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Deep-inelastic neutron scattering measurements on liquid He have been carried out for tempera-

tures from 0.35 to 4.2 K at a density of 0.147 g/cm . These measurements have a relative resolution
o

comparable to previous reactor measurements, but at a momentum transfer of 23 A . This
momentum transfer is suSciently high that the differences between the observed scattering and that
predicted by the impulse approximation are small and are well described by a recent theoretical
treatment allowing direct information on the single-particle momentum distribution to be obtained
from the scattering measurements. The scattering in the normal liquid phase is broad and feature-

less with a nearly Gaussian shape. The scattering in the superfluid phase is distinctly non-Gaussian

with extra intensity at the peak center consistent with the presence of a Bose condensate. However,
no distinct peak due to the Bose condensate is observed even when the effects of instrumental

broadening are included. When deviations from the impulse approximation are taken into account
using a recent theory, the experimental results at 0.35 K are in excellent agreement with ab initio
ground-state variational and Green s-function Monte Carlo calculations in the superAuid at T=O
K. The results at higher temperatures are in excellent agreement with recent path-integral Monte
Carlo calculations in both the normal and superfluid phases. Fits of model functions to the scatter-

ing are also presented. The average kinetic energy per atom has been determined and is in good
agreement with theoretical predictions and with previous experimental results.

I. INTRODUCTION

Liquid He is one of the most intensively studied sys-
tems in the history of physics. The weak attractive forces
between the atoms and their large zero-point motion
combine to stabilize the liquid phase of helium under its
saturated vapor pressure even at zero temperature. The
effects of the Bose statistics of the helium atoms are im-
portant in the liquid, and at a sufficiently low tempera-
ture liquid He undergoes a second-order phase transition
to a superAuid phase. The efforts over many decades to
understand the superfluidity of liquid He have produced
innovative ideas and techniques of broad significance in
both theory and experiment. Today it enjoys a unique
status as a model system for the study of several aspects
of many-body physics. Ironically, it has attained this
status despite the fact that a detailed microscopic theory
of the liquid does not exist. A glance at the current state
of our understanding of one of the simplest properties of
liquid He, its momentum distribution, will serve to bring
this irony into focus.

Bose condensation provides the microscopic basis for
our present theoretical understanding of superfluidity in
bulk liquid He. ' According to this view, the superfluid
phase is described by a macroscopic wave function

(Q) =Qnoexp(ig) .

The square of the amplitude of (|I'j) is the fraction of
atoms in the condensate, and its phase is coherent on a

macroscopic scale. The gradient of this phase is propor-
tional to the superfluid velocity, the new hydrodynamic
degree of freedom which appears in the well-known two-
fluid model. Quantized vortices arise as a result of the
quantization of superfluid circulation required by the
single-valued nature of the macroscopic wave function.
Even the phonon-maxon-roton spectrum of elementary
excitations is an indirect consequence of the presence of a
condensate. None of these properties of superfluid He,
however, depends in detail on the exact magnitude of the
condensate. Only its existence is necessary. In this way,
many of the properties of the liquid which make it a mod-
el system are insulated from our ignorance of the conden-
sate and the detailed microscopic physics which deter-
mine its size.

The momentum distribution n (p ) of superfluid He,
however, is different in this respect. In the absence of a
detailed microscopic theory, the momentum distribution
is the only measurable property of the liquid which can
reveal the size of the condensate. It is this characteristic
of the momentum distribution which makes its measure-
ment an issue of fundamental interest. In a sample of
liquid He at rest, a condensate would produce a 6-
function spike in the momentum distribution centered at
p=o with an intensity proportional to the fraction of
atoms in the condensate, no.

