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We investigate the Josephson tunneling between a conventional and an unconventional supercon-
ductor via a Ginzburg-Landau theory. This approach allows us to write down the general form of
the Josephson coupling between the two superconductors, and to see which terms are forbidden or
allowed by spatial symmetries. The time-reversal symmetry is also considered. We discuss the
current-phase relationships, magnetic, and ac effects if we just include this direct coupling to the un-

conventional superconductor. In addition we consider the Josephson coupling between two short-
coherence-length superconductors, extending the work of Deutscher and Muller (DM) to a finite-

current calculation. We find that the critical current is suppressed below the DM value due to the
fact that the coupling between the two superconductors across the junction depends on the phase
difference and hence the current itself. Finally we investigate the possibility of the proximity effect,
in particular the possibility that the conventional-type pairing is induced and hence coexists with

the unconventional pairing near the junction. This would give the dominant contribution to the
tunneling current if the direct tunneling to the unconventional pairs are suppressed for some reason.
We point out that there is no possibility of dissipationless tunneling above the transition tempera-
ture of the unconventional superconductor. Even in the case in which the unconventional super-
conductor is below its transition temperature, we find that, for the possibility of a dissipationless

current, it is crucial to have a coupling between the induced s wave and the unconventional super-
conductor that depends on their phase difference, which allows the conversion of the supercurrent
from one type to the other. The behavior of this current, in particular as a function of temperature,
is discussed. We also discuss the magnetic and time-dependent effects of the junction in the pres-
ence of this proximity effect. We see that, while some of these remain unaffected, some, in particu-
lar the time-dependent processes, are affected in a rather nontrivial manner.

I. INTRODUCTION

Heavy-fermion superconductivity' and the more re-
cently discovered high-temperature superconductivity
have stimulated studies in unconventional superconduc-
tivity. Besides the possible nonphonon mechanism for
the superconductivity itself, there is suggestive evidence
that in these materials the electrons condense into an un-
conventional pairing state, with the gap function of a
lower symmetry than that of the underlying lattice.
Various eForts have been made on both how to distin-
guish experimentally such a nontrivial pairing state from
the conventional ("s-wave" ) superconductivity, and how
to identify which state, allowed by the symmetry
classifications, actually exist. In the present paper, we
would like to expand on one of the observables, namely
the Josephson tunneling of electron pairs.

Pals, von Harington, and van Maaren have suggested
that there should be no pair tunneling between a singlet
and a triplet superconductor. However, later it was
shown that this is not true when spin-active barriers are
considered. ' " The nonconservation of (pseudo)-spin,
i.e., that the total spin S of a Cooper pair is not a good
quantum number in the presence of such a junction, al-

lows Josephson coupling between a singlet and triplet su-
perconductor. By the same argument (when the crystal
symmetry is not considered), since the total angular
momentum L of a Cooper pair is not conserved in the
presence of the junction, the consideration of L does not
forbid coupling between superconductors of diFerent L
states.

It is clear from the last paragraph that a useful con-
sideration is that of the symmetry operations that leave
the junction invariant. Only these operations can allow
us to assign "good" quantum numbers for the tunneling
junction and thus consider the possible Josephson tunnel-
ing between them.

This idea has been discussed by Kurkijarvi' and by
Rainer and Sauls" in the quasiclassical formalism. In the
present paper we expand on this idea using the phenome-
nological Ginzburg-Landau (GL) approach which allows
us to easily write down the possible Josephson couplings,
and to deduce the corresponding current-phase relation-
ships.

The Ginzburg-Landau approach for superconductivity
in the bulk material' is well known. The main idea is to
write down the most general terms of the free energy al-
lowed by the underlying symmetry. Such a consideration
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for superconductivity leads to the following well-known

expression [f=b,(r) exp[i/(r)]:

= —2th, L(x =0 )b,z(x =0+) cos(Pz —
PL ), (1.2)

where b,t, b,„are the gap parameters, and Pt and Pz,
their phases on the left and right of the junction, respec-
tively (see Fig. 1}. Minimization of the total free energy
then gives us the current-phase relationships. We shall
consider other possible terms in FJ in Sec. II. A term of
the form given in (1.2) gives rise to the well-known
Josephson tunneling effects between two ordinary s-wave
superconductors. In Sec. IIIA we discuss some special
effects if the coherence length(s) of the superconductor(s)
involved is short. The coupling (1.2} also leads to the
proximity effect, and perhaps also the controversial
proximity-induced Josephson tunneling'7 ~ (PIJT). This
arises when, say, the left, strong, superconductor is al-
ready in the superconducting state whereas the right side
is not. Thus, in Eq. (1.1) aL (0 and az )0. It is energeti-
cally favorable to have hz induced in the vicinity of the
junction, despite the fact that in the bulk there is no su-
perconductivity allowed by itself. We shall discuss this in
Sec. III B.

Even more interesting is the possibility when the s-
wave superconductor on the left induces an s-wave pair-
ing in the right superconductor, which has its instability
in some other pairing state which may also couple to the
left, via terms also of form (1.2) (or its generalization, see
below). We find that in this case, the supercurrent can
tunnel both by the induced term and the direct coupling
between the two superconductors; with the former
transformed into a supercurrent solely carried the non-
conventional pairs away from the junction. Crucial in
this respect are the free-energy terms that couple the in-
duced s wave and the unconventional pairs which depend
on their phase difference. Thus, the phase angle of the in-

y

B
FIG. 1. The configurations of the Josephson junction. The

magnetic field will be introduced in Sec. IV.

where f(r) is the relevant order parameter, a, b, K are
phenomenological coefficients, a is negative (positive) for
the temperature T below (above) the critical temperature
T, . Similar considerations allows us to easily write down
the possible (Josephson-type) coupling term between two
(conventional) superconductors connected by a junction
(taken to be the plane at x =0)'

FJ= t [gt (x—=0 )g„(x =0+)+c.c. ]

duced s wave will be a function of that of the p- or d-wave
pairs. Depending on the temperature, the signs and mag-
nitudes of the various coeScients, the two types of tun-
neling can assist or compete with each other. These shall
be discussed in Secs. III C and III D.

In Secs. IV and V we turn to the magnetic-field effects
and the ac effects. We find that a possible SQUID ar-
rangement (suggested first by Geshkenbein and Lar-
kin ' ) can be an unambiguous test for odd-parity triplet
pairing, though with some complication in the presence
of the PIJT mentioned. In some particular orientation,
where by symmetry considerations some of the Josephson
tunneling terms vanish [see (2.3) below] we shall see that
this test fails. In this latter case there are characteristic
differences from the conventional case, such as in the field
dependences of maximum supercurrent through a planar
junction, which are not complicated by the presence of
the PIJT. However, for the time-dependent effects, we
shall see that there are substantial complications in the
presence of PIJT. The fact that there are two supercon-
ducting order parameters leads to complications in the
dynamics of the junction.

The use of Josephson tunneling as a probe, however, is
not without its disadvantages. It is, in particular, a probe
of the order parameter only at the vicinity of the junc-
tion. Phenomena such as surface pair breaking and tex-
tures which may complicate the interpretation of a
Josephson experiment are discussed in the final section.

II. SYMMETRY CONSIDERATIONS

(k)=g„(id(k) o )0. (2.1b}

for singlet and triplet pairing, respectively, for the order
parameter on the right [i.e., we consider given f(k) or
d(k)] and analogously for the order parameter on the left.

~R LWhen convenient we shall write ftt t =b,R Le
' and

shall call Pz, PL the phases of the order parameters. An-

gular momentum is not a good quantum number in the
presence of the crystal symmetry. We shall loosely refer
to (2.la) as s or d wave according to whether f (k }has the
same symmetry as the crystal or not, and refer to (2.1b)
as p wave.

