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The ground state of a many-electron system can be projected from a trial state using an integral of
one-electron projectors over a set of Hubbard-Stratonovich auxiliary fields. We have explored
several alternative formulations of this method and find that the convergence of the ground-state en-
ergy with the number of field variables can be dramatically improved by choosing the appropriate
one. This is illustrated using the two-dimensional Hubbard model as an example. These results are
also used to examine the error associated with neglecting the so-called “sign problem” common to

quantum Monte Carlo many-fermion calculations.

I. INTRODUCTION

Nonperturbative Monte Carlo methods offer the prom-
ise of systematically improvable calculations of electron
correlation energies in atoms, molecules, and solids at a
computational cost that grows at a reasonable rate with
the complexity of the system. The most widely explored
of these are variational methods in which a small number
of parameters are varied to minimize an energy estimated
by Monte Carlo evaluation of the expectation value of the
many-electron Hamiltonian as a coordinate-space in-
tegral.!”3 While that variational character of this ap-
proach is a distinct advantage, the small number of pa-
rameters that can practically be varied limits it’s capabili-
ties in situations in which we cannot guess a good wave
function. To overcome this limitation, the *“diffusion”
and “Green’s-function” Monte Carlo methods have been
developed, in which an initial trial state is evolved to-
wards the ground state by successive applications of the
many-body Hamiltonian or its inverse.>* This approach
is also applied in coordinate space, and is limited by the
“sign problem” produced by the antisymmetry of the
electron wave function. The evolution procedures can
only represent the exact antisymmetric ground state as a
finite difference between diverging quantities, and the
ground-state energy can only be estimated transiently.*>

An alternative method of evolving a trial state towards
the ground state was recently introduced by Sugiyama
and Koonin,® and pursued by Sorella et al.”® In this ap-
proach, the operator,

1

oup=e 7 (1)
where f3 is regarded as an imaginary time or inverse tem-
perature, serves to project out the ground state of A as
B—> . The transformation introduced by Stratonovich’
and Hubbard'© for the calculation of many-body partition
functions is applied to U, and the two-particle interaction
term in H is replaced by one-particle interactions with a
set of random time-varying auxiliary fields {x;(r)}. In-
tegration of U over a Gaussian distribution of these fields
restores the interaction. The potential advantage of this
approach is that for any particular member of this distri-
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bution, 0 [x;(7)] is a single-particle operator, and a trial
state chosen to be a Slater determinant remains a Slater
determinant under propagation by this 0. The ground
state is then built up as a sum of determinants, so an-
tisymmetry is preserved term by term.

The auxiliary-field formulation of the finite tempera-
ture partition function has been used extensively to study
electron correlations in the Hubbard model.!! The devel-
opment of the methods for carrying out these calcula-
tions has been dominated by a tendency to exploit the
simplicity of the Hubbard model to maximize computa-
tional efficiency.!”!> While the ground-state projection
and grand canonical partition function approaches are
closely related, there are enough differences in both com-
putational detail and physical interpretation to motivate
a fresh look at the methodology. We have used the Hub-
bard model as a convenient test case in such a pursuit.
However, our long-range goal is to develop these
methods for real materials, so we have generally ignored
the model-specific simplifications. In so doing, we have
discovered that nominally equivalent approaches to
measuring the energy have substantially different rates of
convergence with the number of auxiliary-field variables.
We can reproduce the rate reported for the well-
developed approaches.!! However, we find that two al-
ternative formulations give 1 and 2 orders of magnitude
better convergence, respectively. We can at least ration-
alize this improvement in terms of a picture which we are
developing of the behavior of the auxiliary fields and the
response of the electrons.

This study also addresses a second issue. Despite the
fact that the auxiliary-field method preserves explicitly
the antisymmetric structure of the electron wave function
under particle interchange, the energy formally emerges
as a difference between diverging quantities as S— o (ex-
cept in special cases). Arguments and numerical evidence
have been presented indicating that the average rather
than the difference of these quantities gives an accurate
estimator of the energy.”® These arguments have been
disputed on the basis of other numerical evidence.!> We
have chosen as examples two cases for which the
ground-state energy is known from exact calculations,
and found that the error of the ‘““average” approach lies
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well outside our statistical uncertainty. Our study of this
error motivates the introduction of yet another approach
to energy measurement. We will report an extended
study of other aspects of the “sign problem” separately.'*

The remainder of this paper is organized as follows:
Section II describes the methodology in a self-contained
manner, distinguishing the four approaches to energy
measurement and discussing our approach to sampling
the auxiliary fields. Section III presents and discusses our
ground-state energy results for the 2 X2 two-dimensional
Hubbard model with three electrons, and the 4 X4 with
14 electrons. Following our conclusions in Sec. IV, we
present simple derivations of several key formulas, and
the relation between the projection and grand canonical
methods in the Appendix.

II. METHODS

A. Auxiliary-field projection and measurement

As discussed in the introduction, we wish to use the
operator 0(B) defined in Eq. (1) to project the many-
electron ground state from a trial state. (In general, we
will use capital letters with hats to denote operators on
many-electron wave functions.) The trial state, in a nota-
tion that will be useful for further development, is

|®y)=[c'*¢,(0)][c'*$,(0)] - [cT*d,(®]0), (@)

t t

where c¢' is a row vector of creation operators ¢; in an or-
thogonal one-electron basis (a site basis in the case of the
Hubbard model), ¢; is a column vector of the coefficients
¢;; of the jth one-electron wave function in the M-
electron trial state, and |0) is the electron vacuum. A
scalar product of ¢ and @; over the one-electron basis is
implied by an asterisk, a convention which we will use
throughout. We will generally suppress the spin index,
which could be considered as a component of the basis
index i, and will explicitly write the pair (i,0) when we
need to express it. The projected state is

|®g,,)=0(1B)|D,) ,
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Since A commutes with any function of itself, we can
split either projection operator into two pieces and place
fg in between. An equivalent expression for E(B) is ob-
tained by averaging over all possible ways of so doing,

f:dT( ¢o|e —(B—T)ﬁﬁe vrﬁ|¢0>
E(B)= . (5)
B(Dyle _Bﬁ|¢o>

This latter form gives better statistics for measuring A
when we carry out the auxiliary-field integration by sto-
chastic methods. This form also reveals our motivation
for introducing /2 rather than simply S in the previous
definitions.

