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Neutron scattering has been used to investigate the magnetic ordering of the rare-earth ions in
the ErBa,Cu,O; and DyBa,Cu,O; materials. For the Er system a simple three-dimensional (3D) an-
tiferromagnetic structure is observed, in which the magnetic unit cell is twice the chemical unit cell
along the a axis, with a Néel temperature Ty ~0.49 K. In the vicinity of the Néel temperature,
however, scattering characteristic of two-dimensional behavior, indicative of the strong anisotropy
of the magnetic interactions, is observed. The magnetic anisotropy arises naturally from the crystal
structure, as the c-axis spacing of the magnetic ions is ~ 3 times the a-b spacing. 2D behavior is also
observed in the Dy material near its Néel temperature of ~0.9 K. However, the scattering in the
Dy system does not cross over to the expected 3D Bragg peaks at low temperatures, but rather the
2D line shape persists to the lowest temperatures measured. We explain this result as originating
from a geometric cancellation of interactions between c-axis layers for the specific Dy a-b spin
configuration, which together with the weak intrinsic c-axis interaction renders the net interaction
along the c¢ axis much smaller than all other known “2D magnets.” Hence the 2D and 3D ordering
temperatures appear to be quite different for the Dy material. We anticipate that a similar cancella-
tion of interactions is likely to occur in other RBa,Cu,Oj3 (R being a rare-earth element) systems.
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I. INTRODUCTION

The magnetic properties of the oxide superconductors
have been of particular interest for two reasons. One is
that the Cu magnetism may be related in a fundamental
way to the pairing mechanism in these materials, and the
second is that these are ideal systems in which to investi-
gate the behavior of the rare-earth magnetic order pa-
rameter and the superconducting order parameter, which
should be coupled via the electromagnetic interaction.'?
In this latter regard we have been systematically investi-
gating the nature of the rare-earth ordering in the
RBa,Cu;0¢,, (R is a rare-earth element) systems, and
have found>* that they are prototypical two-dimensional
(2D) magnetic systems.” We are now extending these
measurements to the RBa,Cu,O; class of materials,
which is similar to the 1:2:3 system except that the (or-
thorhombic) ¢ axis is approximately twice as long, with
two rare-earth ions in the chemical unit cell.>’ We find
that these 2:4:8 systems also possess highly anisotropic
magnetic interactions due to the crystal structure, and
consequently they exhibit 2D-like behavior as well. For
the Dy material there is an additional cancellation of in-
teractions between c-axis layers, which yields a net inter-
layer interaction which is exceedingly weak. Hence
DyBa,Cu,O; appears to be the best example of a 2D sys-
tem found in nature so far.

The magnetic and superconducting properties for both
the 1:2:3 and the 2:4:8 materials are quite similar. The
rare-earth ions in both systems are electronically isolated
from both each other, and from the electrons in the Cu-O

4

layers that superconduct.””® The R-R distance is ~3.9 A
in the a and b directions, while the distance along the ¢
axis is ~12 A, and these are basically the nearest-
neighbor separations for the rare-earth ions. This crys-
tallographic anisotropy will lead naturally to magnetic in-
teractions which are highly anisotropic. In addition, the
low ordering temperatures (~1 K) suggest that the ex-
change interactions are small in the a-b directions and
very small in the ¢ direction, leaving the dipole interac-
tions to dominate. In the 1:2:3 materials, considerable
evidence has been obtained from specific heat, suscepti-
bility, and directly in neutron scattering experiments,
that a 2D description of the magnetism is appropriate,
especially in the orthorhombic (and superconducting) sys-
tems. In particular, in (superconducting) ErBa,Cu;0, a
rod of scattering characteristic of 2D behavior has been
observed,’ and the order parameter obeys the Onsager’
solution for the S =%, 2D Ising model. In this article we
report our neutron scattering experiments on the rare-
earth ordering in ErBa,Cu,O4 and DyBa,Cu,Og powders,
and we find unambiguous evidence for two-dimensional
behavior in both systems. Strikingly, in the case of
DyBa,Cu,O4, the sample did not order three-
dimensionally even at temperatures far below T,.