Liquid helium is a dense, strongly interacting many-
body system. Its momentum distribution is dominated by
the effects of the strong short-range repulsion between
the atoms and the high atomic density. Even at zero
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temperature, these factors suffice to force the great ma-

jority of the atoms in superfluid He out of the conden-
sate. The kinetic energy of these atoms is almost entirely
determined by the effects of atomic zero-point motion.
As a result, the standard methods of many-body pertur-
bation theory are doomed to failure in a calculation of
the momentum distribution from first principles. (The
only result derivable from standard many-body methods,
assuming a condensate exists, is the existence of a weak
power-law singularity in the momentum distribution at
p=O due to the zero-point motion of long-wavelength
phonons. }

This absence of a detailed microscopic theory has in-
spired the development of many alternative approaches
to the calculation of the momentum distribution in heli-
um. The first realistic calculation of the momentum dis-
tribution of liquid He at T=O was a variational calcula-
tion using a trial wave function of the Jastrow form,
which is a product of pair functions. The parameters in

the pair function were determined by the variational
method, with the necessary configuration space integrals
performed by Monte Carlo techniques. The helium-
helium interactions were described by a Lennard-Jones
potential. Gradual improvements were made in the im-
plementation of the variational calculations, such as the
proper inclusion of the effects of zero-point phonons, the
use of the Aziz potential in place of the Lennard-Jones
potential, the development of hypernetted chain calcula-
tion methods, and the extension of the trial wave function
to include three-body correlations. ' In the most re-
cent variational calculations, ' the variational ground
state includes the effects of two- and three-body correla-
tions. The one-body density matrix, which is the Fourier
transform of the momentum distribution, is then calcu-
lated in a cluster expansion using the hypernetted-chain
scaling (HNC/S) approximation.

For the finite-temperature extensions of the variational
calculations, the low-lying excited states are generated
from the ground-state wave function used at zero temper-
ature with an operator first proposed by Feynman and
Cohen. ' The change in the momentum distribution
caused by the creation of a single excitation is calculated
using the HNC/S method. At temperatures low enough
that the interactions between elementary excitations can
be neglected ( T & 1 K), the momentum distribution can
be obtained by simply adding the induced changes to the
ground-state momentum distribution weighted by the
Bose distribution function.

An intrinsic limitation of the variational calculations is
the fact that the proposed form of the wave function may
not possess sufficient freedom to capture all of the impor-
tant physical effects. This limitation is bypassed, in prin-
ciple, in the Green's-function Monte Carlo method
(GFMC). In the GFMC method, which is restricted to
zero temperature, a solution for the ground-state wave
function is generated stochastically. The Schrodinger
equation in imaginary time is converted into a diffusion
equation in real time, which can be solved by Monte Car-
lo techniques. In practice, importance sampling may bias
these results toward the sampling function. ' However,
in general, these results are believed to be quite accurate.

At finite temperatures above 1 K, the momentum dis-
tribution has been calculated using the path-integral
Monte Carlo method (PIMC). In the PIMC method,
the starting point is an accurate representation of the
density matrix at high temperature. The low-
temperature density matrix can be expressed as a path in-
tegral over products of high-temperature density ma-
trices. The path integrals are performed using a gen-
eralization of the Metropolis Monte Carlo algorithm. A
special feature of the PIMC calculation is its ability to
calculate the momentum distribution in both the normal
liquid phase and superfluid phases.

Over the past few years significant advances have been
made in the sophistication of all of these methods. The
results for many properties of liquid He, such as the
equation of state, the static structure factor, the ele-
mentary excitation spectrum, and even the superfluid
fraction are in good agreement with each other and
with experiment. On the basis of this agreement, the cal-
culations of the momentum distribution are expected to
be quite accurate. We will use the results of all of these
methods in our comparisons with the neutron scattering
data.

The most direct method for measuring the momentum
distribution in liquid He is through the use of deep-
inelastic neutron scattering (DINS). For sufftciently high
momentum transfers the dynamic structure factor
describing the scattering of neutrons by the helium
atoms, S(Q,m), is directly related to n(p) through the
impulse approximation (IA). This direct relation be-
tween S«(Q, co) and n(p), coupled with the interest in
the Bose condensate, has been a major source of inspira-
tion for the numerous inelastic neutron scattering experi-
ments performed on helium.

Most high-resolution measurements to data have been
confined to the relatively low-Q (4-10 A ') neutrons
available at reactors. In the most recent of these stud-
ies, ' a definite change in the scattering is observed
upon entering the superfluid phase. Unfortunately, siz-
able deviations from the IA obscure the detailed features
of the momentum distribution. Experiments at
significantly larger Q & 50 A ' have also been performed
at spallation neutron sources. ' However, in these
measurements the instrumental resolution was compara-
ble to the intrinsic width of the scattering, making the ex-
traction of information on the momentum distribution
difficult. Direct comparisons of past experimental results
with the accurate calculations of n (p ) now available have
shown large discrepancies. ' ' ' ' Furthermore, it is
important to realize that no distinct feature characteristic
of the superfluid, like a narrow peak in n(p ) at p =0, has
ever been observed in any of these experiments.