The Hubbard model we shall use as an example has the
Hamiltonian

N N
— T
A=— > Tcic;+Uyy > ngngy
=1 i=1

=—c**I*c+UHubn’;*nl , (6)

where we have extended our vector notation to the elec-
tron number operators. We will take the kinetic-energy
matrix to represent nearest-neighbor hopping with unit
magnitude for a periodically extended two-dimensional
lattice, but nothing in our treatment exploits this sparse-
ness. Following recent practice, we will rearrange the in-
teraction term to contain the square of the site magneti-
zation,

Upwn}#n,=—1Upp(n;—n ) *(n; =0 )+ LU N
(7)

where N is the total electron number operator. Other
rearrangements, such as one symmetric in charge and
magnetization, have proven useful,’® but will not be con-
sidered here. Introducing the Feynman time-ordering
operator T acting on the imaginary time 7, we can carry

out the Hubbard-Stratonovich transformation®!® and
and the ground-state energy is the large 3 limit of write the projection operator as
0(B)= [ 8x(1)T exp —foﬂdT{%x’(T)*x(‘r)“cT(T)* Txc(r)+V Ugwx'*[n;(1)—n, (D]} | . 8)

In the above, x(7) is the set of Hubbard-Stratonovich
auxiliary fields, which is a vector in the site indices and a
function of the continuous variable 7. The measure of
the functional integral 8x is assumed to contain the ap-
propriate normalization, which can be defined as a limit
but is irrelevant here. The —%Uﬂubﬁ term in Eq. (7)
represents a constant offset of the single-particle energy
scale, and is subsumed in the kinetic energy matrix T.
While the x(7) are explicitly 7-dependent functions, the

f

electron operators c*, ¢, and n, have 7 arguments simply
to indicate their ordering under the action of T.

Defined in this manner, the Hubbard-Stratonovich
transformation is exact. It has become customary to in-
troduce a finite time slice A7 and use the Trotter approxi-
mation'® to separate the noncommuting kinetic and in-
teraction terms prior to carrying out the transforma-
tion.”® The Feynman ordering approach used in the
original derivation by Hubbard!? is perfectly valid, how-
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ever, and of course the two are equivalent in the limit
Ar—0.

We have belabored the distinction between Eq. (8) and
the Trotter form because it has important consequences
for our results. Having made this point, we now intro-
duce a stepwise approximation for x(7),

x(7)=x;,, (I—DAr<r<IAr, I=1,P, 9

where B=PAr, and {x,} is a discrete set of auxiliary
fields. Substituting Eq. (9) in Eq. (8),

_AT P .
'T‘ 2 x,*x,
=1

= [8xG60, --- 0,0, , (10

0=f:° dx; - dxpexp 0, - 0,0,

where we have used G to denote the Gaussian weighting
factor and U with a subscript / to denote the time-slice
propagators,

0,=exp(—A'rﬁ,) , (11
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where
ﬁl=?+ ?[
=—ct*T*c+\/UHubx}‘*(nl—n1) . (12)

The time-slice Hamiltonian A, ; is 7 independent over the
time slice. While we have restricted our functional in-
tegration over x(7) through Eq. (9), we have not made
any assumptions about the commutativity of T and 9,. If
we wish, we can now make the Troter approximation,'®

0,=exp(—1A7T)exp( — ArP))exp(—LArT)+0(AF) .
(13)

If we had introduced Ar and Trotter prior to the
Hubbard-Stratonovich transformation, we would of
course have obtained the form in Eq. (13) directly. While
we had no a priori argument to show that Eq. (11) should
be any better than Eq. (13), we have discovered numeri-
cally that it is, and can rationalize our observation.

The time-slice propagators operate on the trial state
|®,). Using Eq. (A5) we find

0, |q>o>=e‘A”?‘[c**.ﬁl(on[cu¢2<o>] - [cTx gy (0)1]0)

=[cT=l=e—ME1

=[c'ee “rag0]cTre “Ered, (0] [cTHe

where e —atH, =U, is a matrix in the one-electron basis, as
opposed to the Fock-space operator 0,. We can apply
each operator in 0 ; in turn for j=1,2,. ..,/ and the same
steps show that we simply accumulate a product of the
matrices U; operating on each single-particle wave func-
tion ¢, . The result is the “advanced” Slater determinant

|7 )=[c'* o7 (DlcT*¢5 (1] [cT*p7(D]I0O) ,
(15)

where
Sc(D)=U ;U ,_\% - *xU,xU %¢$,(0) . (16)

As we see from Egs. (15) and (16), each one-electron
state of the trial Slater determinant is propagated in-
dependently through the r-varying field 1/ Upgypx(7)
given by Eq. (9). In practice, when each U ; operates on
the set {¢,(j—1)}, all the wave functions in the resulting
new set tend to become parallel to the eigenvector of U j
with the largest eigenvalue. Thus the straightforward ap-
plication of Eq. (16) will result in a Slater determinant
with a great deal of linear dependence among the wave
functions. This dependence can easily exhaust the pre-
cision of floating-point arithmetic in the computational
application of these methods. Sugiyama and Koonin
were the first to recognize this problem. They proposed
the practical solution of propagating the entire set of ¢’s
together, and applying Schmidt orthogonalization after
every few time slices.® We orthonormalize, typically after

x6,(0)]e 2 c agy(0)] - - [c %y (0)110)

A 6,0, (0)]]0) (14)

f

each time slice, and accumulate the log of the norm, since
the norm itself can outrun the dynamic range of double-
precision arithmetic for large 8. We will not introduce
any extra notation to denote the effects of the orthogonal-
ization steps, since they play no real role in the subse-
quent development.