II. THEORETICAL ANALYSIS

A. 3D magnetic diffraction

The magnetic scattering we observe exhibits both 2D
and 3D behavior. Since the case of 2D scattering from a
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powder is somewhat unusual, and because there has been
some confusion in the recent literature concerning the re-
lationship between 2D and 3D scattering in these sys-
tems, we discuss in some detail here the scattering cross
sections expected and the data analysis procedures we
have followed.

Consider first the usual situation of 3D magnetic order.
Each magnetic ion will magnetically scatter a neutron,
and we must coherently add these individual scattered
wave amplitudes in order to obtain the total scattering
amplitude.! The sum usually has the form

S Fpe@R (1)

[R}
where F), is the magnetic structure factor for the mag-
netic unit cell, Q is the change in the wave vector upon
scattering, R designates the position of each magnetic
unit cell, and the sum is over all magnetic cells in the
crystal. For all the terms to add coherently, we require
that Q-R be an integral multiple of 27 for each and every
R; this defines the reciprocal lattice vectors 7. The essen-
tial point is that since the R form a 3D lattice, each of
the three components of Q must be restricted to specific
values, and this gives rise to the usual Bragg peaks locat-
ed at the reciprocal lattice vectors 7. Figure 1 shows a
representative scattering plane for a system with 3D or-
der. The solid points denote the Bragg points for the case
of a single-crystal specimen. To observe a Bragg peak,
we must have Q=r, that is, the neutron spectrometer
must be at the correct scattering angle 26 [with
|7|=4msin(8)/A], and the sample must be rotated to the
proper orientation. A polycrystalline sample, on the oth-
er hand, consists of a large number of single crystals, ran-
domly oriented. This has the effect of transforming each
Bragg point into a Bragg sphere of radius |7|, and the
projection of these spheres onto the scattering plane
yields a series of concentric circles as also shown in Fig.
1. The sample orientation is now irrelevant, and the mea-
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FIG. 1. Schematic representation of the scattering plane,
both for a single-crystal sample, and for a powder. The solid
points represent 3D Bragg peaks, which is the situation for a
single crystal. A powder consists of a collection of single crys-
tals oriented in all possible directions, and the Bragg intensities
are distributed on spheres, which appear as circles in this
scattering plane.
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sured Bragg angle 26 yields |7|.

The integrated intensity for a magnetic Bragg
reflection is given by'°
2
2 A
I, =CM_ A(8) {"’—2 A=FMPIF 2, @
c

where the neutron-electron coupling constant in
parentheses is —0.27X 107 !2 cm, 7 and M are unit vec-
tors in the direction of 7 and the spin direction, respec-
tively, and the orientation factor {(1—(#M)?) must be
calculated for all possible domains.!! C is an instrumen-
tal constant which includes the resolution of the measure-
ment. A(6p) is an angular factor which depends on the
method of measurement, and /M, is the multiplicity of the
reflection. The magnetic structure factor F,, is given by
N —W irr;
Fy= 3 Au,)ifi(ne e, (3)

i=1

where (u,) ; is the thermal average of the aligned mag-
netic moment of the magnetic ion at the jth site at posi-
tion r,, W; is the Debye-Waller factor for the jth atom
(which is usually neglected at these low temperatures),
f(7) is the magnetic form factor, and the sum extends
over all magnetic atoms in the unit cell. The observed in-
tensity then is directly related to the square of the
thermal average of the magnetic moment, {u, ), which is
the order parameter for the phase transition. The pre-
ferred magnetic axis (M) also can often be determined
from the relative intensities. Finally, the scattering can
be put on an absolute scale by comparison with the nu-
clear Bragg intensities,'” whereby the saturated value of
the magnetic moment can be obtained.