Since the free energy must be invariant under global
gauge transformation, the tunneling terms can only in-
volve P+QL, or its integral powers and their complex

In this section we use symmetry considerations to
deduce the possible terms of the Ginzburg-Landau free
energy which couple the order parameter at the vicinity
of the junction and do involve the phase difference be-
tween the two order parameters. Using this we discuss
the possible current-phase relationships for the di~ect
Josephson tunneling between a conventional (L) and an
unconventional (R) superconductor. Both spatial and
time reversal symmetries will be considered.

For definiteness we always consider the unconventional
pairing, if any, with a particular fixed orientation, and
write the gap matrix as

(k)=f„(io~)f(k) (2. la)

or
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conjugates. Thus, in general,

FJ =F~(p)

with

F2($)=FJ(P+2n ), (2.2a)

where y=yR y„—and hence by J =(2rX}(aF,ray),
where J is the current,

J(P)=J(P+2n ) (2.2b)

and is periodic in P with period 2n.
The most general form of the tunneling term in the

Ginzburg-Landau free energy, a real quantity, is of the
form

FJ= tiitLQ—R+ c.c. 22 PL QR+ c.c. (2.3a)

When f (k) and d(k) are real up to an overall phase
factor (independent of k), then the time-reversal symme-

try operation transforms the states back to themselves,
except with the phase factor pR I ~ pR L (see t—he Ap-
pendix). In this case then, since the free energy must be
invariant under such an operation, and therefore it must
be even in the phase difference p =pR

—pL.

Fg(p)=FJ( —p) . (2.4a)

In this case then, all t „t2, . . . , are real and we have

J(P)= —J( —P) . (2.4b)

Similar conclusions apply when the state is complex, but
when there exists a spatial symmetry operation, say S,
which when combined with the time reversal, does leave
the states invariant, then, in this case, we have the rela-
tion (see the Appendix)

FJ($)=F1(—/+a),

J(P)= —J( —P+u),

(2.5a)

(2.5b)

where a is some constant depending on S. By redefining
the phase of gR [by multiplying f (k) or d(k) by a com-
plex number of unit magnitude], we again obtain (2.4),
and hence, in this new definition, t, , t2, . . . , is again real
to all orders.

In most cases, however, such an operation S does not
exist. In those cases (2.3) is the most general form (we
can, of course, get rid of one of them, say, Imt, , by
redefining the phase of b,R), and the energy of junction is
not necessarily even, and the current not necessarily odd

where, in general, t, , t2, . . . , can be complex; and even
when real, not necessarily positive or negative. All terms
are up to factors of hz and 61 which amounts to temper-
ature dependent t, t2, . . . . Omitting these factors (2.3a)
reads

FJ = —hR b,L [ Re( t, ) cosp —Im(&, ) sing]

—52R b, 2L [ Re(t2 ) cos2$ —Im(t2 ) sin2$]—

(2.3b)

FJ(p) =FJ(p+n ),
J (p) =J(/+ A�)

(2.6)

since the symmetry operations amount to
pR~pR+~, pL~pL. The energy and current are
periodic in P with period n and all t with j odd vanish.
Explicit examples include, for illustration, polar phase
zk, with the tunneling plane normal in the x direction for
any crystal with reflection symmetry about the x-y plane
or x-z plane; the state (k„+ik ) with the tunneling plane
normal along x when z is a fourfold rotation axis. The 3
phase, d(k)=d(m+in). k with l=mXn parallel to the
boundary, with a reflection plane of symmetry perpendic-
ular to I, and d lies in (but not perpendicular to) this syrn-
metry plane.

The extension of these discussions to other cases is ob-
vious. For example, when there exists a threefold rota-
tion axis along the interface normal (in suitably oriented
hexagonal or cubic crystal), and if the state involved
transforms into itself up to a factor of e*' ', then FJ
must be invariant under P~P+(2n/3):.

y
25, 26

Thus, note that time-reversal consideration alone does
not forbid tunneling among s, p, or d waves (see also the
Appendix).

Next we consider spatial symmetries. For this we can
just concentrate on the unconventional superconductor.
Since our probe (L) is assumed to be s wave and impuri-
ties in the probe introduce mixing among the Bloch
waves, for practical purposes the underlying crystal sym-
metries are irrelevant for our probe, or any s wave super-
conductor. Since the systems (the potentially unconven-
tional superconductors} involved are believed to have
strong crystal-field effects, we shall only consider sym-
metries of the underlying crystals. The operations of par-
ticular interest belong to the subset that (i) leave the junc-
tion unchanged, and for the moment we also confine our-
selves to those which (ii} leave the state invariant, i.e.,
leave the order parameters invariant up to a phase factor.
In the case where the operations satisfying the former re-
quirement does not exist, then there is no restriction, and
all the terms listed in (2.3) can exist.

When a crystal spatial symmetry that leaves the junc-
tion invariant does exist, we have to find whether any
such operation changes the order parameter only up to a
phase factor. This can be done easily by going through
the symmetry group of the crystal and the group repre-
sentation of the relevant order parameter and the charac-
ter table. (We shall defer the case where the operations
map the order parameter into different configurations. ) If
all such operations leave the order parameter invariant
then, again, no restrictions will apply. However, oc-
casionally some operations change the phase of, say pR
but not fL, and thus forbid the term t, . For example,
when there is an operation that changes the sign (i.e., add
~ to the phase factor) of one of the order parameters, say
R, but not the other (L), then, in this case, FJ is invariant
under P~P+n,
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F~(p) =F1

J(P)=J P+
3

(2.7)

for tunneling along the cubic diagonal x+y+z. Similar-

ly, when the analogous fourfold rotation of the above ex-
ists, then

and all t with j not a multiple of 3 will be excluded. The
energy and current are periodic in P with period 2n /3.
Explicit examples included the state

(xk +k )+e' '(xk +zk )+e ' '(xk + k )

leave the state invariant [i.e., (2.5)] if we have used an odd
number of these, or just a restriction that we have already
obtained by spatia1 symmetries alone if we have used an
even number of these operations. We have thus exhaust-
ed all restrictions.

Though a symmetry operation of the crystal that does
not leave the state invariant does not put restriction on
the current-phase relationship on a given junction but re-
lates the physics of different junctions, can occasionally
give some interesting results. An interesting example has
been considered by Geshkenbein and Larkin. ' Two
junctions, inversion related, with one phase odd and the
other even in inversion, the energy of the junctions are re-
lated by, for the same P,

F, (p) =F2(m+p), (2.9)

Fg(P) =Fg

(2 &)

whereas we can always choose F to be minimum at /=0
for one of the junctions, using the same definition for
b. .. it will be minimum at P= n for the other.

For the case with the even phase (singlets) the same
consideration leads to

and the energy and current are periodic with period n /2
Examples include an A phase with 1 and d along the sur-
face normal which is a fourfold rotation axis. In this case
all t with j not a a multiple of 4 vanish.

Before proceeding further we make contact with the al-
ternative way of representing the order parameter, name-
ly as a tensor A in spin and orbit space for p and orbit
space alone for d wave. In the case of tunneling, the nor-
mal to the tunnel junction provides a spatial vector. If
there is no spin-orbit coupling, the spin index of the order
parameter of a p wave can only be contracted with itself.
Thus, there is no invariant first order in A, accordingly t,
vanishes identically. If there is spin-orbit coupling, one
cannot distinguish spin and orbit space by symmetry.
Furthermore, spatial indices can be contracted with the
surface normal. A p behaves identically, as far as symme-
try is concerned, with a corresponding d wave with spin
vectors replaced by the appropriate spatial vectors' '"
(with the exceptions of improper rotations, which give a
sign difference). The results discussed above for tJ. can
also be obtained by this consideration.