We will also need to allow the time-slice propagators to
operate to the left, so we introduce the “retarded” wave
functions

S =Uj, *x - *Up_*Ubx¢,(0). (17)

They are defined in such a way that
(@l 0p -+ - 0,0,10,) =( D] |®]) (18)

for any I. If we define M XM overlap matrix of the re-
tarded and advanced wave functions at / as

— <t
Si=¢T(x¢> (), (19)
then, using (A6),
(@7 |®; ) =det;[S)1=D({x,}) . (20)

The final notation stresses that D is a function of the aux-
iliary fields but not of /. It can be seen from Egs. (16),
(17), and (19) that S,-’j is independent of / in any range of /
in which we do not insert Schmidt orthogonalization
steps. It could be extended beyond such regions by tri-
angular matrix transformations corresponding to the
Schmidt orthogonalizations,'! but this is of no practical
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use in the context of projection method calculations.

To complete the discussion of energy measurement
strategies, we must consider the Trotter breakup of the
time-slice propagator as given in Eq. (13). Figuratively
speaking, the time slice is divided into thirds, and we in-
troduce the suggestively labeled wave functions corre-
sponding to propagation through these sections,

s,
¢7U+h=e a1,

¢j>(l+%)=e~—A‘rl’1+l*¢j>(1+%) ,
1 (21)

¢ U+2)=(c " Tyags+1),
$FU+D=(e Fgs(1+2).

When the Trotter breakup is used, these definitions are
such that Eqgs. (18) and (20) continue to be obeyed for
these fractional / values.

Three of the approaches we used to calculate the ener-
gy are based on Eq. (5), discretized to finite Ar. Using
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[6xG 3 w(@5|AID])
=0
EB)= : (22)
g P [5xGD(x)

where H is the full, untransformed Hubbard Hamiltonian
given in Eq. (6) and w, is + for /=0 or /=P, and 1 other-
wise. While the w; factors resemble the trapezoidal in-
tegration rule, they actually represent the symmetric
disposition of the energy measurement on each side of the
time-slice operator, %(ﬁ 0,+0,8). This is nontrivial,
since these operators do not commute inside the 8x in-
tegration. The temptation to replace the “trapezoidal
rule” weights by a “better” integration formula must be
avoided, since x(7) is not a continuous function.

We have not dwelt on spin in our development so far.
While it could be lumped with the site index, it is more
efficient to recognize that the a ; do not mix spin up and
spin down, so our wave functions can be regarded as
products of two Slater determinants, one for each spin.

this, Eq. (10), and the preceding wave function Using Eq. (A9), the matrix elements of A can be ex-
definitions, we have pressed as
il
N
(07|19 ) =Det;[S)'IDet [S [{TY'+(TH+ Uy, 3 (n )WY, (23)
k=1

where

M
(T)o!=3 [(S”)H71,;87<(1)xT*¢7> (1)

ij=1

and

M
(n)o!'="3 [(STH7;88 (D™ (1) .

ij=1

(24)

(25)

Note that we have introduced components of the wave functions, ¢,; with site index k in Eq. (25), since the Uy, term
cannot be clearly expressed with the shorthand vector notation.

Equations (22)~(24) can be applied in two ways. If we evaluate Eq. (11) for the time-slice propagator 0, exactly, we
will denote the corresponding energy by E,(B). If we use the Trotter approximation as given in Eq. (13) for 0 1> we will
denote the corresponding energy by E,(B). Of course they must become identical as A7—0.

We will discuss efficient means to sample the 8x integral in the next section. We note here that when using the
Trotter breakup, our procedure will require evaluating the derivatives of exp( —ArP,) with respect to xy;. These are

proportional to {n, )>'*1/3

, using the “fractional time-slice” notation introduced in Eq. (21), (or equivalently to

(n, Yo 1+273 since the i, commute). It is then computationally economical to measure the energy at the same points.

Since 7' does not commute with

Exp)= [P foxGpm|

V,, the symmetric formula

P—1
f&xG > %(<q)1<+1/3lﬁ|¢1>+1/3>+(<D1<+2/353|q’1>+2/3))
1=0

(26)

seems to be the best choice.!” While this appears to double the calculational effort for the kinetic-energy calculation, it

does not. It can easily be shown that

(T34 (Yo l+2/3= E
ij=1

kn=1

N —Atoy/ X —x
[(Sa,l+2/3)—1]ijx 2 ¢Z}<(l+%)Tk"¢:,>(l+%)(1+e A UHub( kI nl))} . (27)



11 356

The sums here and in Eq. (24) can be viewed as a density
matrix traced with T},,. This matrix can be accumulated
over the / index and traced over the k,n indices only
once. In the A7—O0 limit, E;(B8) must converge to the
same value as E(B) and E,(B), and we have no a priori
arguments establishing which should converge more rap-
idly.

B. Sampling the auxiliary fields

The 6x integral to be performed in evaluating either
Eq. (22) or Eq. (26) for the energy has far too high a di-
mension to evaluate by any mesh approach, and some im-
portance sampling scheme must be used. These integrals
all have the schematic form

[ 5xGDE

i

) (28)

where E in the integrand (as well as G and D, of course) is
understood to be a functional of x. It is tempting to treat
GD as a probability, but D is positive only in special
cases. The standard approach is to use G|D| as the prob-

ability to be sampled,”®!! so
[8xGIDIsE  [6xGIDIsE
): =
fo G|D|s (s)

, (29)

where the s=D /|D| is the sign, and {s) is its average
over the probability distribution.