The standard technique for identifying the magnetic
Bragg scattering is to make one diffraction measurement
in the paramagnetic state well above the ordering temper-
ature, and another in the ordered state at the lowest tem-
perature possible, and then subtract the two sets of
data.'? In the paramagnetic state the (free ion) magnetic
scattering is given by'”

, )2
L p2ef Q)7 @
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where p.s is the effective magnetic moment
(=gVJ(J+1) for a free ion). This is a magnetic in-
coherent cross section, and the only angular dependence
is through the magnetic form factor f(Q). Hence this
scattering looks like “background.” There is a sum rule
on the magnetic scattering in the system, and in the or-
dered state most of this diffuse scattering shifts into the
coherent magnetic Bragg peaks. A subtraction of the
high-temperature data [Eq. (4)] from the data obtained at
low T [Eq. (2)] will then yield the magnetic Bragg peaks,
on top of a deficit (negative) of scattering away from the
Bragg peaks. On the other hand, all the nuclear cross
sections usually do not change significantly with tempera-
ture, and hence drop out of the subtraction. Exceptions
to this are if the temperature dependence to the Debye-
Waller factor is significant, if there is a structural distor-
tion associated with the magnetic transition such as
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through a magnetoelastic interaction, or if the nuclear
spins order. In these latter cases polarized beam tech-
niques are needed to unambiguously separate the magnet-
ic and nuclear cross sections.

B. 2D magnetic diffraction

For the case of a 2D lattice the basic sum in Eq. (1) is
of course the same, except that the lattice defined by {R}
extends in only two directions. In our case this is in the
a-b plane, as we assume that the magnetic interactions
along the c¢ axis are much weaker than in the planes be-
cause of the relative separations of the rare-earth ions.
Hence in order to coherently add all the phases we only
need to choose the values of Q, and Q, appropriately,
while the value of Q, can be anything. This defines a
Bragg line or rod, rather than a Bragg point as in 3D.
Figure 2 shows a representative reciprocal lattice dia-
gram for this situation. The top portion shows the
scattering plane for a single crystal. Note that in order to
observe the rod, we can measure at any value of |Q| we
like, as long as we scan through the rod, and as long as
|Q| exceeds the minimum length |Q, ;..

For a powder, we must average the scattering over all
possible orientations of reciprocal space. Note that un-
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FIG. 2. Schematic representation of the scattering plane for
a 2D crystal (top), and a 2D powder (bottom). In the powder
the rods are transformed into a density of states for scattering,
with the peaks occurring at |Qp,|. In this figure the rods are
drawn for the case of ErBa,Cu,Oj3 (or ErBa,Cu;0-).

Dl
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like the 3D case, where the Bragg points define discrete
spheres, the scattering from the rod is distributed over an
infinite range in |Q|; there is a minimum (|Q,,;,|) below
which we will not observe any rod scattering, but there is
no maximum. Thus in the powder diffraction case there
will be a density of states associated with the rod scatter-
ing, as depicted in the bottom portion of Fig. 2. This sit-
uation was analyzed by Warren many years ago for the
case of x-ray powder patterns of random layered materi-
als.;3 The intensity for the (hk) Bragg reflection is given
byl ,14

172 JnhleMle(a)
)3/2

I =C’ , (5)

VA (sinf
where 20 is the scattering angle, M, is the multiplicity
of the (hk) reflection, A is the neutron wavelength, and L
is a parameter which represents the size of a domain
within the 2D layers. The function F(a) is given by

= [*,-(x2=a)?
F(a) fo e dx , (6)
where
a=QLV'7/\)(sinf—sinfp)

and 6 is the Bragg angle corresponding to |Q,,;,|.- These
expressions were convoluted with the instrumental reso-
lution and least-squares fit to obtain the Bragg angle and
moment.