A similar argument applies to the case with both L and
R unconventional; for example, if both L and R are odd
under a reflection symmetry of the junction,
Pa L ~Pa L+~, then there is no restriction on (2.3),
whereas if one of them is odd and the other even, (2.6) ap-
plies.

So far we have confined ourselves to the case that the
symmetry operations leave the states invariant. For
those operations which do not, they simply give us a rela-
tion between the physics of two (inequivalent) junctions
(cf., transport across the He A Binterface). Sin-ce a
group contains all inverses of its elements and the prod-
ucts of any two of them, any restriction on a given junc-
tion by these symmetries has already been included by
the consideration of some other symmetries above. By
the same reasoning, the consideration of the combination
of time reversal and various spatial symmetries wi11 be
contained in the particular one combination that does

F, (p)=F 2(p) . (2.10)

where m is an intermediate state and E its energy over
the ground state. It can easily be checked that this term
vanishes when the appropriate symmetries discussed
above (2.6) exist. In this case there is no contribution
from second-order perturbation theory and t, vanishes.
One may easily convince oneself that t arises as the
2jth-(and possibly higher) order perturbation theory of
the tunneling Hamiltonian and can, in general, exist un-
less syrnrnetry forbidden. Once should notice that by this
argument we see that when there is no special symmetry
restriction, in genera1,

t, hzhL ))tzhzhL. )). . . .

Some comments on the present experimental status are
in order. For the heavy-fermion superconductors
coherent tunneling has been observed in CeCu2Si2-Al
junctions, with the critical current J, comparable to that
expected from two s-wave superconductors assuming a

An interesting consequence of the difference between
(2.9) and (2.10) will be explored in Sec. IV.

So far we have discussed the tunneling coupling com-
pletely phenomenologically. One may, of course, resort
to microscopic theory. We shall confine ourselves to the
simplest calculation, which views the Josephson coupling
as the "anomalous" term in the perturbation theory of
the one-particle tunneling Hamiltonian

H) = g Tk ckc + C. C.
k,p

Here and below we shall simplify our notation by drop-
ping all spin indices. The lowest-order Josephson cou-
pling arising from the terms in the second-order pertur-
bation theory:

—g TkpT k pckcp c kc ~+ c C.
~m)(m~

E
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Bardeen-Cooper-Schrieffer (BCS) gap magnitude for
CeCuzSiz. The UBe» experiments are the ones which
produced the so far controversial proximity effects as
mentioned previously, whereas for UPt3 only null effects
have been found. Microscopic theory has shown that
J, for s-p coupling, when allowed in the lowest order [see
(2.3)], is expected to be much smaller. Hence, unless
CeCuzSiz has a gap magnitude substantially larger than
the BCS value, we can conclude that it is an s or d-wave
superconductor. For the UBe», it is claimed that there is
a Josephson current, increasing with decreasing tempera-
ture, even when the temperature is above the UBe» tran-
sition temperature, ' and this tunneling current goes
through a maximum at that transition temperature and
then decreases with decreasing temperature. ' This was
interpreteted by the original authors as tunneling via the
proximity-induced s-wave order parameter, which is
suppressed by the developing p wave below the transition
temperature of UBe». We shall point out that the neces-
sity that the tunneling current has to pass from the in-
duced order parameter to something else nondissipatively
is left out in these references. A more careful analysis
leads to behavior at odds with the experiment. Further
work, especially on single crystals, will be needed. The
null effect in UPt3 or a very small J, is, of course, sugges-
tive of a nontrivial, especially a p-wave, pairing.

The situation for the high-T, materials is just as incon-
clusive. Deutscher and Miiller, Esteve et al., "'as well
as Kuznik et al. " ' have suggested that the Josephson
I-V characteristics and Shapiro steps observed are due to
coupling internal to the polycrystal, and, as it will be
clear below, this gives no information on the pairing state
of the superconductors (in contrast to some other pub-
lished reports). However, Tsai et al. have maintained
that their measurement, especially J, as a function of
temperature, is due to coupling between their Nb probe
and the 1:2:3compound. They suggested an s-wave pair-
ing to explain their result, but as we have seen, their ex-
periment only suggests that the lowest-order coupling ex-
ists. Note also that due to the short-coherence length of
the material, the critical current J, for a spin-active bar-
rier if the 1:2:3 is a triplet, is expected to be comparable
to that if it is a singlet.

Josephson current. In Sec. III C we discuss the Joseph-
son coupling between the s-wave superconductor and an
odd-parity (p) superconductor, in particular, the indirect
coupling via the induced s wave which is also present on
the right due to the s wave on the left. In Sec. III D we
discuss the corresponding cases for the nontrivial even-
parity (d-wave) symmetry.

A. The case of short-coherence length

In this section we consider the coupling between two
conventional, albeit small, coherence-length supercon-
ductors. Deutscher and Miiller (DM) have argued that
the suppression of the order parameter near the surface is
important in the case of short-coherence length and ob-
tained a rapid fall in the order-parameter temperature
dependence near the junction, especially near T, . Our
discussion below is an extension of this in that the further
suppression of the order parameter near the surface by
the current is explicitly included.

We shall consider the case where the two superconduc-
tors on the two sides of the junctions are identical. The
free energy is

F =FL +Fz +FJ+Fs ~ (3.1)

where FJ and Fz are the bulk free energies of the super-
conductor on the left and right, respectively [Eq. (1.1)].
The Josephson coupling Fz is as in Eq. (1.2). Here we in-
troduce the pair-breaking term

Fs =w [ I q, (0)I'+ I y„(0)I'] . (3.2)

FJ and Fs together can be considered as symmetric and
antisymmetric combinations t+~P (L0)kf„(0)~, where
w = t+ +t, t = t —t+. If t+ =0 then the order pa-
rameter at zero current that minimizes the free energy is
constant in space. In order that the order parameter is
suppressed rather than enhanced at the interface, t+ ~ 0
and hence w ~ t. As is obvious from (1.2) one can always
redefine phase angles such that t ~ 0. Thus, we shall con-
sider w ~ t &0 in the following. The order parameter for
the left can be obtained from the right by symmetry, and
we shall thus concentrate on the right and drop sub-
scripts R. Minimization of the free energy gives

2EA = const= —j, (3.3a)

III. ORDER PARAMETER
AND TUNNELING CURRENT Kb, +2th, (0) sing=0,pd+

x=0 (3.3b)

In this section we study the detailed consequences of
two principal concerns of this paper: the short-coherence
length and the symmetry-determined form of the Joseph-
son free energy as discussed in Sec. II. We shall first con-
sider the case of two s-wave superconductors (Sec. III A)
where we shall investigate some consequences of a short-
coherence length. The rest of the subsections are con-
cerned with the proximity effect. We first consider the
case where only the left superconductor is below the criti-
cal temperature (Sec. III 8). We discuss the proximity-
induced superconductivity for x &0, in particular, the
possibility (or rather the absence) of a proximity-induced

—
~a ~b, +2bb +—b,

K d$
2 dx

2
K d 6

dx
=0, (3.3c)

—K +2( w t cosP )b,(0)—=0,dA
dx x =0 (3.3d)

1 d 6 2( w t cosP)—
Adx E (3.4)

which defines the extrapolation length in the spirit of Eq.

where /=[PL(0) —Pz(0)]. Equation (3.3d) can be writ-
ten as
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(1) of DM, including the efFect of the current. Note that
in our case this length depends on P and hence the
current. For convenience we rescale the variables using
the equilibrium gap and the coherence length, thus
defining

limits (i) w t—»&aK, here

f (p)
+a@/2

w —t

and (ii) w t—(w (&&aK, here

(3.12a}

' 1/2

b(x)= f (x),
2b

(3.5)

y =x /g( T)= 2a
K

(3.6)

Substituting (3.3a) into (3.3c), the resulting equation
can be integrated to give

f — (f2 f2)(f2+2f2 2)1/ 2

dy 2f
(3.7)

(j/jo)'= f„(1 f'„)— (3.8)

and jo —=2(a b,o2.

