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The elastic (Young's) moduli of trans-polyethylene (PE), trans-polyacetylene (PA), and two types
(cis-transoid and trans-cisoid) of cis-PA were studied using three theoretical schemes. The analyti-
cal method derived in this work not only predicts fairly good values for the moduli when the spec-
troscopic force constants are used but also gives information on geometrical changes upon longitu-
dinal deformation. With this method, the moduli of trans-PE and trans-PA were calculated from
the spectroscopic force-constant matrices to be 286 and 372 GPa, respectively. The moduli of two

types of cis-PA are similar in value and about half of the value for trans-PA. Although the
semiempirical modified neglect of diatomic overlap solid-state theory predicted higher moduli of the
polymers compared with experimentally determined values, it provides reasonable values when

combined with force-constant scaling. The moduli of the polymers were analyzed and discussed in

terms of geometrical changes of the carbon chain and branched hydrogens. The following qualita-
tive conclusions emerged from this study: (a) the Young's modulus is strongly influenced by not
only the force constants but also the conformation of polymers, (b) side groups may have large con-
tributions, and (c) bond-angle deformations do not always dominate Young's modulus.

SCALING FORCE CONSTANTS
AND THE CALCULATION OF YOUNG'S MODULUS

During the past several decades many attempts have
been made to evaluate the elastic (Young's) modulus, Y,
of polymers experimentally' ' and theoretically' be-
cause it is one of the important mechanical properties
of polymers. The experimental techniques range
from mechanical stress-strain measurements, ' x-ray
diffraction, and infrared experiments on stressed po-
lymer crystals, and inelastic neutron scattering methods
to Raman studies of the longitudinal acoustic vibrational
mode. ' Aside from the issue of sample impurities and
imperfections, the microscopic value of Y, which deter-
mines the ultimate elastic modulus of the polymer,
remains uncertain. The experimental data are scattered
ranging from 240 to 358 GPa for trans-polyethylene (PE)
and from 18 to 80 GPa for polypropylene. For theoreti-
cal evaluations several valence force fields' ' and
quantum-chemical calculations' have been tried.
Treloar' derived a simple formula for the modulus of a
linear polymer on the basis of diagonal force constants
and applied it to polyethylene and nylon 66, and obtained
182 and 196 GPa, respectively. Shimanouchi et al. ' at-
tributed the low modulus of polyethylene predicted by
Treloar to his simple valence force field and extended the
method using the Urey-Bradley force field and obtained
Y =340 GPa. Intermediate Y values were predicted by
other force field calculations. ' ' A quantum-chemical
approach was first applied to the calculation of Young's
modulus of polymers by Boudreaux' using a version of
the complete neglect of difFerential overlap (CNDO/2)
method. Subsequently, Christ et al., Dewar et al. , ' and
Karpfen made quantum-chemical calculations of the
modulus of trans-PE, and these calculated values lie be-
tween 300 and 500 GPa. In general, quantum-chemical

calculations predict significantly larger values compared
with the experimentally determined ones. Recently,
Suhai included electron correlations effects with
second-order Moiler-Plesset perturbation theory to pre-
dict a reasonable modulus for trans-PE.

The aim of this paper is to develop a reliable micro-
scopic method for the calculation of the elastic modulus
of polymers. The elastic modulus, Y, for one-dimensional
crystals can be defined in terms of the second derivative
of the potential energy E of a unit cell with respect to the
translation vector c, as follows:

Y=cA '(d E/dc ),
where A is the cross-sectional area perpendicular to c.
Therefore, information on the energy surface around the
equilibrium geometry enables one to calculate Y. Such
information can be obtained through spectroscopic mea-
surements and theoretical calculations since the
potential-energy surface is related to the force constants,
K;J., at the equilibrium geometry:

(2)

where E =E(Q, ) is the energy of a unit cell, and Q, are
the coordinates, internal or Cartesian, of the atoms of the
system. Such calculations are becoming possible using
quantum-chemical methods as the calculation of the total
energy for polymers and solids with several atoms per re-
peat unit is becoming a routine task.

Any microscopic theory of the elastic constant has to
solve two problems: (a) how to correct for systematic
deficiencies of the E(Q, ) energy surface, and (b) how the
particular elastic constants can be expressed in terms of
the various K; force constants. The latter question is re-
lated to the distribution of the elastic deformation among
the different internal coordinates. This distribution is of

11 368 1990 The American Physical Society



THEORETICAL EVALUATION GF YOUNG'S MODULI OF POLYMERS

importance, because those force constants that couple
strongly to the deformation need to be determined accu-
rately.

Let us analyze, as an example, a simple model for ca1-
culating the Young's modulus of a zig-zag equidistant
chain, as illustrated in Fig. 1. The way the elongation of
the unit cell, 5c, is coupled to the change of the internal
coordinates, 5Q, (5r and 58), is crucial in determining the
associated energy change and consequently, the Young's
modulus. Since E„„&E&, it seems that the angle defor-
mation dominates the calculated va1ue of Y. Our analysis
in this paper shows that this is an oversimplification. The
reason, simply put, is that even though the energy change
is quadratically related to the deformations:

5E= ,'K,—„5r + ,'Ks—858 +

the smaller 5r value is accompanied by a larger K„„force
constant. The crucial issue is how 5Q, values are coupled
to the elongation 5c. Force constants involving the side
group R in Fig. 1, for instance, play a small but some-
times not negligible role, as we will show.