III. EXPERIMENTAL DETAILS

The neutron diffraction experiments were conducted at
the research reactor at the National Institute of Stan-
dards and Technology. The (unpolarized) neutron
diffraction data for both the ErBa,Cu,O;y and
DyBa,Cu,O3 powder samples were taken at the BT-2
triple-axis spectrometer under identical experimental
conditions. The incoming neutrons had a wavelength of
2.354 A defined by a pyrolytic graphite PG(002) mono-
chromator, with a PG filter to suppress higher order
wavelength contaminations. Three Soller slit collimators
were placed in the beam paths, one before the monochro-
mator, one between the monochromator and the sample,
and one after the sample; the collimations were 60’-20'-
20’ full width at half maximum (FWHM) acceptance. No
analyzer crystal was used. The powder samples were
sealed in a flat-plate copper canister of 5 mm thickness
with an atmosphere of He exchange gas to promote
thermal conduction. A top-loading helium dilution refri-
gerator was used to cool the samples down to tempera-
tures as low as 50 mK. For each sample, two powder
diffraction sets of data were collected over the range of
scattering angles from 2° to 62°, one at 50 mK, and anoth-
er well above the Néel temperature. To isolate the mag-
netic Bragg peaks from the nuclear Bragg peaks, a sub-
traction of the high-temperature data from the data at
low temperature was taken as explained in the preceding
section.

The samples themselves were powders of approximate-
ly 10 g each, with (onset) superconducting transition tem-
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peratures of ~80 K. The basic 2:4:8 orthorhombic struc-
ture (with room-temperature lattice parameters of
a=3.8395 A, b=3.8703 A, ¢=27.231 A (Ref. 7) of the
samples was confirmed by our nuclear diffraction data.
Details of the sample preparation and phase analysis of
these materials are given elsewhere.’

IV. RESULTS

A. ErBa,Cu,O; system

The magnetic diffraction pattern for the ErBa,Cu,O4
material, obtained by subtracting the scattering observed
well above the Néel temperature from the low-
temperature data, is shown in Fig. 3. Each data set was
counted ~1 min/point, in angular increments of 0.1°.
Three strong magnetic peaks are readily identified at
scattering angles of 18.36x0.01°, 23.194+0.02°, and
30.76+0.04°, respectively. The error estimates are ob-
tained from fits of Gaussian (resolution) peaks to the
data. The three-dimensional spin configuration for the
Er moments inferred from these peaks is shown in Fig. 4.
In the a-b plane, chains of parallel spins occur along the b
axis, with adjacent chains antiparallel as shown. An
identical structure within the a-b plane has been observed
in the related material ErBa,Cu;0,.>'»!5 The next layer
along the c axis is obtained by reversing the sense of
every moment in the a- b plane, and then translating the
whole layer by (b/2)b+(c/2)e. The three peaks can
then be indexed as the (£01), (J03), and (105) peaks. Six
additional (weaker) magnetic peaks could be identified in
the data, namely the (;07), (;09), ($10), (312), ($14),
and (§16) peaks. It should be noted that since adjacent
layers along the c axis are shifted along the b axis, but not
along the a axis, it is a relatively simple matter to distin-
guish the @ and b axes even though the lattice parameter
values are almost the same.

In addition to the basic spin configuration, we also
determined the spin direction and the value of the or-
dered moment of Er. We used the weighted average of
the (002) and (100) nuclear peaks to determine the instru-
mental constant C, and least-squares fit Eq. (2) to the
seven peaks for which reliable magnetic intensities were
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FIG. 3. Magnetic scattering intensity for ErBa,Cu,O; at
T=0.05 K, which is well below the Néel temperature of 0.49 K.
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FIG. 4. Ground-state magnetic spin configuration for the Er
spins in ErBa,Cu Og. The plus and minus signs represent spins
in opposite directions.

obtained, with (u,) and the moment direction as vari-
ables. A poor fit is obtained if the spin direction is as-
sumed to be along either a or ¢, while choosing the b axis
gives a relatively good fit to the data. A further small im-
provement of x* was obtained if we chose the spin axis to
be ~60° from the ¢ axis in b-c plane, but we do not con-
sider this to be a significant improvement and take the b
axis as the likely spin direction. This is the same moment
direction as found in the ErBa,Cu;0; system.*!> The sa-
turated magnetic moment is then (3.86%0.15)uz. The
experimental intensities and some calculated values are
listed in the Table 1.