Eliminating cosP via (3.3b)

df 2

aK

in (3.3d), we have, at x =0,
' 1/2

(j/j, o)

f4 f,w —t 1—
dy 0

where f„ is the gap in the bulk in the presence of j, satis-
fying

f(0)=1 . (3.12b}

j,=j,d'(0)'

and (3.10}becomes

(3.13)

These reproduce DM's result in our language. Case (i) is
appropriate when one is very close to T„the temperature
range being snore significant when the (zero-temperature}
coherence length is short and the pair-breaking (w t)—is
large. In this case the order parameter near the interface
will be severely suppressed. In the opposite limit this
suppression can be ignored.

Now we go to the case with a current. The presence of
j changes the relative phase p and hence the slope of the
magnitude of the order parameter [see (3.4}], and hence
the magnitude of f{0) itself is current dependent. As
remarked, a current depresses the effective t and hence
f(0) [see (3.10)]. These statements are self-consistent
since a decreasing f (0) makes the square root in (3.10}
smaller and decreases the effective t. At the critical
current the square root vanishes, i.e.,

{3.9) &aK/2[1 —f (0)']=wf (0), (3.14)

Here j,o is the critical Josephson current without gap
suppression at the junction, i.e.,j,0=2th, o. (See below for
the choice of the sign in form of t.)

To find the critical current one has to find the max-
imum j such that the simultaneous solution to (3.7) and
(3.9) becomes impossible for higher values of j. If the
square roots are well defined, then (3.7) and (3.9) together
determine f (0), and substituting back to (3.7) allows one
to obtain f (y) for all y. Thus, the condition for the ex-
istence of the solution is just that the square roots are
well defined. Notice that if there were no junction, (3.7)
still would apply and determine the critical current in the
bulk corresponding to f„=—', and (j/jo) =

—,', . Since we

are interested in the case where the critical current j, is
determined by the junction, we assume that t is small
enough that (j, /j o

)2 &( ~4, . Thus, f„=1 for our pur-
poses. f (0) thus satisfies

v'aK/2[1 —f (0) ]= w t 1——1/2
(j/j, o)

f (0)
f (0)

(3.10)

v aK/2(1 f )=(w —t)f . — {3.11)

To see the physics better, we shall consider only the two

Notice that, as remarked, at j=0, w suppresses f (0), and
t ( & 0) has the opposite efFect. Increasing j decreases the
effective t in (3.10) and thus suppresses f (0). These argu-
ments justify the choice of the minus sign in front of t in
Eq. (3.9).

First we consider the j =0 case. Equation (3.10) reads

and hence for case (i)

f(p)aK /2
W

whereas for case (ii)

f(0)=1 .

(3.15a)

(3.15b}

=2th, o[f (0)i o]2
W

(3.16)

i.e., it is reduced from the value 2tho by two factors, one
at zero current, and one extra factor in the presence of
the current. Notice that since both 60 and f{0) are
linear in T —T, [see (3.15a)], j, ~(1—T/T, ) near T, .
For case (ii},

,o=2tao (3.17)

and is just the standard value.
Thus, we have extended DM's result: For the short-

coherence-length superconductors, the critical tunneling
current is reduced due to the suppression of the gap near
the interface. This magnitude of the gap is further re-
duced in the presence of a current. For the long-
coherence superconductors these considerations are not
relevant.

Notice that f (0) is suppressed below its zero-current
value in case {i), whereas it is unafFected in case (ii). The
critical current is therefore, for case (i),

aK
A=Ao

22w
2
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B. The S-N case

Here we discuss the case where the order parameter on
the right is induced by the proximity effect, and discuss
the controversial "proximity-induced Josephson tunnel-
ing effect." Our viewpoints are similiar to a very recent
paper by Geshkenbein and Sokol, and we shall only
make some further comments.

The relevant terms of the GL free energy are as those
in the last subsection except now az )0 and we can ig-
nore the b~ term. The continuity equation of the current
requires

2—Ka h~ VPz =J', = const . (3.18)

+D &R~z+ ~~(V4R)
2

(3.19)

where FL is the free energy of the bulk superconductor at
the left. In this case we are able to "minimize F under
the constraint of a constant current j," by using the
Lagrange mujtiplier and transforming to

It is intuitively clear that, due to az &0, h„must de-
cay to zero as x increases. However, if j, is nonzero, this
causes problem since then Vga has to increase to infinity
to conserve the current. This solution is simply not phys-
ical. This is just the representation of the fact that for an
equilibrium state (obtained by the minimization of the
free energy, and hence no dissipation via evolving to a
higher entropy state) the only current that can fiow in the
system is a supercurrent. Since hR ~0 as x ~ ~ this is
simply impossible unless j,=0 (and Ps =

PL ).
Thuneberg and Ambegaokar ' (TA) considered a

different configuration; they consider a slab, of thickness
D, of the "weak superconductor" which we have called
R, in between the "strong superconductor" L and a nor-
mal conductor N for x )D. Here D is chosen to be much
smaller than the coherence length of R, defined to be

gz =(2a~/Kz )' . Hence, we can ignore the variation of
the magnitude of hz. They consider the conductivity of
N to be infinite, but putting this at a finite value does not
affect their microscopic calculation. In this case, the free
energy of the system L +R is

F =FL 2r AL b, R cos((t z
—P—L )

where R extends all the way to co, where the (dissipation-
less) critical current defined in the last paragraph is zero

In this case when the current is nonzero one necessarily
has an electric field or chemical potential gradient in or-
der that a normal current can How, and these fields have
nontrivial effects on the superconducting order parame-
ter. Since dissipation inevitably occurs this cannot be
discussed just within the equilibrium GL theory, in con-
trast to what was asserted in Refs. 17 and 20. To discuss
the problem, one has to include dissipative terms in the
theory (which includes the charge imbalance). In the
quasi-one-dimensional case this has been done in Refs. 22
and 33. Note that a finite voltage is needed for a nonzero
current. ' ' ' In fact, whether a steady state exists is a
nontrivial question.

Geshkenbein and Sokol further claim that the
pseudo-Shapiro steps, of V=hv/2e observed in the ex-
periment, ' can be explained in their theory. We shall
not go into that here.

C. The s-p case

Now we turn to a Josephson junction between two su-
perconductors, where the left one is the conventional
pairing but the right is not. We shall, in particular, con-
sider the complication that arises due to the proximity-
induced s-wave parameter on the right-hand side of the
junction. In principle the p/d wave on the right can also
induce p/d-wave parameters on the left. In view of the
fact that experimentally we usually use a stronger
(higher-T, ) s-wave superconductor as a probe, we only
consider the effect mentioned above. (In the p-wave case
where the lowest-order coupling [t& terms in (2.3)] exists,
the effect can simply be obtained by in the lowest order,
L ~R, p ~s, and s ~p; that, however, is not true for d,
see below. ) The situation is schematically shown in Fig.
2. We shall deduce below the various properties of the
critical supercurrent, in particular, its temperature
dependence.