Hartree-Fock calculations systematically overestimate
the stretching and bending force constants, and lead to
too high vibrational frequencies. Correcting force con-
stants by systematic scaling has become a matter of rou-
tine in molecular quantum chetnistry since the work of
Pulay and his coworkers. Extension to polymers is
straightforward. In the present work we have em-
ployed a hierarchy of schemes to find out what approxi-
mations can be made that will allow this scaling in the
calculation of the Young's modulus of a polymer.

Table I displays the schemes we developed here.
Scheme I is the direct method which calculates Y from
the quantum chemistry based energy surface around an
optimized translation vector. The total-energy calcula-
tions are based on the modified neglect of diatomic over-
lap (MNDO) approach as extended to polymers using

c+6c

FIG. 1. A simple model for calculating the Young's modulus
of a zig-zag equidistant chain {solid line represents the chain at
equilibrium and dashed line after elongation of the chain. ).

DERIVATION OF THE EXPRESSION
FOR THE ELASTIC MODULUS

Since the potential energy E of a unit cell is dependent
on the (internal) coordinates Q; of the constituent atoms
in the cell, the differential of E can be given in the first-
order approximation by

dE= g(BE/BQ;)dQ; for t'=1, 2, . . . , N, (4)

where N is the number of total coordinates in a unit cell.

translational symmetry. ' The schemes can be applied
to any other Hamiltonian, including ab initio ones.
Scheme II is the analytical method which calculates and
analyzes the modulus from force constants obtained ei-
ther quantum chemically or spectroscopically. In scheme
III, the geometrical changes are predicted by a quantum-
chemical method and these deformations are connected
with the best available force constants. This combination
results in a semianalytical method for the calculation of
Y. By developing and comparing these schemes, we ob-
tain an insight into the quality of the Young's modulus
predictions.

Schemes

I. Direct method

Comments

Search the minimum of the en-

ergy surface by optimizing
geometric parameters for con-
stituent atoms while the
translation vector is varied.

Pure quantum-chemical method
is applied.

TABLE I. Schemes used in this study for calculating Young's moduli of polymers.

Brief description

II. Analytical method Variation of geometrical pa-
rameters upon longitudinal de-
formation as well as Young's
modulus are analytically evalu-
ated from the force constant
matrix.

Theoretically or empirically
determined force constants can
be used, scaling is possible.

III. Semianalytical method Use force-constant matrix to
evaulate Young's modulus by
Eq. (6) in the text while adapt-
ing the quantum-mechanically
determined geometrical defor-
mation.

Same as scheme II.
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Division of Eq. (4) by dc followed by differentiating with

respect to c yields

d E = g g (B E/BQ;BQ )(dQ;/dc)(dQ /dc)
dc

+ g (BEIBQ;)(d Q,. /dc ) . (5)

Since all (BE/BQ;) are negligible around the equilibrium

geometry, Eq. (5}reduces to

dc= g(af /BQ;}dg, for m =1,2, . . . , M, (8)

which are constraints on the Q s for the Young's
modulus calculation of translationally symmetrical sys-
tems and where M is the number of constraints and
m ~1. It is convenient to express the constraints as a
function of a set of Q,' variables which describe the defor-
mations of the various Q; coordinates upon longitudinal
deformation. Division of Eq. (8) by dc yields

E"=g QJ;,Q Q,', 1= g(af. /ag, )g,'. (9)

where a prime denotes the first derivative with respect to
a translation vector c and a double prime denotes the
second derivative. K;J is the equilibrium force constant,
which includes the interactions of the intercell coordi-
nates Q;/Q as well as the corresponding intracell coordi-
nates in the following manner:

K,J.
= gF; (n),

where F,J(n) is the force constant between coordinates Q;
and QJ separated by n unit cells and F~(0) is the intracell
force constant. Since K;J's are constant within the har-
monic approximation, a set of Q,.

' variables fully deter-
mine Young's modulus. The optimal Q values corre-
spond to the minimal change of energy upon longitudinal
deformation. However, translational symmetry puts
geometrical constraints on the selection of a set
of such optimal Q values. Since the length of a unit cell
is a function of the internal coordinates,
c =f (Q&, Q2, . . . , Qz}, the following relationship can
be established:

Let us define a function 0 and introduce Lagrangian
multipliers e to accommodate the geometrical con-
straints for minimizing E". Then,

r

0= g gE;,Q Q,
' ge—

J IP1 l

(10)

2 gE;,Q'+ ge (Bf /BQ;)=0 .

There are N+I linear equations to be solved, which
lead to a form of

A X=B, (12)

where A is a coefficient matrix that consists of force con-
stants and Bf /BQ; geometrical coupling coefficients:

For the minimum value of E", set the derivatives of 0
with respect to Q and e to zero. This leads to Eqs (9)
and (11),

K21

KN1

Bfi/Bgi

af /Bgi

K12

K22

KN2

af i/BQ2

fM /BQ2

K1N

K2N

KNN

af, /ag„

afM /aQ„

af i/Bgi
af i /Bgz

af i /BQN

0

af M /Bgi

afM /BQ2

BfM /Bgw

0

(13a)

Qw 0
8

1

E2

(13b)

M
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ga Trans-PE Trans-PA
cis-PA

Transoid Cisoid

Rl
R2
8

H

NH

H

c

1.543
1.543

114.00
1.114

109.07
57.85
2.587

1.357
1.462

124.86
1.096

119.57

2.500

1.358
1.459

128.89
1.097

115.68

2.275

1.462
1.357

128.38
1.097

112.18

2.304
0

'Bond lengths and angles are in units of A and degree, respec-
tively.

