spin antiferromagnets (i.e., S =>1)
observed Raman spectra fit the theoretical curve expect-
ed for the creation of two weakly interacting HP mag-
nons of momentum q and —q (Ref. 18). For § =1, there
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is a large attraction between two spin waves of spin +1
and —1 which shifts the maximum of the Raman spec-
trum down in energy substantially and also gives rise to a
large broadening. Singh et al.!® have calculated the Ra-
man spectrum using an Ising series expansion and shown
that the expected spectrum for a S =1 AFM agrees in
detail with observed spectra. Weber and Ford®® have
tried to reproduce experimental data with a phenomeno-
logical lifetime broadening model for spin waves. It is
claimed here however that such incoherent effects may
not be needed to explain the high-energy excitations as
calculated by Singh et al.!” and measured in experiment.
The Raman spectra for noninteracting spin waves is
essentially the density of states for two magnons of mo-
menta q,—q multiplied by a polarization and
momentum-dependent weighting factor. We shall con-
sider two polarizations and their polarization factors:

(i) x',y’ polarizaton f(g)=(cosq, — cosg, 2, GD)
(ii) x,x polarization f(gq)=2(cosq,)* . -

(See Ref. 15 for the polarization labeling convention.) In
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FIG. 4. Raman spectrum for two noninteracting spin waves.
(a) x,x polarization, (b) x’,y’ polarization, crosses are data
points from Singh et al.



11 386

Fig. 4 we plot Raman spectra for the two polarizations.
Data extracted from Singh et al.!® by fixing only the am-
plitude at the maximum are plotted in Fig. 4(b). The en-
ergy of the peak and the width are roughly consistent
with observed results for x’,y’ polarization. The energy
of the peak calculated here is about 10% high. As Singh
et al. have emphasized there is a significant resonance
enhancement observed with x,x polarization so that com-
parison with calculated spectra is difficult without know-
ing the nature of the resonance. In any case the calculat-
ed two-magnon spectrum is basically similar for the two
polarizations. The only point that should be emphasized
is that these spectra are calculated for noninteracting
magnons and that the shape and width of the spectrum
originates from the underlying fermion spectrum of the
flux phase.

IV. CONCLUSIONS

Projected flux-phase paramagnons seem to be a less in-
coherent description of spin excitations of the § =1
AFM than Holstein-Primakoff spin waves. In the pro-
posed basis, the “spin waves” have internal structure.
That has been calculated elsewhere'? by considering the
residues G(i,i,i,i;z) and G(i,i,i +7,i +7;z) at z=¢, . It
can be shown, for example, that the particle-hole pair is
separated by one or more lattice sites about 30% of the
time before projection. After projection this figure is re-
duced to about 5%. Since they are more complicated
they seem to be more “relaxed” energetically. The mag-
netic flux, which simulates the correlated motion of spins
carried by fermions in the Hubbard model, also seems to
take into account some of the effects of backflow associat-
ed with the motion of the spin wave. The single-spin-flip
> .S, explikx) basis may just be a bad basis. it is only
because we tried to describe the AFM in terms of elec-
tron that we found this a better “flux-phase” basis.

Throughout this paper the mean field x;; has been kept
constant. On the surface this would seem to be an im-
proper assumption. One problem, for example, is that
S?=0 (e.g., up-spin particle+up-spin hole) excitations
cause spin-dependent fluctuations in y;. That breaks
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spin symmetry, making it very difficult from a technical
point of view to ensure the gaplessness of spin wave
Goldstone modes. Fortunately, we can take advantage of
the fact that U is large. In fact the spin excitations con-
sidered here are tightly bound particle-hole pairs with
S?=x1 so that they should not contribute to
Ay, =A(c,-t,cja) which only moves one particle one lat-
tice spacing. Particle-hole excitations with S?=0 or
indeed any excitations which affect x,; are charged. Only
upon doping are fluctuations in y;; important and so we
must concede that considerations of this paper cannot ap-
ply to the doped Hubbard model.

The parameter “m ~0.5” is very small, viz.,
E =V/4(cos’k, + cos’k,)+m? indicating that high-
energy excitations are rather insensitive to the presence
of long-range order, even though (because of Gutzwiller
projection) the ordered moment is large. In order to pro-
duce m #0 before projection a minimum value of V is re-
quired. That is a consequence of the vanishing density of
states of the flux phase. So it is predicted that a flux-
phase description is appropriate only above a critical
value of the Hubbard U which is about 3.1. It is not clear
whether this characteristic of the flux-phase description
implies a phase transition. One could calculate the
ground-state expectation of the plaquette operator
B=X12X23X34X41 (Where 1,2,3,4 are the vertices of a pla-
quette) as a function of U near 3.1 and search for an onset
of the flux phase as B crossing over to negative values.

It should be surprising and unexpected that the simple
RPA should give such reasonable results. In order to
check that the observations in this paper are not merely a
coincidence it would be interesting to repeat this calcula-
tion on a triangular lattice or in three dimensions. One
should also look out for other constrained systems which
might be described as the strongly interacting limit of
some particle and whose elementary excitations might
have an alternative description in this other basis.
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