Equations (2) and (3) show that the intensity of the
magnetic Bragg peaks is proportional to the square of the
ordered moment {u,), which is the order parameter
(staggered magnetization) for the phase transition. The
intensity of the (;01) peak as a function of temperature is
shown in Fig. 5. The intensity does not change much un-
til the temperature is close to the Néel point, and then it
drops quite rapidly. This sharp drop is typical of a 2D-

TABLE 1. Observed magnetic intensities for ErBa,Cu,Og,
compared to the calculated values assuming the spins point
along the b or ¢ axes. The assumption of the b axis being the
easy direction provides a much better description of the data,
and yields a low-temperature moment of {u, ) =3.86u5.

(hkl) Lo

I, (b axis) I, (c axis)

($01) 419+13 381 401
(+03) 224+13 236 156
(105) 93+10 133 51
(112) 33+16 36 154
($14) 37+14 45 111
($09) 27£17 49 7
(116) 18+16 47 68
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FIG. 5. The magnetic intensity vs temperature for the (%01)

peak of ErBa,Cu,O;. The Bragg intensity is proportional to the
square of the sublattice magnetization (order parameter).

like phase transition as recently observed® in
ErBa,Cu;0,;. The Néel temperature is determined to be
T=0.49 K.

At low temperatures most of the magnetic scattering in
the system is contained in the Bragg peaks. As we raise
the temperature the Bragg intensity will decrease (as il-
lustrated in Fig. 5) at the expense of creating spin-wave
excitations. If the magnetic interactions are highly aniso-
tropic as expected, then the lowest energy spin waves will
occur in the vicinity of the rods as shown in Fig. 2, and
hence we should expect the (energy-integrated) scattering
along the rod to strongly increase as the Néel tempera-
ture is approached. Figure 6 shows the magnetic scatter-
ing observed just at the Néel point, and reveals a skewed
line shape characteristic of 2D behavior. The solid curve
is a fit to the 2D theory as explained in Sec. II, and the
theory provides a good description of the data at this
temperature. Hence we conclude that the magnetic in-
teractions along the c axis (J,) are much weaker than the
interactions within the a-b plane (J,,). This will be dis-
cussed further in Sec. V.
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FIG. 6. Magnetic scattering intensity for ErBa,Cu,O;5 at
T=0.49 K, just at the ordering temperature. The solid curve is
a fit to the 2D theoretical scattering function.
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B. DyBa,Cu,O; system

The magnetic diffraction pattern for the DyBa,Cu,Oy
system was obtained in an identical fashion to the
ErBa,Cu,O4 sample; data at high temperatures were sub-
tracted from the data obtained at 50 mK. Two portions
of the diffraction pattern are shown in Fig. 7. Surprising-
ly, the scattering at relatively small angles shows a single
2D-like peak, even though we are well below the Néel
temperature of ~0.9 K (see below). A second 2D mag-
netic Bragg peak at higher scattering angles is shown in
the bottom portion of the figure. The solid curves are
again a (single) fit to the 2D theory, assuming long-range
order within the a-b plane, and no correlations along the
c axis direction. These two peaks correspond to the (14
and the ({3) rods of a 2D antiferromagnetic spin
configuration, shown in Fig. 8. Note that in this 2D
structure nearest-neighbor spins are aligned antiparallel,
rather than having chains of spins as was the case for the
ErBa,Cu,O; (and ErBa,Cu;0-) system (Fig. 4). The low-
temperature ordered moment was obtained by integrating
the magnetic scattering over the angular range corre-

DyBaLu g
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FIG. 7. Magnetic scattering intensity for DyBa,Cu,O4 at
T=0.05 K. The solid curves are the result of a fit to the
theoretical scattering expected for a purely two-dimensional
magnetic system; top—the scattering profile for the (1) peak;
bottom —the scattering profile for the (13 ) peak.
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FIG. 8. 2D magnetic spin configuration for the Dy moments
within the a-b layers in DyBa,Cu,O;. Adjacent layers along the
c axis are uncorrelated even well below the 2D ordering temper-
ature.

sponding to one Brillouin zone, and then comparing this
intensity to the nuclear Bragg intensities. We obtain a sa-
turated moment of (5.3%0.3)ug, assuming that the spin
direction is perpendicular to the reciprocal lattice vector.
The c-axis direction is one obvious choice, which would
be consistent with what is known about crystal-field
effects in these materials,'® and with the spin direction
observed in the DyBa,Cu;0; system.!”