The solution of X can be simply expressed by

X=A ' B. (14)

Therefore, from the known force-constant matrix and the
geometry of a system, Young's modulus can be evaluated
according to Eqs. (2), (5), and (14).

CALCULATIONS AND RESULTS

The geometries of the polymers referred to in this
study were optimized by the MNDO solid-state
method ' and are given in Table II. (See also Fig. 2.)
The unit cells of the polymers were taken as the unit with
two C atoms to allow comparison of contributions from
different coordinates. Energy surfaces of the polymers
were calculated with 11 k points in k space for trans-PE
and cis-PA's and 21 k points for trans-PA. We have in-
cluded 12 neighboring unit cells on each side for trans-
PE, 13 for trans-PA, and 15 for eis-PA's, the maximum

TABLE II. Optimized geometrical parameters (geometrical

parameters for polymers are defined in Fig. 2) for t~ans-

polyethylene (PE), trans-polyacetylene (PA), and two types of
cis-PA using MNDO solid-state method.

numbers allowed by the present version of the program.
In this study we used the optimized geometries. For the
efective cross-sectional area A we used the following x-
ray-based values: 18.24 A for trans PE-(Ref. 28) and
15.52 A for trans PA -(Ref. 29). The effective areas of
cis-PA were assumed to be the same as that of trans-PA.
Three schemes are listed in Table I, which were used to
evaluate the Young's modulus for the four polymers stud-
ied in this paper.

Scheme I is the direct method which numerically cal-
culates Young's modulus from the energy surfaces. F." is
calculated numerically by changing c by 5c=k0.01 A
around its optimized value while the other geometric pa-
rameters are correspondingly reoptimized. The calculat-
ed ratios of geometry changes to longitudinal deforma-
tion are summarized in Table III, which are the numeri-
cal approximations on the Q s. The calculated Young's
moduli of the polymers are given in the first row of Table
IV. Klei and Stewart obtained 360 GPa for trans-PE
using the MNDO method using slightly different lattice
summation and k-space sampling. As expected, the pre-
dicted values are greater than the experimentally deter-
mined values listed in Table IV. An analysis of the other
two schemes will shed light on this overestimation prob-
lem. It should be mentioned, however, that the mechani-
cal stress-strain measurements for polyacetylenes pro-
duced rather low values probably owing to the low crys-
tallinity and the morphology of the sample.

In scheme II, Young's moduli of the polymers were
analytically evaluated from the force-constant matrices as
described in the previous section and the MNDO opti-
mized geometries. To compare the quantum-chemical
calculations and spectroscopic methods, force constants
determined either quantum-chemically or spectroscopi-
cally were employed. The MNDO force constants were
numerically calculated from the gradient for internal
coordinates, obtained by shifting geometrical parameters
in steps of 0.005 A for bond lengths and 0.1' for bond an-

TABLE III. The variation of geometrical parameters of
trans-polyethylene (PE), trans-polyacetylene (PA), and two types
of cis-PA upon longitudinal deformation.

Trans-PE Trans-PA
Cis-PA

Transoid Cisoid

(a)

e,
R,

(b) 5R, /5c
5R, /5c
50/5c'
5rH /5c
5$H /5c'
5~H /5c'

MNDO
0.245
0.245
0.702

—0.010
—0.193
—0.089

solid-state method
0.186 0.112
0.316 0.074
0.850 0.741
0.016 0.031

—0.389 —0.272

0.194
0.039
0.735
0.027

—0.315

(c)

FIG. 2. Geometrical parameters of the polymers used in this
study: (a) trans-polyethylene, (b) trans-polyacetylene, and (c)
cis-polyacetylene (R

&
& R ~, cis-transoid and R, & R„ trans-

cisoid).

Analytical method

dR, /dc 0.292
dR 2 /dc 0.292
d 0/dc' 0.607
drH /dc 0.000
dQH ldc' —0.126
d vH /dc' 0.000

0
'The units are rad/A.

using spectroscopic force
0.263 0.150
0.314 0.075
0.751 0.707
0.000 0.000

—0.541 —0.458

constants
0.193
0.066
0.720
0.000

—0.400
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TABLE Ip. young's moduli, Y (GPa), of trans-polyethylene {PE),trans-polyacetylene (PA), and two

types of cis-PA.

Y (GPa) Trans-PE Trans-PA
Cis-PA

Transoid Cisoid

This work' I
IIb
IIIb

Other quantum-chemical
studies

Force-field
studies

X-ray
Neutron Scattering
Raman study

of LAM
Mechanical

stress-strain
measurements

368.8
286.4
298.6

297 405 '
493.5,' 406,~

345,~ 362" 303"
182,' 340,'

256.4,' 320,
315 5Il

240,' 255~
329q

340,' 358,'

290," 280"
288w

590.5
372.6
384.3

300-400"

450'

100"

309.0
170.1'
178.7'

100"

30-40"

325.4
188.2'
190.9'

'I, II, and III refer to results obtained by schemes I, II, and III, respectively.
Spectroscopic force-constant matrix is used; force constants of trans-PE and trans-PA are taken from

Refs. 30 and 31, respectively.
'The same force constants are used as those of trans-PA.
Taken from Ref. 19.