We shall first consider the case for the junction be-
tween and s-wave superconductor on the left with a p-
wave one on the right. We ignore for simplicity the effect
on b L due to the junction, and simply take $L(x =0)=0.
When the r, term in (2.3) is allowed, the free energy is

6 =F — P(D)j . —
2

(3.20)

Notice, however, that in this case PIJT is allowed because
there is no dimculty of the constraint of a constant
current, since we are only imposing it in the normal re-
gion, X, and can be done by a suitable voltage. A11 the
current that is passing into the region R is a dissipation-
less supercurrent, and thus can be obtained by minimiza-
tion of a free energy. [Thus, this is an extra feature of the
simplified model, and if one wants to discuss the case
where R extends to infinity (a distance much larger than
g), one should not impose "the constraint of a constant
current" (cf., Ref. 20)].

The above scenario should be compared with the case

6p{x)

6p
~s Lk&{x)

0

FIG. 2. Schematic diagram for the L-p junction with a
proximity-induced s-wgve order parameter.
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F = —2t 61 3 cosP —2t, AI 6, cosP, +w, 6, +w 5

+ f dx a b +b b, + [(Vb, ) +b, (VP ) ]+a,b,, + [(VA, ) +h, (VP, ) ]

+y, b, ~b, , +yib, ib, , cos[2(P —it, )] (3.21)

0=2w, b,, 2t, hL cosP, —K, VA, ,
—

0=2w 6 2t hr cos—Pp
—K~Vb~,

0=2t, bL 6, sing, K, b, VP, ,
—

0=2t ALE sing K5 VP~—,

and in the bulk

(3.22)

(3.23)

(3.24)

(3.25)

0= —V(K, b, VP, )+2@id, b, sin[2(P —P, )],
0= V(Kp hp VPp

—
)
—

2 yah 6, sin [2(P —P, )],
(3.26)

(3.27)

0=2a, b,, —E,V 6, +2yi~s~p

+2yib, ,b, cos[2($ —P, )], (3.28)

0 2ap 5p +4' Letup Kp V Ap +2p ]Lag LaLp

+2yzb, ,h cos[2(tIi —
iIl, )] . (3.29)

We note that, if in the bulk terms we introduce
the vector potential A by using the rule
Vg~(V 2ie A/fi—c)g, and vary with respect to A, we
obtain —(eJ/c) which defines the number current J. In
this case we have

J = (K,b, ,VQ, +K—5 VP ) .=2 (3.30)

An inspection of (3.24) —(3.27) suggests that we define

J, =—K, b,,V$, ,
=2 (3.31)

=2 (3.32)

and call them currents carried by the s wave and the p
wave, respectively. Equations (3.24) and (3.25) are then

where the terms not under the integral sign are for x =0,
and we have assumed that the phase p is real [i.e., d(k) in
(2.1a) can be chosen to be real] and the yi term is even in

P —P, (since usually for complex p states there exist ei-
ther fourfold or threefold rotations in which 6 changes
by e —' ~ ' and e —+' ', respectively, and y, , y& terms
would be forbidden). Note that parity forbids terms of
odd power in 5 in the bulk. Moreover, we require that
the bulk has a second-order transition into the p state but
not the s state; accordingly a~ (0, a, &0, and y, & ~yz~,
and a similar argument implies w, & 0, otherwise an s lay-
er will appear automatically even when t, =0.

We can study the behavior by minimization of F under
the variation of b„hz, P„and Pz, under the constraint
that 5$~(+ ~)—+0. We get, atx =0

the continuity equations at the tunneling junction, each
tunneling current has the usual sine dependence. Equa-
tions (3.26) and (3.27), however, tell us that there is con-
version of one type of current to the other due to the bulk
term in F involving P —P„with the total current J being
conserved:

7' J=O (3.33)

This feature is true for all forms of GL free energy since
the analogous equations (3.26) and (3.27) are obtained by
variation with respect to the phase, and the GL free ener-

gy must depend on the phase difference alone: these
current conversion terms always occur in pairs of oppo-
site signs. Thus, while y, always suppresses the PIJT, yz,
when the phase angles are right, always assists (and is
essential for) it.

Since the current J in (3.30) is independent of x, and
since a, )0, hz ~0 as x ~~, the s-wave current which

passes by tunneling into x & 0 region must gradually con-
vert into p-wave current. By the same token, the pres-
ence of current J not only fixes the P, (0+ ) by continuity,
but P, and P~ together, i.e., for practical purposes at
equilibrium, P, is a function of P~ (or P„P are functions,
probably multivalued, of J).

Now we turn to the behavior of b, From (3.28) and
the inequalities a, &0 and y, & ~yz~ mentioned, we see
that V 6, is positive definite. This statement is entirely
general in the case where the free energy depending on 6,
only has terms at least in 5, : the terms other than V b,
which enter in (3.28) are proportional to b,, and have the
coefficients twice those of 6, in F, and by the condition
that there is no second-order instability of b „this is posi-
tive definite. Then for a physically meaningful solution
Vb, , (0 at x =0, we must have, by (3.22)

2t, b I cosP, & 2w, b, . (3.34)

Similar arguments as just given for the bulk guarantee
the generality of this type of condition: since the surface
form involving the right side of the junction alone forbids
the automatic appearance of b,,(here w, & 0), the coupling
to the left (here t, ) has to be of sufficient magnitude and
the right sign for ~b, , ~

to appear at x &0. This situation
should again be compared with that of the
superconducting-normal case discussed in the last subsec-
tion (see Ref. 21). 4, is again restricted to the right-hand
portion of the complex plane (if t, & 0) and passes
through b,, =0, where the phase angle P, is actually
undefined.

The various coefficients in (3.21) lead to a rich set of
phenomena. We shall consider them in a detail below.
Consider first the particular case ye=0, here the situa-
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Minimization with respect to b,, ad P, give the magni-
tude of b,, and the conservation of current [cf. (3.26) and
(3.27)]

tion is much simpler, in that the phases of P, and P have
no direct coupling. Equations (3.26) and (3.24) then im-
mediately imply P, is a constant and no current is carried
by the proximity-induced s pairs. P, is either 0 or n, ac-
cording to [by inspecting 3.21] whether t, & 0 or (0, re-
spectively. This is a trivial case where, in equilibrium,

P, =P, (P )=Oor m..
When yz&0 complex competitions between various

terms occur, we shall only briefiy indicate the behavior
for the dissipationless tunneling current. Due to the
large number of parameters, studying the properties of
the general solution of the set of the equations
(3.22) —(3.29) is quite a formidable task. Therefore, we
shall study a highly simplified model (in the spirit of the
TA model for PIJT above). We first consider the special
case t =0, as would be the case of a spin-inactive barrier,
and for simplicity drop w, and w . From the previous
discussion, we know that the tunneling current must be
first to the proximity-induced s wave, and then converted
into the p-wave current via the phase-coupling term in-
volving y2. We assume an effective length, D, in which
the proximity-induced s-wave order parameter exists and
thus one in which the conversion of the current takes
place. We take the effective order parameter in this re-
gion as E„P„E~,(t . The efFective free energy is

cosP,t, hl
D [a, +[y, +y2cos(2$~, )]&~ I

(3.36}

J =4t, b, Lb, , sin(P, )= —4Dy2b, ~h, sin(2$~, ), (3.37)

y25 sin(2$, )
tan(P, ) =—

I a~+ [yi+y2 cos(2&i„)]ti

(3.38)F= 2t, hLb, , cosP—,
+DIa b. +b b, +a, b, 2+y, b, E,

+y2b, E2cos[2(((} —P, )]) . (3.35) and so

where we have defined P, =4}
—P, . [In reality

6 =b, (x), P =P (x) are given by the minimization of
the total energy, as in (3.22) —(3.29), and bz(x —+ao )

should approach the bulk value: this is not represented
by (3.35) and therefore we should not minimize (3.35)
with respect to b, and P . Everything will be in terms of
these two variables, and the solution is representive of the
essential physics if the maximum current of the junction
is controlled by those in (3.37) (a reasonable assumption)
and when one is not interested in the true current-phase
relationship J(P )] Combining (3.36) and (3.37), one can
express P, in terms of P,