Figure 9 shows the intensity at the peak position for
the 2D scattering as a function of temperature. The tem-
perature dependence is typical for a magnetic phase tran-
sition, except that we are observing a 2D peak rather
than a 3D peak as in all the other known examples of 2D
magnets. Some rounding is observed in the vicinity of
the Néel point, which is typical for the scattering ob-
served in a powder, and we estimate the Néel tempera-
ture to be ~0.9 K.
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FIG. 9. The intensity of the scattering at the (+1) peak posi-
tion vs temperature for DyBa,Cu,Os.

ZHANG, LYNN, LI, CLINTON, AND MORRIS 41

V. DISCUSSION

The basic rare-earth magnetic orderings which have
been observed for the present RBa,Cu,O; materials are
quite similar to the RBa,Cu;0, systems, as might be ex-
pected since the structures are directly related. In the su-
perconducting phase both are orthorhombic, with the
2:4:8 system having one extra Cu ‘“‘chain” layer, and with
each layer of the rare-earth ions along the ¢ axis being
displaced by b /2 instead of being directly above as for
the 1:2:3 system. The influence of the crystalline electric
fields will of course be very important, and we expect the
overall splittings in the 2:4:8 systems to be comparable to
the 1:2:3 materials (~ 100 meV).!® For Dy and Er, which
have half-integral values of J = 1—25, each crystal-field level
will be (at least) twofold degenerate. Hence the ground
state will be magnetic, and likely will be representative of
an Ising spin. This is the primary reason why we chose
the Er and Dy materials to investigate first.

The results for the ErBa,Cu,Oy system are very similar
to ErBa,Cu;0,. Within the a-b plane the spin structures
are identical, and the Néel temperatures are also similar;
0.49 K for ErBa,Cu,O;4 and 0.618 K for ErBa,Cu,0,.}
The ErBa,Cu;0, has been shown to be a prototypical
S=1, 2D Ising system, and we would expect that the
overall behavior of ErBa,Cu,O3 would be very similar.
Indeed the rapid drop of the order parameter in the vicin-
ity of the Néel temperature is characteristic of a 2D Ising
system, and it would be interesting to study this system in
more detail if appropriate single crystals become avail-
able.

The overall behavior for the DyBa,Cu,O; system is
also similar to its sister compound DyBa,Cu;0,.!” The
magnetic structure within the a-b planes is again identical
for the two systems, and the Néel temperatures are simi-
lar; 0.9 K for DyBa,Cu,O; and =1 K for DyBa,Cu,0,.!”
However, the low-temperature behavior, namely that
2D-like behavior that is observed even at temperatures
well below Ty, was somewhat surprising.

To understand why this was unexpected, consider the
anisotropy of the magnetic interactions. We designate
J, to be the basic interaction within the a-b plane, which
will consist of possible exchange'® plus dipolar energies,
and J, as the energy (likely dominated by dipolar interac-
tions) of interaction along the ¢ axis. The crystallography
for the present 2:4:8 and 1:2:3 systems dictates that
Jap >>J,., and hence the systems should display 2D-like
behavior. By this we mean that for kT >>J,, there will
be no significant correlations in the system, and the mag-
netic (diffuse) scattering will be uniformly spread out over
the entire Brillouin zone. As kT —J,, strong correla-
tions will develop within the planes, while there will be
no significant (dynamic) correlations between layers (see
Ref. 3), and this will give rise to a rod of critical scatter-
ing. For J,, >kT >J, we will continue to see a rod of
scattering; above the ordering temperature this will be
critical scattering, while below the ordering temperature
this will consist of very low energy spin waves.