'Taken from Ref. 20.
'Taken from Ref. 21.
~Taken from Ref. 22.
"Taken from Ref. 23.
'Taken from Ref. 13.
'Taken from Ref. 14.
"Quoted in Ref. 2.
'Taken from Ref. 16.

Taken from Ref. 17.
"Taken from Ref. 18.
'Taken from Ref. 4.
Taken from Ref. 6.
Taken from Ref. 8.

'Taken from Ref. 9.
'Taken from Ref. 10.
'Derived in this study from the slope of the calculated LAM taken from Ref. 31.
"Taken from Ref. 11.
"Derived in this study from the experimental dispersion curve taken from Ref. 32.
"Taken from Ref. 1.
"Taken from Ref. 2.

gles. Certain coupling constants between bond angles are
not separable from the diagonal force constants due to
the translational symmetry. For instance, the 8,!82 cou-
pling is included (in a 50-50 ratio) in the 8, /8, and 8zl8z
diagonal terms. The calculated MNDO force-constant
matrices of the polymers are tabulated in Tables V —VII.
The spectroscopic force-constant matrices were taken
from the Ref. 30 for trans-PE and from Ref. 31 for trans-
PA. These were calculated to include the interactions
with the next-nearest-neighboring unit cells by summing
up the coupling constants between the cells according to
Eq. (7). Since spectroscopic force constants for cis PA's-
were not available, the force constants of trans-PA were
adapted. The spectroscopic force-constant matrices used

in this study are in Tables VIII and IX. The geometrical
constraints for each polymer are given in the Appendix.

This scheme reproduced the same values for the modu-
li within 0.2% and the same geometrical changes in size
and direction as the one obtained in scheme I when the
MNDO force-constant matrices were used. This scheme
also allowed us to calculate the distribution of the moduli
based on internal coordinates as shown in Table X.

The moduli of the polymers predicted using spectro-
scopic force constants are shown together with their
decomposition in Table XI. The value for trans-PE is
fairly good compared to the experimental values. As can
be seen in Tables X and XI, large contributions come
from the diagonal terms. The contributions of angle de-
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0

TABLE V. MNDO force-constant matrix E„of trans-polyethylene. Units are mdyn/A for bond stretching and coupling con-
stants, mdyn for stretch-bend coupling constants, and mdyn A for other constants. Geometrical parameters are defined in Fig. 2.

Coordinates

R1
R2
01

02

rH
1

NH,

+H
1

H
2

4H,

H
2

rH
3

4'H,

H
3

H 4

OH,

+H
4

Rl

6.298
0.923
0.510
0.510
0.320

0.374
—0.005

0.320

0.374
—0.005

0.320

0.374
—0.005

0.320

0.374
—0.005

R2

6.298
0.115
0.115
0.320

—0.210

0.292

0.320
—0.210
—0.292

0.320
—0.210
—0.292

0.320
—0.210
—0.292

1.561
0.000

—0.143

0.148

0.248
—0.143

0.148

0.248

0.000

0.148

0.000

0.000

0.148

0.000

1.561
0.000

0.148

0.000

0.000

0.148

0.000
—0.143

0.148

0.248
—0.143

0.148

0.248

H
1

5.887

0.003
—0.005

0.236
—0.118

0.215

0.013

0.001
—0.002

0.006

0.011
—0.020

Hl

1.073

0.073
—0.118

0.183
—0.171

0.001
—0.004
—0.011

0.011

0.073

0.024

+H
1

0.862

0.215
—0.171

0.390
—0.002

0.011

0.011
—0.020

0.024

0.033

rH
2

5.887

0.003
—0.005

0.006

0.011
—0.020

0.013

0.001
—0.002

NH,

H
2

H 3

NH,

H
3

rH
4

NH,

H 4

1.073

0.073

0.011

0.073

0.024

0.001
—0.004
—0.011

+H
2

0.862
—0.020

0.024

0.033
—0.002
—0.011

0.011

rH
3

5.887

0.003
—0.005

0.236
—0.118

0.215

1.073

0.073
—0.118

0.183
—0.171

+H
3

0.862

0.215
—0.171

0.390

rH
4

5.887

0.003
—0.005

1.073

0.073

H 4

0.862

formation of the two trans polymers is comparable with
that of bond-length deformation while in cis-PA's, the
former is dominant. It should be noted that coupling of
C—C—H angle deformation with the carbon-chain de-
formation yields significantly negative contributions to
the moduli of the polymers.

Our goal of using scheme III was to investigate the
possibility of using force-constant scaling in connection

with a quantum-chemical prediction and analysis of
Young's modulus. In this scheme, the theoretically com-
puted ratios of geometrical changes to the longitudinal
deformation are combined with scaled force constants to
predict Young's modulus using Eq. (6) directly. In the
present study, the spectroscopic force constants were em-
ployed instead of scaled ones. The results are quite close
to the ones of scheme II as shown in Table IV.

TABLE VI. MNDO force-constant matrix, K„of trans-polyacetylene. Units are the same as in Table V. Geometrical parameters
are defined in Fig. 2.

Coordinates

R,
R2
01

02

rH
1

4H,

ra
2

4H,

R1

10.885
1.700
0.563
0.563
0.462

0.462

0.408

R2

7.477
0.165
0.165
0.368

—0.399

0.368
—0.399

1.520
0.000

—0.332

0.320

0.000

0.320

1 ~ 520
0.000

0.320
—0.332

0.320

6.294

0.029

0.021

0.000

1.186

0.000

0.085

H
2

6.294

0.029

H2

1.186
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TABLE VII. MNDO force-constant matrices, K;, , of two forms of cis-polyacetylenes. Units are the same as in Table V. Geome-
trical parameters are defined in Fig. 2.