Even if the condensate exists, this failure to observe a
sharp feature in the neutron scattering data is not
surprising. At finite Q the IA is not valid, and sharp
features which exist in the momentum distribution are
significantly broadened. These broadening effects, due to
the influence of the interactions among helium atoms on
the final scattering state of the neutron, are known as
final-state effects (FSE}. As a result of FSE, the momen-
tum distribution of the scattered neutrons is broader and
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different in shape than the momentum distribution of the
helium atoms from which they have scattered.

It is important to realize that final-state effects are not
simply an uninteresting complication in the search for
the condensate. FSE are of considerable interest in their
own right, and an accurate calculation of their influence
presents a challenging theoretical problem. The manner
in which inelastic scattering approaches the IA limit can
be crucial for the interpretation of a number of experi-
ments in many areas of physics. For example, a quantita-
tive understanding of FSE in inelastic neutron scattering
from a relatively simple system such as liquid He could
be expected to lead to progress in the treatment of FSE in
quasielastic e1ectron-nucleus scattering.

In this paper, we report new high-resolution neutron
scattering studies of S(Q, co) in liquid He in both the
normal and superfiuid phases using much higher Q's than
in previous high-resolution experiments. Using a recent
theory for FSE which is applicable at the Q's used here,
excellent agreement between experiment and the theoreti-
cal n(p } is obtained in both the superfiuid and normal
liquid phases with no adjustable parameters. Our results
provide strong evidence for a narrow component in the
n(p) of the superfiuid phase that contains -9% of the
atoms, corresponding to the condensate.

This paper is organized as follows. Section II contains
a discussion of inelastic neutron scattering. The relation
of the scattering data to the longitudinal momentum dis-
tribution and the importance of final-state effects and the
difficulties involved in extracting information on n (p )

from the observed scattering are emphasized. Section III
covers experimental details. It contains a concise ex-
planation of the operation of the PHOENIX spectrome-
ter and our methods of data analysis with emphasis on
the special features made possible by Y scaling. In Sec.

I

IV our experimental results are compared to the theoreti-
cal momentum distributions broadened by instrumental
resolution and final-state effects. In addition, we present
fits of model functions to the observed scattering. These
fits are then used to extract values for the average kinetic
energy per atom. Finally, we end with our conclusions.

II. INELASTIC NEUTRON SCATTERING

Any superposition of single low-energy neutron-
nucleus scattering events can be described, to an excellent
approximation, by the double-differential scattering
cross section

=b S(Q,co), (2.1)
dQ co I

where b is the scattering length, k, and kf are the initial
and final wave vectors of the scattered neutron, and Q
and cu are the momentum and energy transfer from the
neutron to the sample. The dynamics of the sample are
contained in S(Q,co), the dynamic structure factor,
which is directly proportional to the space and time
Fourier transform of the density-density correlation func-
tion.

The density fiuctuations which contribute to S(Q, co)

include both collective excitations involving many atoms
and single-particle excitations. For sufficiently large Q,
the distance over which the phase of the incident neutron
changes significantly during the scattering process, which
is -2n/Q, is sm. all compared with the distance between
the scattering atoms. The part of S(Q, co) due to the in-
terference of scattering amplitudes from different atoms
becomes negligible due to phase cancellation, and the
scattering is due primarily to single-particle excitations.
In this litnit, known as the incoherent approximation, the
expression for S(Q, co} becomes

S;„,(Q, co)= f exp — (exp[ —iQ r(0)]exp[ iQ r(t)]—)dt, (2.2)

where r(t) is the position vector of an atom and ( )
signifies a thermodynamic average. The incoherent ap-
proxirnation for scattering from bulk helium should ap-
ply to liquid helium for Q & 10 A '. Measurements of
the static structure factor S(Q), which is related to the
Fourier transform of the pair distribution function, indi-
cate that static density correlations in liquid He are
quite small for Q&8 A '. In our experiments, Q at
the center of the recoil peak is 23 A ', and the in-
coherent approximation is certainly applicable.