4t2 y2E~ sin(2$~, )

D [a, +[y, +y2cos(2$&, )]E~}+yak~ sin (2', )
(3.39)

Defining the dimensionless quantity j by

4t hL j
asD

Thus,

(3.40a)

critical current is a function of z and ~r ~
only. We shall

consider r ~ 0 in the following. For a given set of param-
eters and a given temperature (fixed b, and hence z), the
dimensionless critical current is given by j,=j,(p„z;r)
where Bj, /BP~& &

=0. After some algebra we find

J'=j(p „z,r)
rz sin(2$~, )

I 1+[1+rcos(2$&, )]z I +r z sin (2(7}z, )

(3.40b)

where the dimensionless variables r, z are defined by

(/r/ & I},
71

(3.41a}

2 p —g2 (()& )
Q

(3.41b)

One sees that j(p, z, r)=j (p+n/2, z, —r). Thus, the

2rz (1+z)
[1+2z+(1+r )z ]

The behavior of j, as a function of z [and hence appro»-
mately o: (1—T/T )'~ ] is sketched in Fig. 3. At z =0
(g =()},j,=(}since the bulk right-hand side cannot car-

ry any supercurrent. Thus, j, first rises as T is lowered
through T, the critical temperature of the p-wave super-
conductor [initially roughly o- z as the p-wave gap devel-

ops, see (3.37)]. It then goes through a maximum and
then decreases due to the fact that 6 suppresses the
magnitude of the induced s-wave order parameter (3.36)
(cf., Ref. 18). The position of this maximum (z ), being
a function of r, is as plotted in Fig. 4 and the value of the
maximum current j, again a function of r only, is plot-
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FIG. 3. The dimensionless supercurrent j, vs the dimension-
less gap, for various parameters of r.
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J =4t, ALE, sin(P, )+4t ht b,z sin(P ) . (3.42)

ted in Fig. 5. As discussed previously, j =0 at y2=0
and rises rapidly as 1yz1 ~y, .

We go on to briefly discuss the case with t %0. As-

suming that the lowest-order coupling is allowed, the free
energy acquires an extra term —2tzbt bz sin(Pz ) and the
total current is given by

FIG. 4. The value of the gap at which the current is a max-

imum as a function of z for a given value of r.

The minimization of F with respect to 5, and ((), give
(3.36) and the second equality of (3.37) and hence (3.38}
as before. Using P =tI), +P„and after some algebra,
one finds

4t2 rz sin(2$&, )

a,D [1+[1+rcos(2$, )]z ] +r z sin (2Pz, }

sin(P, ) I 1+[1+r cos(2$, ) ]z I rz sin(2$, ) cos( —P, )
+4t EL

( [1+[1+r cos(2$, )]z ] + r z sin (2P, ) )'
(3.43)

which is much more complicated then before. It is out of
the scope of the present paper to investigate in detail the
behavior of (3.43), but a nutnber of points are clear by ob-
serving this equation: (i) As a function of temperature,
again J =0 for a temperature above T . Just below T,
since the direct tunneling via the p wave is ~ x whereas
to the s wave it is o-z, the former dominates and the
critical current rises as (1—T/T )'~ . Depending on the
parameters it may then be taken over by the s-wave tun-
neling at intermediate temperatures. At T &( T the in-
duced s wave is suppressed and finally it is essentially via
the p wave alone. (ii) J is a function of t, and t If both.
are nonzero, for junctions of different transmittivity (with
t„t scaled by the same factor), the J are essentially en-
tirely different functions of P, [and therefore so is J(P)].
The phase at which J is a maximum (and hence J, ) is a
complicated function of t, and t . This should be con-
trasted with the case where J scales as t, (t ) if only t, (t }
exists (but not both), and junctions of different transmit-
tivity have the same J(P) except up to an overall scale
factor.

0.3

02

)max

01

00
0.0 0.2 0.4 0.6 0.8

72

1.0

FIG. 5. Maximum possible current for a given parameter r.
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We expect most of the essential behavior is represented
correctly qualitatively by the model above, but the
universal behaviors as a function of y'2/y& may not hold.
The above discussions are in direct contrast with that of
Ref. 18 (which left out y2}. We thus do not support their
interpretation of the observation of proximity-induced
Josephson effects in their experiment (see also Sec. V).

D. The s-d case

We now proceed to the case where the unconventional
superconductor has an instability into a d wave. In this
case there are many more possibilities. For example if
the d wave has a twofold rotation axis or reflection plane
with which the order parameter changes sign (e.g.,
k„—k in tetragonal symmetry), then the general form of
the free energy is the same as the p-wave one shown ex-
plicitly in (3.21), except p~d. Similar arguments can
easily be extended to other cases (keeping in mind that in
the p-wave case one always has an odd operation, namely
the inversion). In the last mentioned example, if the
direct pair tunneling into the d wave is of the same order
as that of the one into the p wave, it is virtually indistin-
guishable from the p-wave case. (This would be the case
if the barrier is strongly pair breaking, or very spin ac-
tive). The discussion on the p-wave case carries over
without changes.

There is one particular case where the tunneling would
behave rather differently, namely when the d wave
has the symmetry -2k, —k„—k . i.e., I"3+ (using the
notation of Refs. 5, 6, and 8) of cubic crystals or Yz in
spherical systems. In this case the bulk term

) 36 5d cos( (I(,
—

(t)d ) is allowed, and the s wave is induced

by the presence of the d wave ' (independent of the
sign of the coefficient of this term and whether the pair-
ing interaction in the s channel is repulsive or attractive).
Moreover, complicated gradient terms of the form
E,dVQ;Vgd+c. c. may also arise. It is difftcult to dis-
cuss in detail the behavior of J, as a function of tempera-
ture, as it depends on the relative signs as well as the
magnitude of the various coefficients. The effects of the
signs can best be illustrated by considering the minimiza-
tion of energy. t, d & (&)0 favors P„(t)d=0(m), whereas

3 & ( & )0 favors ((},—(()d
=n (0) Thus, the . presence of 1 3

may or may not help the existence of 6, . Anyway since
b, , induced in the bulk (and extends to infinity), it opens
up the possibility that the critical current always in-
creases as the temperature is lowered through Td even
when td=0. This behavior of J,(T) is similar to that be-
tween two s-wave superconductors (cf., Sec. V).

IV. MAGNETIC EFFECTS

Now we turn to the magnetic effects. An interesting

experiment is suggested by Geshkenbein and Larkin:
take a single crystal of the exotic superconductor, R, and
make two Josephson junctions with parallel orientations
with an ordinary superconductor wire, connected to form
a closed loop and thus forming a SQUID (Fig. 6). They
suggest that the maximum allowed critical current will be

S' p/d

FIG. 6. The experimental arrangement suggested by Gesh-
kenbein and Larkin. S (R) is the superconductor to be investi-
gated. Here S' stands for the induced s-wave.

at integral or half-integral flux quantum through the
loop, depending on whether the superconductivity in-

volved in R is even or odd under parity.
Here we examine whether the PIJT, discussed in Sec.