Standard Monte Carlo sampling has been used most
extensively in the application of the auxiliary-field
method to the Hubbard model. However, this is usually
done within the context of the discrete Hubbard-
Stratonovich transformation, which is specialized to this
model.'> We have retained the continuous version be-
cause of our interest in generalizing to realistic systems,
and it is difficult to sample the continuous x fields
efficiently by the standard Monte Carlo approach. We
have therefore adopted the hybrid Monte Carlo scheme
of Duane et al., which was introduced to deal with simi-
lar problems in simulations of lattice field theory.'®
Briefly, a set of momenta considered to be conjugate to
the x’s is introduced, and the numerator and denomina-
tor of Eq. (29) are multiplied by a Gaussian integral over
these momenta (velocities, actually, since we take unit
mass),

J8vG, [6xGIDIsE

EB)= (30)
f&vGUffoGIDIs
where
_ P
G, =exp —ZA—T S vixv, (31)
=1

Integrating the probability G,G|D| over &v and 8x is
equivalent to evaluating a classical partition function at
unit temperature for a set of NP particles moving under
the action of the potential —In(G|D|). If we have some
initial field configuration x; and we pick a random set of
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velocities distributed according to their Gaussian distri-
bution v;, then all points along the classical trajectory
determined by these initial conditions have equal proba-
bility. This is true simply because the classical energy
E= —(InG,G |D|) is conserved along the trajectory. If
we integrate the equations for an adequately long time
At, we will generate a final field configuration x which
will be uncorrelated with x;. By using x; as our new x;
and choosing a new set of velocities, we can continue the
process, and summing E in the numerator integrand in
Eq. (30) evaluated at the series of field configurations gen-
erated in this manner will give the correctly weighted
average.

There are two things wrong with this procedure. First,
we cannot numerically integrate the equations of motion
exactly, and thus can’t conserve E® exactly. Second, if
we could integrate them exactly, x would be confined to
one region of its NP-dimensional space by the zeros of D,
since the potential —InG |D| would have logarithmic
infinities at these locations. This would invalidate our
sample. These problems are both elegantly solved by the
following two steps: First, we use an integration algo-
rithm that preserves classical phase-space volume exactly
even though it may make substantial other errors.
Second, we incorporate a Metropolis rejection step based
on

p=exp[E®(x;,v;)—E%xp,vp)] .

If p > 1 we accept x as a new sample point, and if p <1,
we accept it with probability p. If we reject it, we reuse
x; as a sample point, choose a new set of random veloci-
ties v;, and integrate again.'®

The preceding procedure generates a set of points
which correctly samples the desired distribution.'® We
have considerable latitude in applying it since we can
choose both the integration step length A and the num-
ber of molecular dynamics (MD) steps nyp between
Monte Carlo rejection steps. The effective potential for
the classical problem tends to have the form of isolated
favorable “‘valleys” separated by large unfavorable re-
gions, so increasing error in the integration almost always
makes Ef — Ef! more positive, and lowers our acceptance
rate. The error increases when either At or nyyp is in-
creased, while the statistical independence of x; and xp
increases when the product nypAt is increased. The
Gaussian factors contribute independent harmonic-
oscillator terms in the classical Hamiltonian which have
a period 27. This sets a natural time scale which is not
greatly modified, on the average, by the contributions
from the determinants. We find that taking nypAt ~2.5
gives good statistical independence (x;%xp/|x;||xf]
~0.1 on the average). We then pick Az for an accep-
tance rate ~0.5, which is achieved with At in the range
0.2 to 0.4 for the cases we have investigated. The loga-
rithmic barriers are very ‘“thin” on the scale of the corre-
sponding Ax,;’s, and our procedure readily makes the
“error” of going through them. The acceptance rate as-
sociated with these errors is no worse than that associat-
ed with the “valley walls” away from the sign-change
infinities, and the rate of sign change with number of
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Monte Carlo steps appears to be set by the time it takes
the system to “find” these barriers.

The In|D| term in the effective classical potential con-
tributes forces which are long ranged in both lattice sepa-
ration and 7. When we use the Trotter breakup of the
01’3, Eq. (13), it is easy to show that the force on x,,,

fu= 0201@0)

Z_AT‘/UHub((nk)T,1+1/3_<nk)l,1+l/3) , (32)

where the n, expectation values are calculated according
to Eq. (25).

When we use the exact operator for the time-slice
propagator, as given by Egs. (11) and (12), the force ex-
pression is not so obvious. To use the exact operator, we
must first solve an eigenvalue problem for each time slice,

H ¢, =(T+V )*¢;=e;9¥; , 33)

and then expand the one-electron propagation operator
as

1n<¢)0| OP v
kil

N
U= 3 Yuexp(—Arey W) . (34)

i=1

Using Eq. (20), the force can be expressed as

9
In{(®S|®] )= o, In Det;;[S};]

J
axkl
J

=(Det;[S;]) 7! 2 ey S’

=3 [(s) ‘],,———S,’, , (35)
ij

where s/, ; is the cofactor (signed minor) of S,»’j in the ex-
pansion of the determinant, and we have used Cramers
rule to replace the cofactor over determinant ratio with
the inverse. To isolate the x,, dependence of S', we

rewrite Eq. (19) as
=¢ N DxU'sp>(1-1) (36)

Only U’ depends on x,,. To find its derivative, we must
recognize that derivatives of both g; and ¥, in Eq. (34)
are required. Both may be evaluated using first-order
perturbation theory, and the resulting expression is

a

axk,

2 'pjl

ij=1

'l’ﬂ H 1* %y ]
—ATE,,__ -—Are
X e——————:/; . (37
€T Ej
When ¢, ~€j or i=j in the sum, the ratio should be re-

placed by its proper limiting value —Are “ATi - Substi-
tuting oV Uyuik, for 0H ;/3x,, in Eq. (37), the result
into Eq. (36), and that expression into Eq. (35) gives the
complete formula for the force when the exact propaga-
tor is used. The relationship of this formula to the physi-
cally transparent force expression for the Trotter approx-
imation given in Eq. (32) is not obvious. However, one
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can show that Egs. (35) and (37) are equivalent to calcu-
lating the average of n,, inside the /th time slice.

While use of the exact 0 seems to produce consider-
able computat10nal complexity, the numencal operations
count in fact is proportional to N*P. The Schmidt or-
thogonalization steps require of order NM2P operations,
and the propagation steps N2*MP operations (unless
sparseness can be exploited). Since M ~N for Hubbard
models, the limiting scale of the calculation is not
changed. For realistic models, where the wave function
basis size might be large compared to the number of elec-
trons, the difference between N*M and N 3 might be more
significant.