The frequency moments of S;„,(Q, co) provide valuable
information on the energy dependence of the scattering
function for fixed Q. In general, they depend explicitly
on the details of the interactions between the atoms.
However, the first three moments of S;„,(Q, co) are in-
dependent of these details. These moments are

M, (Q)= fS,„,(Q, co)dco= 1, (2.3)

M, (Q) =f (co co„)S;„,(Q, co)dc—o=0, (2.4)

M (Q)= f (co—co„) S;„,(Q, co)dco= ', co„(E„), (2.5)—

where the recoil energy, co„, is A' Q /2M„, and MH, is
the mass of the scattering atom. Under the conditions of
the incoherent approximation, the average kinetic energy
per atom, ( E„),can be obtained directly from the second
moment of the observed scattering.

At very high momentum transfers, the form for
S(Q, co} simplifies considerably from Eq. (2.2). In this
limit, the impulse imparted to the target atom by the neu-
tron during the collision far exceeds the impulse
transferred by neighboring helium atoms and only
single-particle properties are probed. The scattering can
then be described by the well-known impulse approxima-
tion which directly relates S(Q, co) to the atomic momen-
tum distribution, n(p)

lim S(Q,co) =S,~(Q, co)
Q~ oo

np co—
2MH, MH, (2m )

(2.6)



11 188 T. R. SOSNICK, %. M. SNOW, AND P. E. SOKOL 41

The 5 function in Eq. (2.6) represents the conservation of
energy and momentum for the scattering of a neutron
from a single atom. In the IA the distance probed by the
neutron is much shorter than the typical distance trav-
eled by the scattering helium atom before it is
significantly affected by interactions with other atoms.
The recoiling atom then acts as a free particle during the
collision. For smooth interatomic potentials with
Fourier transforms which decrease exponentially with Q,
the IA is valid in the Q~ ~ limit. As a consequence,
the IA limit can be reached even if the atom is bound in a
confining potential. It fails, however, for a potential with
an infinitely repulsive hard core. Since the interatomic
forces in helium are steeply repulsive at short distances,
one might suspect that very large momentum transfers
may be required for the IA to be obeyed.

At high Q, the scattering from an isotropic system
such as a liquid no longer depends separately on Q and co.

The dynamic structure factor can be expressed as a func-
tion of a single scaling variable Y (Ref. 39)

lim (Q/MH, )S(Q,co)~J( Y),
Q~ oo

where

(2.7)

Y=(MH, /Q)(co —co, ) (2.&)

is the component of the momentum along the direction of
Q, and J( Y) is the longitudinal momentum distribution if
S(Q, co) satisfies the IA. In the IA, J( Y) is simply related
to the momentum distribution

J«( Y)=2mfp. n(p )dp
IH

= f f n(p„,p, Y)dp„dp (2.9)

where the direction of Q is chosen to lie along the z axis.
Ji~( Y) exhibits several features which are characteristic
of the IA. It is symmetric about Y=O and depends on Q
only through the scaling variable Y. These features are
equivalent to the more familiar conditions that S(Q, co)
satisfies in the IA. For Siz(Q, co), the scattering is cen-
tered at and is symmetric about the recoil energy co„and
the width of the scattering is directly proportional to Q
and inversely proportional to MH, . In liquid helium,
both of these conditions are well satisfied for

0

Q & 15 A '. ' However, Y scaling alone does not neces-
sarily imply the validity of the IA. For atoms with
infinitely repulsive hard-core interactions, for example,
S(Q, co) obeys Y scaling in the Q~ co limit, but the func-
tion of Y to which it scales is not the longitudinal
momentum distribution.

The IA only approximately describes the scattering for
the momentum transfers reached in experiments to date.
Deviations from the IA, known as final-state effects, re-
sult from the interaction of the recoiling helium atom
with its neighbors during the scattering process. These
interactions alter the ideal free-particle behavior of the
final state of the recoiling atom required for the IA to be
obeyed.

In a separate paper, we report a detailed comparison of
the various theories for FSE. At the Q's used in this ex-

periment, final-state effects, while certainly present, are
simple enough to be amenable to theoretical treatment.
We have found that a recent theory by Silver provides
an excellent description of FSE in liquid helium in both
the normal and superfiuid phases at Q =23 A '. Other
theories, while capable of providing a description of FSE
in the normal liquid phase which is consistent with the
experimental data, do not accurately describe FSE in the
superfluid phase. " In this paper, we shall restrict our
discussion to Silver's theory.