Coordinates R1

Cis-transoid polyacetylene

H
1

ra
2

R1
R2
01

82

ra
1

4H,

ra
2

AH,

10.862
1.712
0.634
0.634
0.433

0.378

0.433

0.378

7.574
0.199
0.199
0.352

—0.463

0.352
—0.463

1.699
0.000

—0.337

0.252

0.000

0.252

1.699
0.000

0.252
—0.337

0.252

6.266

0.083

0.027
—0.012

1.279
—0.012

0.126

6.266

0.083 1.279

Trans-cisoid polyacetylene
R1
R2
81
82

ra
1

40,
ra

2

0a,

7.485
1.745
0.607
0.607
0.375

0.381

0.375

0.381

10.885
0.194
0.194
0.420

—0.460

0.420
—0.460

1.652
0.000

—0.354

0.260

0.000

0.260

1.652
0.000

0.260
—0.354

0.260

6.275

0.011

0.025
—0.016

1.274
—0.016

0.118

6.275

0.011 1.274

TABLE VIII. Spectroscopic force-constant matrix K„. of trans-polyethylene. Units are the same as in Table V. Geometrical pa-
rameters are defined in Fig. 2.

Coordinates

R1
R2
81
t92

ra
1

AH,

ra
2

NH,

H

ra
3

NH,

ra
4

AH,

+H'

R1

4.427
0.128
0.351
0.351
0.000

0.261

0.000

0.261

0.000
0.000

0.261

0.000

0.261

0.000

R2

4.427
0.351
0.351
0.000

—0.004

0.000
—0.004

0.000
0.000

—0.004

0.000
—0.004

0.000

0.901
0.186
0.000

0.124

0.000

0.124

0.000
0.000

—0.058

0.000
—0.058

0.000

0.901
0.000

—0.058

0.000
—0.058

0.000
0.000

0.124

0.000

0.124

0.000

ra
1

4.456

0.000

0.016

0.000

0.000
0.000

0.000

0.000

0.000

0.000

0.666

0.000
—0.016

0.000
0.000

—0.048

0.000

0.312

0.000

ra
2

4.456

0.000

0.000
0.000

0.000

0.000

0.000

0.000

H2

0.666

0.000
0.000

0.312

0.000
—0.048

0.000

a
H

ra
3

4H,
ra

4

4H,
+H'

a
+H

0.550
0.000

0.000

0.000

0.000

0.000

rH
3

4.456

0.000

0.016

0.000

0.000

0.666

0.000
—0.016

0.000

4.456

0.000

0.000

!H,

0.666

0.000

b
H'

0.550

'Defined as the sum of ~a and wa .
1 2

Defined as the sum of ~, and r
H1 H2
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TABLE IX. Spectroscopic force-constant matrix K;; of trans-polyacetylene. Units are the same as in Table V. Geometrical pa-
rameters are de5ned in Fig. 2.

Coordinates

Rl
R2
0)
02

rH
1

4a,
ra

2

NH,

Ri

6.291
0.814
0.382
0.382
0.000

0.418

0.000

0.418

R2

5.141
0.131
0.131
0.000

—0.041

0.000
—0.041

0.763
0.280
0.000

0.144

0.000

0.173

0.763
0.000

0.173

0.000

0.144

rH
1

4.995

0.000

0.000

0.000

0.559

0.000

0.060

H 2

4.995

0.000 0.559

R', =R' =(r)c/r)R)/K„B,
8', =8,'=(ac/a8)/K„B,
Y =2c (K„R' +K 8' )/A =2c/AB,

(15a)

(15b)

(15c)

where c is a length of a unit cell, A is an effective area,
and

ANALYSIS USING THE DIAGONAL APPROXIMATION

For the purpose of analysis we introduce a diagonal ap-
proximation: K, =5; E;", where 5," is the Kronecker 5.
Then we obtain for PE,

and for PA's (both trans and ris isomers)

R'& =2(Bc/BR&)/Kz z D,
1 1

Rz=2(r)c/r)Rz)/Kz z D,"2"2

8', =8,'=(ac/a8)/K„D,

Y=c(Ka R R /+K„q R2 +2Esq8'2)/A

=2c/AD,

where

D =2(Bc/t)Ri) Ka a +2(dc/r)R2) Ka a

(16a)

(16b)

(16c)

(16d)

B =(Bc/r)R) /Kz&+(Bc/r)8) /K&8, (15d)
+(ac/a8)'/K„. (16e)

Total
decomposition'
R&/R&
R2/R2

2/~2
rH /rH

PH/PH
~H /&H

R)/R2
R)/8
R2/0
R, /PH
& a/4'H
e/0a
8

H

Residual
terms

369.1

53.4
53.4

109.2
109.2

0.3
22.8
3.9

15.7
49.7
11.2

—20.1

11.3
—45.7
—17.7

12.5

591.5

60.9
120.8
176.7
176.7

0.4
57.7

32.3
57.4
28.6

—19.0
31.6

—136.1

3.5

308.6

20.1

6.1

136.5
136.5

1.7
27.9

4.2
30.9
6.4

—6.8
5.5

—59.7

325.4

41.8
2.5

132.4
132.4

1.3
37.4

3.9
51.3
3.3

—13.8
3.4

—71.4

0.9

Q;/Q~ indicates the contribution arising from the force con-
stant EC& & associated with the coupling of the local deforma-

l J
tion coordinates Q; and Q, .