C. The sign problem and derivative measurement

Since both the numerator and denominator in our en-
ergy expression, Eq. (29), are to be evaluated by a statisti-
cal sampling approach, it is clear that it will be difficult to
obtain accurate statistics if (s ) is small. This is the Fer-
mion sign problem discussed in the Introduction. It has
recently been argued that the quantity derived from Egq.
(29) by setting s =1,

[ 8xG|D|E

E*B)=
g [8xGID|

(38)

converges to E(B) as B— , as long as {(s(B)) does not
go to zero exponentially at large B.”* Sorella et al.
presented numerical examples showing that the (s)
remained finite in cases where it was not forced to be uni-
ty by a special symmetry® (electron-hole symmetry in the
half-filled Hubbard model on a bipartite lattice!*!?).
They also presented E* results, which agreed within sta-
tistical accuracy with ground-state energies calculated by
exact diagonalization. On the other hand, it has been
shown by independent numerical examples that (s(B))
does go to zero as exp(—AEP).!> Loh et al. also present
a heuristic argument that E=E*+AE, but do not illus-
trate this formula with any numerical examples.'?

An energy correction of this form can be derived as fol-
lows. First, we rewrite our basic definition of E(f3), Eq
(4), as

EB)= —FB—III(Q)OIG 2 I‘Do

—Bln J 8xGD (39)

Multiplying and dividing by the corresponding expres-
sion with D replaced by |D| gives the desired result,

[sxGD

EB)= ——
g [ 5xG|D]|

———ln

3B [sxGID]

— *—L
E dBln(s(B)) . (40)

There is a subtlety in the derivation of Eq. (40), howev-
er. In our other energy expressions, based on Eq. (5), we
kept the full many-body f; as the quantity we measured.
This is equivalent to taking the B derivative in Eq. (39)
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before carrying out the Hubbard-Stratonovich transfor-
mation. But E* is defined only after the transformation,
since positive and negative regions of D(x) have no
meaning in terms of many-body eigenstates.

To derive the strictly consistent expression for E *, sup-
pose we have carried out the transformation and intro-
duced the discrete x(7) before taking the B derivative.
Then d /df becomes (1/P)d /d(At). To obtain an ex-
pression as close to our previous measures as possible, we
change auxiliary-field variables to y=VArx to remove
the At dependence from the Gaussian factor. We then
find

P
Sy Gs(y) <<I>
/ ,§1 : a(A )

P [8yGID(y)|

<b,_1)

E} (B)=

where we have introduced the subscript 4 to distinguish
this from our other measures. The appearance of the sign
s(y) in the numerator is the result of carrying the deriva-
tive inside the absolute value. The matrix elements in the
summand can be evaluated following the same approach
as used to calculate the forces acting on the auxiliary
fields. In analogy with Eq. (35), we find

(of

where it must be remembered that the averages are in the
sense just discussed, and not expectation values of opera-
tors between time slices. Aside from this distinction, we
see that instead of evaluating the electron-electron in-
teraction directly as in Eq. (23), we are evaluating the in-
teraction of each electron density with the auxiliary field.

We briefly considered E}(B) early in our investiga-
tions, and discarded it because it has extremely bad A7
convergence properties compared to any of our other ex-
pressions, as well as worse statistical properties. We were
forced to reconsider it only after our numerical results in-
dicated inconsistencies between our other measures and
Eq. (40).

For the sake of completeness, we point out that had we
gone through the above derivation without replacing x by
y/V'At, we would have obtained yet another energy ex-
pression E5. In this case, the  factor would be replaced
by unity in the matrix element in Eq. (43), and an addi-
tional 1x'*x interaction term would appear. We antici-
pate that this measure would have even worse properties
than E,, and have not investigated it. Obviously, we
could also have introduced Trotter approximation ver-
sions of E, and E.

|

d(AT)

III. RESULTS

We developed and tested the programs implementing
the calculations already discussed using several two-
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o s

..DZ[(S ‘l]ﬂ I<Tl)*
ij

B(A )

a(A )*¢j (I-1) (42)

The expression analogous to Eq. (37) for the derivative of
the one-electron operator required in the preceding ex-
pression is

DU _ S oy (e (T8 ]
aar) & Skl
e-—An:,,_e-—An-:
AT(E;I_EI '/III ) (43)

The replacement of x by y/ VAt introduces a nontrivial
A7 dependence into the one-electron potentials ¥ ;, and
results in the factor J multiplying it in the above expres-
sion. (If the factor were unity, the matrix elements above
between the time slice eigenstates ¥;; would be diagonal.)
We recall from our discussion of the forces that equations
of the same form as Eqgs. (37) and (43) can be derived by
considering the averages of one-electron operators car-
ried out internally over the time slices. This enables us to
rewrite the summand in Eq. (41) as a more physically
transparent expression analogous to Eq. (23),

- N
<1>,> Det,; [ Det, [S4] [{ TN+ (T + 1V Uy /AT 3, yig({m )=} |, (44)
k=1

[

dimensional Hubbard models for which exact diagonali-
zation reference results were available. For the compara-
tive study of the convergence of the several ground-state
energy measurement strategies, we selected two systems
that have a significant sign problem so we could simul-
taneously study the E*-E energy difference. These are
the simplest possible system, the 2X2 with three elec-
trons, and the one with the worst sign behavior!® we
know of for which exact diagonalization results are avail-
able,?° the 4 X4 with 14 electrons. We found the conver-
gence behavior of half-filled systems and other systems off
half-filling to be similar in more limited studies. We
chose t =1 and U=4 in both cases since the 4 X4 /14 di-
agonalization results were only available for these
values.?’

For both cases, we used a commensurate spin-density-
wave-type state for |®,), generated by diagonalizing the
Hamiltonian with an applied field of +1 on the 4 and
—1 on the B sublattices. Results for the energy are iden-
tical using a paramagnetic state, and this choice served
other purposes not discussed here. (For the half-filled
case, such a choice is necessary in the projection method
to complete the symmetry which forces positive signs.!*)
For these small systems, we found E(B) to be indepen-
dent of B for =5, 10 and 20, and we chose =10 for
the A7 convergence tests. We typically ran 500-1000
Monte Carlo steps for equilibrium, followed by 5000 mea-
surement steps. The molecular dynamics run for each
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FIG. 1. Convergence of the absolute-value energy measures
E* with (A7)? for the three-electron 2 X2 Hubbard model. The
lines are least-squares fits, and the differences among measures
one, two, and three are discussed in the text. The “X> on the
ordinate axis is our exact diagonalization result.