In the first estimate by Hohenberg and Platzman,
FSE in helium were calculated within the simple approxi-
mation that the struck helium atom scatters from its
neighbors at a constant rate proportional to the helium-
helium atom cross section and to the atomic density. In
fact, this scattering rate is not constant due to the strong
spatial correlations which exist among the atoms.
Silver's theory for FSE takes into account the effects of
the ground-state spatial correlations in the liquid, which
cause the width of the FSE broadening function to be
narrower than the original estimate of Hohenberg and
Platzman. Within Silver's theory, FSE can be expressed
as a convolution of a final-state broadening function
R( Y) with the IA expression

J( Y)= f R ( Y —Y')J,~( Y')d Y' . (2.10)

The second-moment sum rule for incoherent scattering
imposes a constraint on the shape of R( Y). Since both
J( Y) and Jiz( Y) obey the second-moment sum rule, the
second moment of R(Y) must vanish. For this reason,
R( Y) must possess negative tails at high Y. As a result,
the convolution of a function with R ( Y) both broadens
the function and also redistributes its intensity in a
manner which cannot be viewed as a simple broadening.

We note that within Silver's theory FSE have little
effect on the scattering observed in the normal liquid.
This is so because the scattering in the normal liquid is
broad and nearly Gaussian, and a convolution of R ( Y)
with a much broader Gaussian will have little effect on its
width and, according to the zeroth-moment sum rule, no
effect on its total area. However, FSE are important for
the relatively narrow non-Gaussian n(p) below Ti.

The observed scattering, which is proportional to
J( Y), provides direct inforination on the shape of n(p).
For example, if n(p) is Gaussian then J(Y) is also a
Gaussian with the same second moment. The conden-
sate, which appears as the three-dimensional 5 function
in n (p ), is a one-dimensional 5 function in J( Y). Howev-
er, while there is a direct relationship between the shape
of n(p) and the shape of J( Y), it is not a one-to-one
correspondence.

To illustrate this fact, consider two recent calculations
of the ground state n(p) using variational' and GFMC
(Ref. 20) techniques and shown in Fig. 1(a). Both calcula-
tions predict a condensate fraction, which appears as a 5
function with no=9. 2%. Both calculations also predict
quite similar behavior at intermediate and large p. How-
ever, they differ markedly at small p. The variational cal-
culation exhibits singular behavior due to coupling of
long-wavelength phonons to the condensate which are
not present in the GFMC result, presumably due to
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FIG. 1. (a) shows two theoretical calculations of n(p) in

liquid helium at T=O K. The solid curve is the GFMC result,
and the dashed curve is the HNC/S variational result. (b)
shows the longitudinal momentum distributions J(Y) corre-
sponding to the two ground state n(p)'s in (a). (c) shows the
combined effects of the convolutions of the J( Y)'s in (b) with

the instrumental resolution function and Silver's final-state
broadening function.

finite-size effects in the calculation.
While n (p ) for these two calculations is quite different,

the corresponding J«( Y) is remarkably similar, as
shown in Fig. 1(b). The singular behavior, which is the
dominant feature in the variational n(p) at small p, is
quite small in J( Y). This insensitivity to some of the de-
tails of n(p ) at small p is a direct consequence of the IA.
J( Y) is the momentum distribution in the direction of the
momentum transfer, averaged over the longitudinal com-
ponents, and is proportional to the integral of pn(p).
Weakly singular features at small p, such as the
condensate-induced singular behavior, will be suppressed
due to the p in the integrand. The 5 function due to the
condensate, of course, is still present in J( Y).

When FSE are taken into account the (now small)
differences between the predicted scattering for the two
calculations all but disappear, as shown in Fig. 1(c). The
predictions of the two very different n (p )'s are not nearly
indistinguishable. In principle, the differences between
the two different n(p)'s are still present in Fig. 1(c). In
practice, a measurement of the scattering would require
fantastically good statistical accuracy to observe these
differences.