The question is, what determines the ordering tempera-
ture, and the crossover from 2D to 3D behavior? For
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systems which are strictly two-dimensional, of course,
only an Ising model (which we believe to be appropriate
for the present materials) will exhibit true long-range or-
der at finite temperature. However, even for the cases of
XY or Heisenberg spins, 3D long-range order will be in-
duced even for J.<<J,. In the conventional two-
dimensional systems such as K,CoF,,'” K,NiF, % and
more recently ErBa,Cu;0, (Ref. 3) [and of course the Cu
spins in La,CuQO,, Nd,CuO,, and YBa,Cu;04 (Ref. 1)],
the 2D ordering and the 3D ordering in fact occur at
(essentially) the same temperature. The reason for the
close proximity of the two transitions is that when the
system develops a static moment in the layers, then there
is an energy *J, A? between the layers, where A4 is the
average size of a domain in the layer. The minus sign is
for layers that are properly matched (e.g., antiferromag-
net configuration if J, <0) and the plus sign is for layers
that are mismatched. Thus even if the interlayer cou-
pling is very weak, there is an energy difference ~2J, 42
between the ‘‘correct” and the ‘‘wrong” spin
configurations, and this energy difference can be quite
large, since A is large. Hence as soon as 2D order is es-
tablished, an ordering should be induced along the c¢ axis,
producing 3D Bragg peaks. In the 2D magnets studied
to date, in fact, no difference has been discerned between
Ty(2D) and Ty (3D).

In the present DyBa,Cu,O; system we have a different
situation. Nearest-neighbor spins within the a-b plane
form a simple antiferromagnetic arrangement as shown
in Fig. 8. In the next layer up along the c axis, all the
spins are displaced by b /2. For the closest spins between
layers, we will have two + spins, and two — spins, and
the net interaction is zero by symmetry.?! Next-neighbor
interactions also cancel, and in fact all the (point) interac-
tions sum to zero by symmetry. Hence this is an example
of a fully frustrated spin system for the interlayer cou-
pling. Note that in the ErBa,Cu,Oyg system this cancella-
tion does not occur because of the chainlike ordering in
the a-b plane, while in the 1:2:3 systems it does not occur
because adjacent layers are not displaced by b /2. Final-
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ly, we note that if the general similarities between the
magnetic structures of the 1:2:3 and 2:4:8 systems hold
for the remainder of the RBa,Cu,Oz materials, then a
similar cancellation of the net interactions along the c
axis can be expected since most the RBa,Cu;04,, com-
pounds which have been investigated so far! exhibit the
same Dy-type spin configuration. A possible exception to
this trend may occur for Gd, where the anisotropy is
small and an Ising model may not be appropriate. The
spin frustration in the 2:4:8 system might then be alleviat-
ed by forming a noncollinear structure. Neutron scatter-
ing experiments are planned in the near future to investi-
gate this possibility.

In 2D systems like K,NiF, and K,CoF,, the nearest-
neighbor interactions are comparable in all three direc-
tions, but the magnetic structure causes a similar cancel-
lation as for the DyBa,Cu,Oy system under consideration
here, yielding an effective interaction (via higher order in-
teractions) along the (tetragonal) ¢ axis which is weak and
rendering the systems 2D-like. In the DyBa,Cu,Oy sys-
tem the basic (dipolar) interaction along the c axis is itself
much weaker than in the a-b plane, and then the cancel-
lation of interactions produces a net c-axis interaction
which is extremely weak. Hence in this material the
effective coupling between layers relative to the in-plane
coupling is much smaller than in any other known sys-
tem, and it appears that the 2D and 3D ordering temper-
atures are very different. We remark that with single
crystals it is much easier to differentiate between the 2D
rodlike scattering and any 3D magnetic Bragg peaks,
since they occur at very similar scattering angles but
different crystal orientations. It should be particularly in-
teresting to study the critical phenomena of this material
in detail when suitable single crystals become available.
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