MC step used nypAt~2.5 as already discussed. We
used blocks of 500 MC steps to determine our statistical
error. While we have some evidence of longer correlation
times, the E* errors estimated this way (~0.001 to
0.002) are consistent with the run to run differences.

In Fig. 1, we plot E*(10) per site versus A7> for the
2X2/3 case and our three approaches to energy mea-
surement. The estimated statistical error just cited is
comparable to the symbol size, and we performed three
to four independent runs for most A7 values. For the
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Trotter methods two and three, many of the measure-
ments were made simultaneously on the same samples.
The exact propagation operator, method one, of course,
had different auxiliary-field dynamics and different state
evolution, so all these runs were independent of the
Trotter runs. The continuous curves are simple least-
squares fits to the form

E(AT)=E;+bAr*+cAT . (45)

The parameters and their estimated uncertainties are
given in Table I. For E} and E3, parameter ¢ was zero
within its uncertainty, so the fit was redone with two
terms only. We point out that all methods converge to
the same value of E; with high accuracy, which is an im-
portant consistency test. Striking differences in the A7
convergence rates are immediately apparent from the
figure, however. From the b parameters in the Table, it is
clear that we achieve an order of magnitude improve-
ment in going from method three to method two, and
another order of magnitude in going to method one. The
only quantitative result on convergence we have found in
the literature is quoted by White er al. to be
b=—1.95+0.4, with the uncertainty covering a wide
range of Hubbard model parameters.!! This is consistent
with our method three result. We note that b is negative
for method three, but positive for one and two. The X on
the ordinate axis in Fig. 1 corresponds to the exact
ground-state energy of the 2X2/3 model, which we ob-
tained by direct diagonalization. It is clear that our E*
measures converge to a lower energy.

In Fig. 2, we show the corresponding results for the
signed average E taken from the same runs. We found
that the sign changes were quite accurately Poisson dis-
tributed over our Monte Carlo runs for this model, with
an average of ~80 MC steps between changes. Our runs
of 5000 steps therefore sampled both positive and nega-
tive regions with appropriate weights, and our sample
should not have introduced any systematic error. As the
scatter in the points indicates, the statistics are much
worse, and we cannot reliably estimate the statistical er-
ror by other means. As seen from the figure and from

TABLE I. Ground-state energies per site for two Hubbard models with t =1 and U =4, and At con-
vergence parameters, based on least-squares fit to Egs. (45) and (46). Standard deviations are given in
parentheses. (Exact diagonalization energies are not fit.)

Model Measure E; a b c

2X2/3 diag —1.60463

1* —1.6167(6) —0.011(3)

2* —1.6170(11) 0.16(3)

3* —1.6184(17) —2.40(5) 2.56(8)

4* —1.6447(62) 2.4(1)

1 —1.6066(23) 0.03(1)

2 —1.6075(45) 0.16(3)

3 —1.6063(89) —2.2(2) 2.3(4)
4X4/14 diag® —0.9840

1* —0.9951(14) 0.013(8)

2* —0.9962(15) 0.161(7)

3* —0.9935(37) —1.87(8) 1.6(1)

*Reference 20.
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FIG. 2. Convergence of the signed energy measures, as in
Fig. 1.

Table I, the convergence rates of the three methods are
similar to those for the E* calculation. All three con-
verge to the exact diagonalization result, well within the
uncertainty of the fit. This is further evidence for the
correctness of our codes and our procedures, and for a
small but significant difference between E* and E. Using
ET and the exact diagonalization value to obtain our
most accurate estimate, we obtain AE,=0.012. This im-
plies, as discussed above and by Loh et al.,'® that the sign
(s(B)) vanishes exponentially with S.

To quantitatively test the relation between AE and the
decay of {(s(B)), we carried out an additional series of
runs at a series of B values with A7 fixed at 0.5. These
were carried out using the exact propagators, which ap-
parently give accurate results even for such a large value.
To obtain accurate statistics, much larger samples were
required, and we used runs of 50000 and 100 000 Monte
Carlo steps. These results are shown by the circles of
Fig. 3. To confirm the A7 independence of the {(s(B))
decay, three additional calculations were carried out for
A7=0.25, and these results are shown by triangles in Fig.
3. The error bars shown with these results are based on
blocks of 5000 steps. A least-squares fit to all the points
shown yielded In{s(B))=0.4679-0.1516B. Fits drop-
ping the B=4 point yield essentially the same values, in-
dicating the saturation of exponential behavior takes
place quite abruptly at small 8. Coverting the slope to a
per site energy yields AE; =0.038, where we have added
the subscript s to indicate the source of this value.

Motivated by the discrepancy between our directly cal-
culated AE and that derived from the sign decay, we re-
turned to a careful analysis of the apparently violated Eq.
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FIG. 3. Decay of the average value of the sign with S for the
three-electron 2 X2 Hubbard model.

(40), and to a calculation of E} for this system. The At
convergence of EJ appears to be linear rather than quad-
ratic, for reasons we do not understand. Even with the
exact time-slice propagators, extremely small A7 values
are required to obtain a useful extrapolation to the limit.
The results of a series of calculations at =10 using 5 000
Monte Carlo steps are shown in Fig. 4. The least-squares
fit to

E(AT)=E,+aAr 46)

is shown in the figure, and the parameters are given in
Table I. We find AE,=0.040(6), consistent with AE;.
Figure 5 shows our results for the 4X4/14 model. As
is apparent visually and from the fit parameters in Table
I, the rates of At convergence for Ef, E3, and E¥ are
similar to those we found for the smaller model. The
(A7)? coefficient for method three, —1.87(8), is even
closer to the value of —1.95 given by White et al.!’ All

-1.4 T T L T T T T
2x2 4
3 ELECTRONS
U= 4t

E/t

-1.7 1 1 | 1 1 1 1 1

tAT

FIG. 4. Convergence of absolute-value energy measure four
with A7 for the three electron 2X2 Hubbard model. Note the
different abscissa scale compared to Figs. 2 and 3.
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FIG. 5. Convergence of the absolute-value energy measures
one through three for the 14 electron 4X4 Hubbard model.
The “X” on the ordinate axis is the exact diagonalization result
from Ref. 20.

three methods converge to the same E* value, and
AE,=0.011 is nonzero well outside our uncertainty.