In principle, we can invert this procedure and obtain
n(p) directly from J( Y) using

—1 dJ(Y)
2mY dY

(2.11)

III. EXPERIMENTAL DETAILS

Inelastic neutron scattering measurements of liquid
helium were carried out using the PHOENIX spectrome-
ter at the Intense Pulsed Neutron Source (IPNS} at Ar-
gonne National Laboratory. IPNS is a spallation source
that generates a short burst of neutrons with a usable flux
over a wide range of energies. Because IPNS produces a
relatively intense flux of high-energy neutrons, measure-
ments at relatively large momentum transfers (20—30
0
A ') are practical.

PHOENIX is a time-of-flight (TOF) spectrometer with
a Fermi chopper before the sample to monochromate the
pulsed beam from the spallation source. The chopper-
source phasing determines the incident energy, which
was approximately 500 meV for these measurements.
The chopper and sample are 12.55 and 13.6 m from the
source, respectively, and the incident beam is 7.5-cm
wide and 10-cm high at the sample position. Low-
efficiency BF3 monitors are located 0.68 m before and
2.83 m after the sample to characterize the incident
beam. Scattered neutrons are detected using 25 He
detectors. The cylindrical detectors are 2.5-cm diam and
0.45-m long. As a result of space constraints enforced by
the preamplifier electronics, the detectors are staggered
to reduce their angular spread. The detectors are located
an average distance of 3.8 m from the sample and cover
scattering angles between 135 and 145 in a horizontal
scattering plane. The details of the instrument will be de-
scribed more fully elsewhere.

The helium sample was contained in a cylindrical sam-

In practice, converting from an experimentally deter-
mined J( Y) to n(p ) presents several difficulties. First, in
order to use Eq. (2.11) the instrumental resolution and
final-state effect broadening must be removed. Deconvo-
lution, particularly on data with statistical noise, is an
unstable and ill-defined procedure. In addition, numeri-
cal differentiation substantially increases the error associ-
ated with the data and can only be avoided if the data is
smoothed or the results are otherwise biased in some
way. Finally, in order to obtain n(p) the differentiated
data must be divided by Y, and the results of this division
are particularly susceptible to any statistical fluctuations
at small Y.

Because of these difficulties, we have chosen not to
convert the results of our measurements to n (p ). In-
stead, we first convert the theoretical predictions for the
momentum distributions to J( Y}. We then convolute the
theoretical predictions with both the instrumental resolu-
tion function and the FSE broadening function due to
Silver and compare the result directly to the data. In this
way, the errors in the data due to counting statistics can
be used to place meaningful constraints on the shape of
the underlying momentum distribution, and all of the
problems mentioned above are avoided.
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pie cell made of 6061-T6 aluminum. The cell was 0.10-rn

high with an inner diameter of 0.04 m and a wall thick-
ness of 1.6 mm. With a total volume of 130 cm, the cell
contained approximately 5 mol of helium at the densities
used for these measurements. The cell was attached to
the mixing chamber of a dilution refrigerator in a special-

ly designed cryostat with no cryogens in the neutron
beam. Thin (0.05 mm) Al windows in the radiation
shields reduced the amount of material in the incident
and scattered neutron beam paths. The cell temperature
was monitored using germanium resistance thermometers
attached to the top and bottom of the cell.

The monitor detectors are used to determine the total
flux incident on the sample. They are also used to deter-
mine the distribution of the energy and time of arrival of
the incident neutron pulse at the sample position. The
observed monitor spectra are asymmetric, primarily due
to the asymmetric distribution of the time of emission of
neutrons from the pulsed source moderator. To extract
the mean incident energy and time of arrival the observed
monitor spectra are fit to the results of a Monte Carlo
simulation of the incident beam. The simulation takes
into account the incident pulse spectrum, which has been
independently determined, the chopper transmission,
and the physical extent of the incident beam. The energy
and time of arrival at the sample are recorded for approx-
imately 10 neutrons. The means of these distributions
are then chosen to represent the average energy and time
at sample.

The number of neutrons arriving at the detectors as a
function of time of flight is histogrammed individually for
each of the detectors. The TOF data is recorded in 2
psec channels from 300 to 5000 psec after the initial neu-
tron pulse. The data from each detector is converted to
S(Q, co) using the time at sample and incident energies
obtained from the fits to the monitor spectra discussed
above. Finally, the data for each detector is converted to
J( Y) using the mean energy and momentum transfer for
each point.