TABLE X. Analysis of Young's moduli Y (in GPa), using the
analytical method (scheme II) with MNDO force constants.
The Y is decomposed according to deformations of local coordi-
nates.

Cis-PA
Trans-PE Trans-PA Transoid Cisoid

This approximation provides a rough estimate for the

Cis-PA
Trans-PE Trans-PA Transoid Cisoid

Total
decomposition'
Ri/Ri
R2/R2

82/82
rH /rH

PH /NH

&H «H
R 1 /R2

R, /8
R2/0
R i /4'H

Rz/4'H
8/OH
8/rH

Residual
terms

'Same as in Table X.

286.4

53.7
53.7
47.0
47.0
0.0
6.0
0.0
3.1

19.4
35.3
35.3

—10.9
0.2

—5.7
0.0
2.3

372.6

69.8
81.8
69.2
69.2
0.0

52.7

21.6
50.8
48.5
19.9

—38.3
4.5

—82.9

5.7

170.1

20.7
4.2

55.9
55.9
0.0

34.4

2.7
41.0
23.7

—16.8
0.8

—60.2

3.7

188.2

28.5
4.1

58.7
58.7
0.0

26.6

3.1

43.1

10.8
10.8
1.9—6.6

—54.3

2.8

TABLE XI. The analysis of Young's moduli Y (in GPa), us-
ing the analytical method (scheme II) with spectroscopic force
constants. The total Y is decomposed according to deforma-
tions of local coordinates.
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modulus and is useful to understand the behavior of
geometrical changes upon longitudinal deformation.
From the preceding equations for a given system, the
geometrical change is proportional to (Bc/BQ;) and the
inverse of the corresponding force constant. Therefore,
larger contribution from the deformation of a coordinate
is expected even if the force constant is smaller since its
contribution to Y is proportional to the square of the
geometrical change. According to the equations for
PA's, the existence of a coordinate with greater force
constant enforces larger geometrical changes of the other
coordinates because D becomes smaller, leading to a
larger modulus.

DISCUSSION

Our analytical method predicts a fairly good value for
the Young's modulus for trans-PE compared to values
obtained from experiments and other force-field studies.
Especially, it is noticeable that the predicted value shows
an excellent agreement with the value from strain-stress
measurements of Barham and Keller, ' and with the
corrected value of Strobl and Eckel, "who took weak in-
terlamellar forces into account in interpreting Raman
spectra of the longitudinal acoustic mode (LAM). Since
the work of Treloar, ' Young's moduli of several poly-
mers have been calculated using various valence force
fields. However, the previous force-field methods could
not give any information on geometrical changes upon
longitudinal deformation and, thus, on the distribution of
the modulus in terms of geometrical changes. The ad-
vantage of our analytical method is that such information
can be obtained including the effect of side groups. On
the experimental side Wool and Boyd investigated
geometrical changes for polypropylene through ir fre-
quency shifts with stress.

To our knowledge, there is no reliable result for
Young's modulus of crystalline PA's. Our best calculated
value for Y is 373 GPa. This predicted modulus of
trans-PA is lower by 80 GPa than the value obtained by
us from the slope of calculated longitudinal acoustic pho-
non dispersion curve of Takeuchi et al. ' and is within the
range of unpublished values quoted in Ref. 2. Our best
predicted moduli of two forms of cis PA (170 and-188
GPa) are higher than the corresponding unpublished re-
sult (100 GPa). These values are subject to an uncertain-
ty, since the same force-constant matrices and the
effective areas were used for the eis-conformers as those
for trans-PA.

Young's moduli of the polymers calculated by unscaled
MNDO solid-state method are higher than the predicted
values from the spectroscopic force constants, but com-
parable with the other quantum-chemical methods. It
should be noted that Dewar et al. ' predicted a much
higher value for Young's modulus for trans-PE although
they also used the MNDO Hamiltonian. Their calcula-
tion does not allow the complete relaxation of carbon
atoms upon longitudinal deformation, explaining why
their value is the highest among all calculated Young's
rnoduli. The modulus of trans-PE calculated by the ab in-
iti0 method ' depends on the choice of the basis set.

Slater-type-orbital (STO)-36 basis set predicts higher
values and extended basis sets give slightly lower values
than the MNDO solid-state method.

It is interesting that the moduli calculated as described
in scheme III are comparable with the values obtained
from spectroscopic force constants since this sheds light
on the possibility of using scaled force constants in the
calculation of Young's modulus. This stems from the
fact that the geometrical changes, upon longitudinal de-
formation, predicted by MNDO method are quite similar
as seen in Table III to the values obtained from the spec-
troscopic force constants.

It is predicted in this study that trans-PA has a
Young's modulus higher than trans-PE by about 100 GPa
and a modulus about twice that of cis-PA's. In what fol-
lows we attempt to explain these differences. We used for
the cross-sectional area A values from x-ray diffraction
studies, which in itself gives rise to about 15% difFerence
between the Young's moduli of polyethylene and polyace-
tylene.