III, if present, will comphcate the picture. If the super-
conductivity in R is a conventional s wave, then no fur-
ther discussion is necessary. For the p- or d-wave cases
we note that, provided the two junctions 1 and 2 are of a
distance which is large compared with the coherence
length of the induced s-wave part, then we can apply
what we learned in the last section, namely that the phase
of the induced s wave, P, , will be a functional of the
current passing through the junction, or, equivalently,

J=J,+J, , (4.1)

where J, and Jz are, respectively, the current through
junctions 1 and 2. Allowing for a different maximum
critical current through the two (due to the difference in
areas of the junctions, see below)

J1 =J( f ( (OR) PL(»

J2 J2mf2(~R2 ~L2}

(4.2)

(4.3)

where J1 and J2 are the amplitude of J1 and J2 (i.e.,
max~ J1 2 ~

=J,~ 2~, max~ f, ~

= max~ f2 ~

= 1). Now junc-
tions 1 and 2 are related by parity (see below} and there-
fore for a given argument p of the functions f, 2

f (P()=f ($2) if R even

=f2(p+n. ) if R odd . (4.4)

If there is no texture inside R, then we have, by standard
arguments,

0
(4.5)

where 4 is the flux linking the SQUID and 40 the (super-
conducting) unit flux quanta. Now assume that the
lowest-order coupling between A~ and 5, is allowed in
(2.3), then f ( 2 will be periodic in 2'. Since

y(1,2) y(1,2)(y y )

where R =p or d and pL is the phase of the gap at the
other side of junction. The total current J in Fig. 6 is
given by
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J=~lmf1(NR1 NLl)+J2mf1 NR1 NL1+2~q
0

(4.6)

if R is even, it is obvious that J can achieve J, +Jz
the maximum possible value, when 4/40 is an integer,
whereas since

~ =Jlmf1(NRl PL1)+J2mf1 NR1 NL1+2~@ +~
0

(4.7)

if R is odd, the maximum J can be achieved if 4/411 is a
half-integer. Thus, the suggestion by Geshkenbein and
Larkin still holds in this case. Note, however, since there
is nothing that tells us that fl(p) = f, (p+—m ) (and, in
fact, this relation is simply false in the presence of PIJT},
there is no general argument as to where the minima of J
are, except that they must be separated by integral flux
quanta. Note that at the flux where the maximum
current can be achieved, the phases of the induced s
waves are equal. For example, for the R =p case

Ns' 0s' (PR2 NL2) 0s' (PR2 NL2+~)

known that the maximum for the case where both super-
conductors are s wave the current as a function of flux 4
threading the junction shows a single-slit-diffraction pat-
tern, with zeroes at 4/40 being nonzero integers. First
we consider the case without PIJT, then, if the lowest-
order term in (2.3) is allowed, we can easily see that the
standard arguments go through yielding an identical pat-
tern as discussed above. However, if t& is forbidden and

t2 is allowed, the current-phase relationship has half the
ordinary period and results in a pattern of half size (as a
function of 4/40).

Now we consider whether any complication arises
when the PIJT is included. For this we first notice that
formally the problem is solved by minimizing the free en-

ergy afresh under the appropriate external magnetic field.
The equations are, for example, in the case of coupling to
a p wave where t, term is allowed, just the set
(3.22) —(3.28) with the placement V/~V/+(2e/Pic) A
(and p, R

—+p, ~
—

pL for x =0+). Note now, in general,
all variables are functions of x,y and we have a genuine
two-dimensional (2d} problem. These equations should
be combined with the Maxwell equation which reads, in
this case,

VX(VX A)= 2E, b2 Vf, — A

the second equality is again due to the fact that the two
junctions are parity related [reversing the sign of t in

(3.21)].
The above discussion is true only when the two junc-

tions are related by parity except for the possible
difference in area, i.e., the coefficients t should be the
same, or else the argument leading to (4.4) fails. (Recall
the end of Sec. III C.)

Now we turn to the case where the lowest-order term
in (2.3) is forbidden but t2 is allowed. Equations
(4.1)—(4.5) hold without modifications, but now f, has
period m, and by (4.4) and therefore

f 1 (4) =f 1 (4+~)=f
1 (4+~)=f2(4»

independent of whether the state R is odd or even under
parity. Examining (4.6) and (4.7) again in this case shows
that the maximum currents will be attained at both in-
tegral and half-integral flux quanta. They would be en-
tirely indistinguishable.

This result is actually not surprising since, when t, is
forbidden but t2 is allowed, there exists a symmetry
operation that leaves a given junction invariant and
makes the R order parameter flip sign. Combining with
the parity operation gives us an operation that map junc-
tions 1 to 2 and vice versa, which is odd (even) if the state
is even (odd). This operation can well play the role of
parity in the discussion of Geshbenkein and Larkin.
Therefore, the two types of superconductivity become in-
distinguishable by the suggested experiment (but then we
know that it must be in either the p or d, but not s state).

Next we discuss the single-slit-interference pattern
which occurs when a magnetic field on the z direction is
applied to the junction is depicted in Fig. 1. It is well

+2K,E, VP, — A
Pic

(4.8)

BP (x~+ oo,y) 2e
A (+ oo)

c y

The standard textbook argument for the "single-slit-
diffraction pattern"' makes use of the simplification by
first ignoring the tunneling current. Thus, one just solves
for a Meissner-effect problem and substitutes the phase
found in the current-phase relation and sum over y. No-
tice, however, that one cannot make the analogous
simplification here, for if we ignore the tunneling current,
in particular that of the induced s wave, and thus ignore
all second-order terms in t„an examination of
(3.22}—(3.29) shows that P, is not a function of P~
anymore, it becomes completely arbitrary. This is not
surprising since the equation that fixes P, is from the
minimization of the free energy with respect to P„which
is simply the equation for the current of the s pairs.
Thus, we really have to minimize the free energy to
second order in t, (and first order in t~) to get the
diffraction pattern.

Note when we do this the solution we get would be
rather different by patching together solutions from Sec.
III with the appropriate P (x~oo,y): the current and
gradient energy across these "strips" cannot be ignored.

However, we can reasonably guess that due to the fact
that (3.22) —(3.29) are invariant under Pz ~Pz +2m,

P, ~P„ then the solution is expected to have a periodici-
ty in y in some distance Y. This distance Y can be seen
from (4.8) at x~+ oo, where the Meissner effect has
shielded off the magnetic fields and
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and by a similar system for PL, that the current is period-
ic in y with period Y, where Y is such that a flux unit is
enclosed.

Similarly, if the lowest-order term t, is forbidden, then
the equations repeat themselves at P ~P +m, P, ~P„
the distance we need to go for the periodicity is half of
that above, i.e., the interference pattern still shrinks la-
terally by half.

V. TIME-DEPENDENT EFFECTS

We now turn briefly to a discussion of the dynamics of
the Josephson junctions [again between a conventional
(L) and an unconventional (R) superconductor], namely
(i) the internal oscillation about an equilibrium state, i.e.,
the plasma oscillation, and (ii) the oscillation of the
current under an externally applied voltage difference,
i.e., the ac Josephson effect. If there is just a pure p or d
wave in the unconventional superconductor, then the
answers are trivial and can be directly read off from the
current-phase relationships. If t, in (2.3) exists and dom-
inates, then J =Jo sing; we just have the ordinary plasma
frequency [co& =(2eJO/AC)'~, where C is the capacitance
of the junction] and Shapiro steps (tv /2e). If
t,j =1, . . . , n —1 vanishes but t„exists, then
J=Jo sin(nP), using identical reasoning to the standard
arguments that give a plasma frequency n ' times and a
Shapiro step n ' times the standard value.

Now we consider the effect due to the presence of the
proximity-induced s order parameter in the unconven-
tional (p- or d-wave) superconductor. We shall only de-
scribe the scenario, relegating the details to a later publi-
cation. As mentioned before, we can just discuss the s-p
case without loss in generality (except for the case where
the d wave induces an s wave as discussed in Sec. III D).