For the 4X4 /14 model, we also find sign changes Pois-
son distributed over the Monte Carlo runs, with a mean
spacing of ~ 50 steps. We found that {s(8=10)) is con-
sistent with O within our statistics, and we did not at-
tempt to calculate the decay of {s(8) ourselves. For this
case, however, a plot of In{s) versus B is given by Loh
et al.'® Based on their straight line fit, we infer an energy
correction AE;=0.044 per site. The inconsistent AE,
and AE; values for the 4X4/14 model are quantitatively
nearly identical to those for the 2 X2 /3 model.

IV. DISCUSSION

One of our key results is the improvement in A7 con-
vergence over the “industry standard” that results from
switching from method three to method two. Both use
the Trotter approximation,'® but differ in where the ener-
gy measurement is performed. In both cases the full
many-body Hamiltonian is used for the energy measure-
ment. We could imagine we arrived at method three in
the following manner: Starting from the Eq. (39), we in-
troduce the discrete 7=p8/P mesh and apply the Trotter
approximation to each time slice propagator while still in
many-body form. Then we carry out the d /dB derivative
to bring down the kinetic-energy and Hubbard interac-
tion operators for energy measurement. Then we carry
out the Hubbard-Stratonovich transformation. For
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method two, we followed, in principal, an alternative se-
quence. Starting from Eq. (5), we replaced the 7 integral
by a discrete sum that just happened to coincide with our
post Hubbard-Stratonovich transformation 7 mesh.
Next, we carry out the transformation in the numerator
and denominator of Eq. (5), considering our time order-
ing to be based on infinitesimal d increments. Next, we
replace x(7) by the stepwise approximation to the con-
tinuous 7 function. Finally, we carry out the Trotter
breakup on the individual time slices.

If one takes the point of view that the finite A7 Trotter
approximation must be introduced to justify the
Hubbard-Stratonovich  transformation, then both
methods should be equally good, or rather equally bad
for large Ar. The symmetric Trotter approximation is
accurate to order (A7)3, and the integrated error from 0
to B should then be of order (Ar)%. Our results do
not suggest the order of performing the Hubbard-
Stratonovich transformation and the Trotter approxima-
tion change the power with which the energy converges,
just the prefactor.

We can arrive at our method one by following the de-
velopment of two as already outlined, and simply leaving
out the Trotter step. In this case we can offer a
justification for the improvement. We have studied the
Fourier spectra of the auxiliary fields as a function of .
There are as many Fourier components as there are time
slices, so smaller A7 in effect introduces higher frequen-
cies. One can demonstrate in model calculations that
very high frequency fluctuations in the fields have very
little effect on the states being propagated.'* Our mea-
sured spectra confirm the inverse effect, namely that the
high components are strictly Gaussian in their distribu-
tion, showing that the determinant of states reacts back
on them with very weak forces. The spectrum cuts off
rapidly, with @ =2mn /B~ U as the apparent characteris-
tic frequency (we have not checked this dependence sys-
tematically). The amplitudes of the lower components do
not vary much when higher components are introduced
through smaller A7. All this supports the idea that the
higher components are not very important to the devel-
opment of the projected many-body state.

However, a small A7 is important to obtain accuracy
from the Trotter approximation. Early in our explora-
tions of this method, we performed a test in which we set
up a spatially random but 7-independent set of fields with
Gaussian distributed amplitudes. We used the eigenstate
of this field configuration as |‘I/0), and measured the error
in the one-electron energy produced by propagating this
state with a sequence of (identical) Trotter U ,’s. While
quantitative comparison between this test and our many-
body results is not possible, the (A7)* dependence of the
errors was of similar magnitude.

Our conclusion from these observations is that the
Trotter formula and correct treatment of the many-body
effects are not inexorably linked. Applying the approxi-
mation later is better, and never applying it is best. Most
of the computational work entailed by small A7 is spent
doing the trivial part of the problem, the one-electron
part, with sufficient accuracy. When these methods are
applied to real systems, this will be especially important
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because of the large ion and quasistatic screening poten-
tials, which are likely to completely dominate the dynam-
ically fluctuating potentials.

The other issue we have addressed is the energy
difference AE resulting from averaging the energy contri-
butions from positive and negative sign regions rather
than taking their difference. For both cases, we found
small but statistically significant AE values. This is in
contrast to results reported in Refs. 8 and 20, where AE
was found to be zero within statistical error for the cases
reported. The energy E* for the 4X4/14 case is report-
ed to be —0.988(3) in Ref. 20, which is in sufficient
disagreement with our result of —0.9951(14) to lead to
different conclusions about AE. We cannot assess the
cause of the discrepancy, if it is real and not statistical,
on the basis of the limited information given, but there
are several possibilities. As discussed in Refs. 7 and 8,
the Trieste group uses Langevin dynamics to sample the
auxiliary fields. It is not clear whether their 4X4/14 re-
sults are calculated usin% the [(®,|0|®,)| “action” or
their proposed ((®,|0'0|®,))"/? action.®! We have
found that both give similar results, and that the second,
while positive definite by construction, has near zeroes
that are computationally equivalent to the true zeroes of
the first. The Langevin method must either fail to
penetrate these barriers if used with small enough time
step, or give errors throughout if used with a time step
designed to facilitate barrier penetration. The other pos-
sible cause of the disagreement is AT convergence, which
is not discussed.?’