Let us define the total contribution of a single Q,
' to the

modulus as sum of the contribution of the diagonal term
and a half of all contributions of coupling terms arising
from Q . Then, from Table XI, the total contribution of
single-bond deformations of trans-PE amounts to 140.5
GPa and that of angle deformations to 145.8 GPa. In
trans-PA, deformation of double bonds contributes 95.7
GPa, and of single bonds and angles of the carbon chain
104.8 and 182.0 GPa, respectively. In cis-transoidal
(trans-cisoidal) PA, each deformation contributes 34.2
(7.8) GPa for double bonds, 8.0 (35.9) GPa for single
bonds, and 136.6 (144.2) GPa for angles. Angle deforma-
tion in trans-PE and trans-PA, in spite of its much small-
er force constants, contributes to the modulus as much as
do bond-length deformations. This comes from the
larger deformation of the former as expected from the di-
agonal approximation. The double bond of trans-PA
makes the modulus higher than that of trans-PE partially
since the force constant is larger which induces the larger
changes of the single bond and the angle and, thereby,
the modulus. We used the same force constants for trans-
and eis-PA's because the data for cis-PA's are not avail-
able. Young's moduli of cis-PA's are around half of that
of trans-PA in spite of the same force-constant values
since, in cis-PA's, only the contribution of angle deforma-
tion is considerable. This is due to the difference in the
geometries of the trans versus cis conformations and is
refiected in the smaller values of (Bc/BR, )/(Bc/88) of cis
conformers. For cis-PA's this results in smaller geometri-
cal changes in bond lengths and, thereby, leads to a
smaller Young's modulus.

The effect of branched hydrogens on a modulus of a
carbon chain has not been discussed yet because of the
failure of previous valence force-field methods to include
the coordinates of the hydrogen atoms. We have found
in this study that deformation of hydrogen coordinates
occurs through coupling with deformations of the chain
and only C—C—H angle deformation is significant. The
analysis showed that the direct contribution of the hydro-
gens to the modulus is negligible. However, through cou-
pling with bond length and angle deformations, hydro-
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gens have an overall lowering e8'ect on Young's modulus,
especially for polyacetylenes. That is, although the direct
total contribution is —2.2 GPa for trans-PE, —5.6 GPa
for trans PA-, and —3.7 (

—2.9) GPa for transoid (cisoid)
of cis-PA, it lowers the contribution of the chain defor-
mation indirectly by as much as 8.3 for trans-PE, 60.6
GPa for trans PA-, and 38.5 (30.5) GPa for cis-transoidal
(trans-cisoidal) PA. In order to check the effects of the
hydrogen atoms on Young's modulus, we have performed
the calculation of the modulus without taking into ac-
count force constants associated with hydrogen atoms us-

ing scheme II. The results are 294.6 GPa for trans-PE,
424.9 GPa for trans-PA, and 214.7 GPa for transoidal
and cisoidal PA's. By correcting these values by the pre-
viously listed H contributions, we get values very close to
the results by the complete calculations including H con-
tributions.

CONCLUSION

A new analytical method for the calculation of the
elastic (Young's) modulus for polymers was developed.
Since this method expresses the modulus in terms of the
force-constant matrix and internal coordinates of a sys-
tern, it can give information on geometrical changes upon
longitudinal deformation. Based on the spectroscopic
force-constant matrix and the MNDO optimized
geometry of the polymers investigated, the Young's
modulus was predicted to be 286 GPa for trans-PE and
373 GPa for trans-PA. The higher modulus of trans-PA
is attributed to the greater deformations of single-bond
distances and bond angles along the carbon chain due to
the existence of double bonds. Bond-angle deformation
of the carbon chain of trans-PE and trans-PA, in spite of
its much smaller force constants, contributes to the
modulus about as much as do bond-length deformations
due to larger deformation of the former.

The Young's moduli of the two cis forms of PA mostly
originate from the deformation of bond angles while the
contributions of the slant bonds are negligible. This re-
sults in both forms of cis-PA being about half as strong as
trans-PA as far as Young's modulus is concerned.
C—C—H angle deformations are significant and they
lower the contributions of the carbon-chain deformations
through coupling.

Unscaled MNDO solid-state calculations yield higher
moduli of the polymers because of the overestimation of
force constants inherent in Hartree-Fock based methods,
in general. Therefore, it is recommended from the com-
parison of the schemes used in this work that quantum-
mechanical force constants be scaled down, as is usually
done for vibrational analysis, to predict a better value for
Young's modulus when spectroscopic force constants are
not available. For instance, the scaled MNDO force con-
stants for trans-PE yield the prediction of 330 GPa for
Young's modulus using our analytical method.

lating discussions with Dr. R. Baughmann are gratefully
acknowledged. We also thank Dr. C. X. Cui for provid-
ing us his scaled MNDO polyethylene force constants.

APPENDIX

Below is a summary of the geometrical constraints for
the systems considered (all bond distances in A and all
bond angles in radians).

1. Trans-polyethylene

Since c =2R| sin(8, /2),

Bc /BR
&

=2 sin(8& /2) = 1.677

and

1 ~ 677R
&
+0.8400& = 1

1.677R I +0.84082 =1,
1.677R 2+0.84082= 1 .

(Al)

(A2}

(A3)

2. Trans-polyacetylene

Since c =R, +R2 2R, Rico—s8„

Bc /BR, = (R, —R cos8, ) /c =0.877,

Bc/BR2 =(R2 —R
&

cos81)/c =0.895,

and

Bc/88, =R,R, sin8, /c =0.651,

and 8, =|92. Therefore,

0.877R
&
+0.895R 2 +0.65 10&= 1

0.877R ) +0.895R 2+0.65102=1 .