Normally, TOF data from several detectors is added
together during data collection to increase the statistical
accuracy of the measurement at the expense of increasing
the instrumental resolution width. In the case of deep-
inelastic neutron scattering measurements the position of
the peak depends strongly on the momentum transfer,
and therefore the scattering angle. For the detector
configuration used in PHOENIX this leads to a shift in
the peak center of approximately 10 meV across the
detector bank. If the data were simply added together,
this shift would broaden the observed scattering by this
amount.

This undesirable broadening may be eliminated and the
statistical accuracy increased by taking into account the
scaling properties inherent in deep-inelastic neutron
scattering. We take advantage of this scaling behavior by
converting the observed scattering to J( Y) before adding
the data from each detector together to increase the sta-
tistical accuracy. The data from each detector, when
converted to J(Y), will have the same peak center and
width. The undesirable broadening that results from
combining the data from several detectors at the data col-

lection stage is eliminated. Thus, we obtain a significant
increase in the statistical accuracy by combining the re-
sults of several detectors, but with a resolution effectively
determined by the width of a single detector.

The procedure described above implicitly assumes that
the data approximately Y scale. As noted in Sec. II, Y
scaling behavior has been observed in previous measure-
ments of liquid helium for Q) 15 A ' and is well
satisfied at the momentum transfers used in these mea-

0

surements (23 A '). We have also verified this behavior
directly with the present results by individually examin-
ing the data from each detector. We find that, within the
limited statistical accuracy obtainable from a single
detector, Y scaling behavior is indeed observed.

The instrumental broadening must also be nearly con-
stant over the detectors combined together for this pro-
cedure to be valid. We have verified directly, using a
simulation of the instrumental resolution, that the instru-
mental broadening is fairly constant for the limited range
of scattering angles covered by our single detector bank.
In addition, our calculations of the instrumental resolu-
tion, which will be discussed later, implicitly include any
variation in the instrumental broadening across our
detector bank.

A complication with this procedure arises since the
data, which are recorded as TOF data in evenly spaced
time intervals, do not have the same width or starting
point when converted to Y due to the differing distances
and angles of the detectors. Therefore, the data need to
be rebinned to a common Y scale before they can be add-
ed together. While the proper absolute size of the errors
is maintained in this process, it unavoidably introduces
some correlation between the individual points. We
choose the new Y scale, to which the data are rebinned,
so that it approximately matches the original scale near
the peak center. This reduces the undesirable correlation
between the data points to a small level.

Data were collected at several temperatures between
0.35 and 4.2 K with a liquid density of 0.147 g/cm . Ap-
proxirnately 40 h were required at each temperature to
obtain adequate statistics. A typical data set, converted
to J( Y) and with the detectors combined to decrease sta-
tistical noise, for both the empty cell and the cell contain-
ing liquid at T=2.8 K is shown in Fig. 2. This data were
taken with an incident energy of 496.7 rneV. The data
shown correspond to a mean momentum transfer at the

0
helium peak of 23 A ' centered at Y=O. The peak cen-
tered near Y= —12 A ' is due to the sample cell, radia-
tion shields, and cryostat windows. Note that the helium
and aluminum peaks are almost completed separated.

A continuous rise in the scattering intensity is observed
with increasing Y. This is due to high-energy neutrons
and gamrnas present in the initial burst from the neutron
source that are moderated by the beryllium in the
chopper and in the shielding around the instrument.
This results in a background scattering that has a nearly
exponential decay in TOF. When converted to J( Y) this
scattering appears as a background that increases with
increasing Y. The contribution of this background is
slightly sample dependent since some of the neutrons
moderated by the chopper are then scattered by the sam-



41 DEEP-INELASTIC NEUTRON SCATTERING FROM LIQUID He 11 191

0.5

0.4

0.2

O. i

0.0—20 —15 —io

FIG. 2. The points are the scattering at T=2.8 K with heli-
um in the cell. The line is the empty-cell data at 4.2 K.

pie. We found that this background was well described
by a single exponential decay in TOF. The fitted ex-
ponential, which accounts for only a few percent of the
intensity in the region of the helium peak, was removed
from the raw data before conversion from TOF to
S(Q,co).