The comparisons among AE,, AE,, and AE; are the
least well understood part of our result. As this research
developed, we first became aware of a discrepancy be-
tween our AE, for the 4X4/14 model and AE; after re-
ceiving the unpublished (s(8)) result of Loh et al'
These authors use rather different methods (e.g., Hirsch’s
discrete Hubbard-Stratonovich transformation!?), and do
not give any energy results. While we first considered
that the discrepancy might arise from the methodological
differences, we found this rationalization unconvincing.
This led us to confirm the similar discrepancy for the
2X2/3 model within a fully consistent computational
context, and finally to the “resolution” of the discrepancy
through our E study.

Schematically, all the energies have the form indicated
in Eq. (28), a functional integral of a weight factor GD
times an energy functional, appropriately normalized. If
we confine our comparison to measures one and four,
where the time-slice propagator is treated exactly, only
the energy functionals E,(x) and E,(x) differ. When they
are averaged keeping the sign of D, they must both con-
verge to the same number at small A7. Yet when they
are averaged using |D|, they give different results. The
E?} average is relatively easy to compute and is closer to
the exact result. Yet we apparently have no theory for
correcting it to the exact result. The E} average is much
more difficult to compute and farther from the exact re-
sult, but we do have a theoretical expression for the
correction.

For application to realistic many-electron systems or to
large models, the signed averages will probably never be

D. R. HAMANN AND S. B. FAHY 41

practical to compute with the required accuracy. The
observation by Sorella et al.”’® that the absolute value
measure gives energies that are very close to exact values
is a significant advance. To realize its full advantage,
however, it will be necessary to develop a theory and a
computational approach to systematically estimate the
correction. The present results indicate that this issue is
more subtle than previously suspected.
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APPENDIX

In this appendix, we give simple derivations of several
results that were used in the text, and of the connection
between the projection method®’ and the grand canoni-
cal ensemble method.!!

Suppose we have an arbitrary N X N matrix 4 in the
one-electron basis, and form the bilinear Fock-space
operator

2=cT*4*c . (A1)

Now using the elementary anticommutation relations of
the electron creation and annihilation operators, we can
show that

Ac'=c'x(4I+ 4), (A2)

where I is the N X N unit matrix. Note that this relation
combines in a compact notation the matrices 4 and [,
whose elements are ¢ numbers in Fock space, with 4,
which is an operator in Fock space, but is a scalar rela-
tive to the N X N matrices. From Eq. (A2), it follows that

Arct=c'*(AI+4), (A3)

and

At—_ t, (AI+4)

e‘c'=c'xe . (A4)

Now, from the properties of AI and A discussed above
they commute both as matrices and as Fock-space opera-
tors, so

edct=ctxede? . (AS)

This result allows e ~2™ to “walk through” the string of
creation operators defining |®), replacing each one-
electron wave function ¢ by the propagated wave func-
tion e "A"Hx ¢ in Eq. (14).

It can be shown from the elementary commutation re-
lations of the electron operators that the overlap of two
M-electron Slater determinants, defined as in Eq. (2), with
different sets of one-electron wave functions ¢ and ¢ is
given by

(‘P|<I>)=Det,-j[Sij] , (A6)
where the M XM overlap matrix S;; is simply
=]
S;=pi*d; . (A7)
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The matrix element of the bilinear operator A is easily
expressed, using Eq. (A2), as

M
(V| 4|®0)=3 Det; {¢/+[(1—8,)[+5, A]1%¢;} .
k=1

If we expand each determinant in the sum in terms of the
cofactors (signed minors) s of column k, which are the
same as the cofactors of S;;, we obtain
M
(V[ A10)=3 (Pledxd;)sy ,
Lk=1

(A8)

which, using Cramer’s rule, can be expressed in terms of
the inverse of S,

M
(¥|A|®)=Det[S] 3 (S u(djxdxd,). (A9)
k1=1

This result was used in Egs. (23)-(25) and (27).

In the finite-temperature auxiliary-field method based
on the grand canonical ensemble, the partition function is
expressed as the Gaussian-weighted integral of the N XN
determinant!!

D=Det,[(L+U);], (A10)

where U is the ordered product of the time-slice propaga-
tion matrices,

U=Upx - *U,xU, . (A1D)

Note that in general U cannot be expressed as the ex-
ponential of a Hermitian matrix, even though the indivi-
dual time-slice propagators have this form. Equation
(A10) is derived using a combination of Grassmann alge-
bra and Green’s function techniques,21 and its relation to
the projection technique, to its interpretation in terms of
propagating individual Slater determinants, and to the
M X M determinant (®|U|® ) is not transparent.

Any complete orthonormal basis set {¢;} forms a uni-
tary matrix, and since the determinant of a matrix is in-
variant under unitary transformation,
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D=Det,[¢/*(I+U)*¢;]. (A12)

This expression can be expanded as a sum of 2V deter-
minants, since each ¢; can be acted upon by either I or
U;

N
D=3 3 Det;[D)°],
M=0 {C}

(A13)

where {C} is the set of ¥C,, combinations of M integers
drawn from the set {1,...,N}, and

¢}L*Q*¢j, jeEC,

MC_
Dj; 8, JEC.

(A14)

The Kronecker delta occurs because ¢’s are orthonormal.
In effect, each wave function acted upon by U is pro-
pagated, while each acted upon only by I is passively car-
ried to B. Now for each element in the sum, we can reor-
der the set of ¢’s to put all the propagating wave func-
tions first, since this subjects the rows and columns of the
determinant to the same permutation, and does not
change its value. The rearranged matrix is

TxUxg), j=1M,

MC_
by = j=M+1,N,

=15 (A15)

Ij’
where the primes simply denote the new indexing of the
wave functions. We now observe that all the elements of
D in columns 1,M and rows M +1,N can be zeroed by
Schmidt orthogonalization to columns M +1,N, so the
matrix reduces to our familiar M X M block in the upper
left, ones on the remaining diagonal, and zeros elsewhere.

We have thus shown that each term of D is equal to
some (®|U|®) of the projection method, and that we
must sum over the set of all possible Slater determinant
trial functions to get the partition function at finite 8. Of
course a chemical potential must be included, and at
large B those |®) with the most probable M and max-
imum overlap with the ground state will dominate the
sum.
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