(A4)

(A5)

3. Cis-polyacetylenes

Since c =R, —Rz cos8„Bc/BR, =1.0, Bc/BR2
= —cos8& =0.628 and 0.621, and Bc/ae,
=Rzsin8, =1.136 and 1.064 for a transoidal and a
cisoidal form, respectively, and 8, =0&. For a transoid
form,

R
&
+0.628R 2 + 1 ~ 1 360& = 1

R
&
+0.628R2+ 1 ~ 13682= 1

(A6)

(A7}

Bc/88i =R
&

cos(8&/2) =0.840

from the predicted geometry. Also R, =R2, and 8& =82.
Therefore,
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and for a cisoid form,

R i +0.62 1R 2 + 1 ~ 0646 ]
= 1

R i +0.621R 2+1.06402=1 .

(A8)

(A9)



11 378 SUNG Y. HONG AND MIKLOS KERTESZ

P. J.Barham and A. Keller, J. Polym. Sci., Polym. Lett. Ed. 17,
591 (1962).

K. Akagi, M. Suezaki, H. Shirakawa, H. Kyotani, M. Shi-

momura, and Y. Tanabe, Synth. Met. 28, D1 (1989).
I. Sakurada, U. Nukushina, and T. Ito, J. Polym. Sci. 57, 651

(1962).
4I. Sakurada, I. Ito, and K. Nakamie, J. Polym. Sci. C 15, 75

(1966).
~R. N. Britton, R. Jakeways, and I. M. Ward, J. Mater. Sci. 11,

2057 (1976).
J. Clements, R. Jakeways, and I. M. Ward, Polymer 19, 639

(1978).
~R. P. Wool and R. H. Boyd, J. Appl, Phys. 51, 5116 (1980).
R. A. Feldkamp, G. Venkaterman, and J. S. King, Neutron In-

elastic Scattering (IAEA, Vienna, 1968},Vol. II, p. 159.
S. Mizushima and T. Shimanouchi, J. Am. Chem. Soc. 71, 1320

(1949).
R. F. Schaufele and T. Shimanouchi, J. Chem. Phys. 47, 3605
(1967).

"G.R. Strobl and R. Eckel, J. Polym. Sci. 14, 913 (1976).
~J. R. Rabolt and B.Fanconi, J. Polym. Sci. B 15, 12 (1977).
3L. R. G. Treloar, Polymer 1, 95 (1960).
T. Shimanouchi, M. Asahina, and S. Enemoto, J. Polym. Sci.
59, 93 (1962).
M. Asahina and S. Enemoto, J ~ Polym. Sci. 59, 101 (1962).
A. Odajima and T. Maeda, J. Poly. Sci., Polym. Symp. 15, 55

(1966).
' G. Wobsner and S. Blasenbrey, Kolloid Z. Z. Polym. 241, 985

(1970).
K. Tashiro, M. Kobayashi, and H. Tadokoro, Macro-
molecules 11,914 (1978).
D. S. Boudreaux, J. Polym. Sci. 11, 1285 (1973).

~~B. Christ, M. A. Ratner, A. L. Brower, and J. R. Sabin, J.
Appl. Phys. 50, 6047 (1979).
M. J. S. Dewar, Y. Yamaguchi, and S. H. Suck, Chem. Phys.
43, 145 (1979).

~~A. Karpfen, J. Chem. Phys. 75, 238 (1981).
S. Suhai, J.Polym. Sci., Polym. Phys. Ed. 21, 1341 (1983).
P. Pulay, in Modern Theoretical Chemistry, edited by H. F.
Schaefer III (Plenum, New York, 1977},Vol. 4, p. 153; P. Pu-

lay, G. Fogarasi, F. Pang, and J. E. Boggs, J. Am. Chem. Soc.
101,2550 (1979).
P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, and A. Vargha,
J. Am. Chem. Soc. 105, 7037 (1983); T. P. Hamilton and P.
Pulay, J. Phys. Chem. 93, 2341 (1989).

6A. Peluso, M. Seel, and J. Ladik, Can. J. Chem. 63, 1553
(1985); C. X. Cui and M. Kertesz J. Chem. Phys. (to be pub-
lished).

~~M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4899
(1977); 99, 4907 (1977); J. J. P. Stewart, QCPE Bull. 5, 62
(1985}; J. J. P. Stewart, Mosol Manual, (USAF, Colorado
Springs, 1984); H. E. Klei and J. J. P. Stewart, Int. J. Quan-
tum Chem. : Quantum Chem. Symp. 20, 529 (1986); Y. S. Lee
and M. Kertesz, J. Chem. Phys. 88, 2609 (1988).

2SC. W. Bunn, Trans. Faraday Soc. (London) 35, 482 (1939).
2 C. R. Fincher, Jr., C.-E. Chen, A. J. Heeger, A. G. MacDiar-

mid, and J. B.Hastings, Phys. Rev. Lett. 48, 100 (1982).
J. H. Schachtschneider and R. G. Snyder, J. Polym. Sci. C 7,
99 (1963).
H. Takeuchi, Y. Furukawa, I. Harada, and H. Shirakawa, J.
Chem. Phys. 84, 2882 (1988).

M. Tasumi and T. Shimanouchi, J. Mol. Spectrosc. 9, 261
(1962).
C. X. Cui (private communication}.