Recall that in the right-hand side superconductor the p
wave coexists with the proximity-induced s-wave order
parameter in a length scale of D. During a time-
dependent process the two order parameters are usually
tossed out of equilibrium from each other. Besides the
usual relaxation processes, the supercurrent conversion
term involving yz in (3.21) also couples the dynamics of
the two order parameters. Due to these couplings, one
expects that (i) for the oscillations about an equilibrium
state, there is a mode for the internal oscillation between
the s- and p-wave order parameters, (as a generalization
of the bulk modes of Ref. 35), in addition to the original
plasmon mode corresponding to the relative oscillation
between the phases on the opposite sides of the junction.
These two modes are coupled, among other things, via
the y2 term, and (ii) for the ac Josephson effect, due to
the existence of the two order parameters on the right su-
perconductor, the dependence of the tunneling currents
on their phase angles, and the y2 coupling between them,
their phase angles relative to that on the left, in general,
cannot be both linear in time with the same coeScient (2
eV/fi). Frequency of the current and hence the Shapiro
steps are expected to deviate from the standard value.

We close this section by estimating the importance of
the y2 coupling which can be measured by the coupling
energy per unit junction area, namely yzb~h, D (in the

notation of Sec. III). This should be compared with the
ordinary Josephson coupling energy, i.e., the t or td

terms in (3.21). All these can be converted into units of a
current (by multiplication of 2e/fi). For heavy fermions,
assuming D is of the order of a coherence length, y2 of
the same order as the coefficient of the quartic term in a
BCS theory, and assuming 5, —1 K, one obtains the
enormous value corresponding to a critical current of or-
der 10' mA/cm (compared to a J, -10 mA/cm of the
experiment of Ref. 18). Thus, the presence of the
proximity-induced s-wave order parameter is potentially
important for modifying the dynamics of the Josephson
junctions.

In view of the discussion above and in Sec. III C, and
given that the experiment on UBe&3 in Ref. 18 finds ordi-
nary Shapiro steps, we do not find the suggestion of
proximity-induced Josephson tunneling from their probe
to the superconducting UBe&3 there plausible.

VI. CONCLUSIONS

We would like to conclude by making some cautionary
remarks on using the Josephson tunneling as a probe of
unconventional superconductivity. It is well known that,
as in He, the unconventional pairing suffers from
"depairing" effects due to surfaces, thus diminishing the
critical current. Moreover, the "perpendicular" part of
the order parameter would be more strongly suppressed
than the "parallel" part. This, however, does not cause
problems directly if the order parameter keeps its orien-
tation, because if the bulk state is such that t, is allowed,
then it must be even under all symmetry operations that
leave the junction invariant. The depaired state near the
interface will likewise have this property. Thus, if t, is
forbidden for the depaired state near the surface it will be
so also for the bulk state.

The depairing, however, can cause an indirect problem.
It is also well known in He-A, that if we have the order
parameter in the bulk with the I vector parallel to a sur-
face, due to the strong depairing that would occur if /

were to keep the same direction also near the surface, 1

instead forms a "texture" so that it becomes perpendicu-
lar to the surface. Similar scenarios may or may not
occur in the crystal. In a crystal there are strong aniso-
tropies, it may happen that reorientation is never energet-
ically favorable; however, in some directions they always
occur, at least near T, . Some examples will clarify this
point. ' Consider for definiteness a tetragonal crystal.
According to the theory as outlined in Refs. 4—8, if the
superconducting state belongs to the one-dimensional
representations, then barring accidental cases where some
other representations also have a T, close to the original
one, only the order parameter of the one of the highest T,
needs to be considered (cf., Ref. 36). Thus, there is no
possibility of a texture, be the order parameter an s, p, or
d wave. Ho~ever, if the order parameter belongs to a
representation of dimensionality two or greater, rotations
among equivalent directions are always possible near T, .
Whether it is still advantageous to produce such a "tex-
ture" depends on the magnitude of the quartic (or higher)
terms, the surface depairing, and the gradient energies.
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APPENDIX

e

In this appendix we consider the symmetry operations,
in particular the time-reversal symmetry, in more detail.
In particular, we emphasize that Josephson tunneling be-
tween say, the s and p waves is not forbidden by time-
reversal symmetry considerations alone (cf., Refs. 5 and
42}.

The time-reversal-symmetry operator can be represent-
ed by the antiunitary operator 8 where43

(A 1)

with 5 =(r(m/2). The gap transforms in the same way

as the anomalous average, (P~az a z ~f), which, in the
time-reversed systems, simply reads (aflak & —q ~ l&g~.
One may simply verify that for singlet

.(k)=[6, .(k)]*, (A2)

FIG. 7. The two configurations discussed in the Appendix.

Fig. 7(a) [i.e., m in Fig. 7(b)]. The combined symmetry
operation mentioned in the last paragraph is the product
of the time reversal and this reflection symmetry. Time
reversal, by (A5), keep d unchanged but changes the sign
of n and 1, and P. To decide the effect of the reflection,
we use the fact that it is a parity operation followed by a
m. rotation about the normal of the reflection plane. The
former is

P f (r)P =P, ( —r)

and we simply have
whereas for triplet

b t t(k) = —[b t t(k)]',
(k) = —[b, (k)]",

or, using the representation as in (2.1),

(k) = ~5~e '~(io
y )f(k)',

(k)= ~h~e '('[id(k)' cr]o

(A3)

(A4)

(A5)

b~ .(r, k)=b, (
—r, —k), (A6)

F(y(a) y ) F(y y(a)) (A7a)

where r is the center-of-mass coordinate of the pair.
Thus, parity keeps the s wave invariant and for the axial
phase its effect can be represented by m~ —m, n~ —n
and keeps 1, d, and P unchanged. The effect of rotation
is simply included by rotating everything. One finds,
from considering the combined operations,

When the phase is real up to an overall phase factor, we
can always choose f (k), d(k) to be real, and the time re-
versal thus just reverses the value of the phase angle. In
this case we have (2.4). Thus, despite the apparent sign
difference between (A2) and (A3), Josephson coupling be-
tween the phases is allowed (cf., Ueda and Rice, Ref. 5).

When f (k) or d(k) is complex then time reversal maps
the pairs into a different state, for example, the angular
momentum of the axial phase is reversed. Thus, time re-
versal alone does not relate F (P) for different (()'s. A rela-
tion exists only when there is another symmetry opera-
tion of the junction to bring the state back to the original
one, up to some phase factor, say a. In this case we ob-
tain (2.5}.

As an illustration for the discussion in the last para-
graph we consider tunneling between an s wave and an
axial d(k)=d(m+in) k, as sketched in Figs. 7(a) and
7(b). Here we take l, m, n to be along crystal symmetry
axes; in particular, we assume there is a twofold rotation
symmetry axis, and since inversion symmetry always ex-
ists in the systems in which we are interested, reflection

symmetry occurs about the plane perpendicular to n in

or

F((((6) P )
—F(P P( )+~) (A7b)

for d perpendicular to the plane of the paper, and

(A8a)

(A8b)

According to these equations, (a) and (b) are the "con-
venient" choices so that the energy is even in ((), depend-
ing on whether d lies perpendicular to or in the plane of
the paper, respectively. In both cases, the lowest-order
Josephson coupling, i.e., t( in (2.3), is allowed, t, being
real for (A7a) and (A8b), and purely imaginary for (A7b)
and (A8a).

for d in the plane of the paper. These are special cases of
(2.4) and (2.5). They agree with each other since (a) and
(b) represent the same state if

(g) 7Ty(~) — +y(b)
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