To obtain the scattering due to the liquid alone, the
scattering due to the sample cell must be removed. Sub-
traction of the empty-cell scattering from the scattering
with the cell full is carried out after the TOF data has
been converted to J( Y) This r.emoves small variations in
the phasing between the neutron source and the chopper
that slightly shift the incident energy from run to run.
These variations result in shifts of the incident energy on
the order of I meV (less than 0.2%). While these shifts
are small, they do result in a sulcient shift of the posi-
tion of the cell scattering to be observable in the subtrac-
tions. Converting to J(Y) before subtracting the cell
scattering removes these shifts to the extent that the Q
dependence of the empty cell scattering, which is small at
these Q's, can be ignored.

Attenuation of the incident beam by the sample must
also be taken into account when subtracting the ernpty-
cell scattering. The primary effect is an attenuation of
the signal from the rear of the cell due to the scattering of
neutrons as they pass through the sample, once in the in-

cident beam and once again in the scattered beam.
Correction for these effects has been dealt with adequate-

ly in the past for the continuous incident beam from reac-
tor sources. In this case, the effect of beam attenuation
simply results in a multiplicative correction to the
empty-cell scattering before subtraction.

The situation is more complex for TOF instruments.
Due to the time structure in the incident pulse, neutrons
scattering from the rear of the cell arrive at the detectors
at a different time than neutrons from the front of the
cell. Therefore, the additional scattering of the helium
not only reduces the cell contribution, but also shifts it in
time. We correct for the sample attenuation and this

small shift before subtracting the empty-cell scattering
using a Monte Carlo simulation of the instrument which
is described elsewhere.

After subtraction of the empty-cell signal, a small re-
sidual sample-dependent component remains. This com-
ponent is approximately five times as wide as the helium
peak and is due to multiple scattering from the cryostat
components. Similar backgrounds have been observed in
other inelastic scattering experiments using the LRMECS
chopper spectrometer at IPNS. In these experiments
the observed background depended upon the sample but
was nearly independent of angle from 15 to 110'. Abso-
lute intensity measurements, which are discussed below,
also support our identification of this component as mul-

tiple scattering from the cryostat. Subsequent
modification of the apparatus to remove the possibility of
this scattering using neutron-absorbing boron nitride
plates essentially eliminated this component. In this
work, the contribution from this component is deter-
mined by either fitting a broad Gaussian or a linear func-
tion to the wings of the scattering. The fit may then be
subtracted from the observed helium scattering to re-
move this component. Removing this broad component,
using either technique, does not significantly change the
shape of the observed peak.

An absolute intensity scale for the scattering was ob-
tained by measuring a known scatterer, low-density
(0.0073 g/cm ) helium gas at 5.6 K. The measurement
was performed using the same experimental setup and
cell which were used in the liquid measurements. At this
low density, the effects of multiple scattering and sample
self-shielding were under 1% and essentially only single
helium scattering events were observed. The integrated
scattering is then defined to have a unit area so that it
satisfies the zeroth-moment sum rule for incoherent
scattering. This provides an absolute intensity scale to
within the 5% statistical uncertainty in determining the
area of the helium peak. This measurement also provides
a check on our resolution calculations, which are de-
scribed below.

The scattering in the liquid is placed on an absolute in-
tensity scale using the helium-gas measurements and the
known ratio of the liquid and gas densities. In the liquid
sample self-shielding, due to the decrease in intensity of
the incident beam as it is scattered by the liquid, is on the
order of 10%. The instrument simulation is used to
determine the correction for sample self-shielding so that
the scattering may be placed on an absolute scale. The
contribution of multiple scattering in the bulk liquid was
also calculated. At these high Q's, multiple scattering in-
volving the bulk liquid and/or aluminum sample cell
makes a negligible contribution to the liquid scattering.
Previous calculations of the contribution of multiple
scattering in the high-Q limit have drawn the same con-
clusion.

The effects of instrumental resolution must be taken
into account in order to accurately determine the true
scattering function. In general, the instrumental
broadening is a complicated function depending on the
energy and the momentum transfer and the instrument

geometry. In addition, for TOF spectrometers using
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pulsed sources the instrumental broadening is asym-
metric, mainly due to the asymmetric moderator distribu-
tion. A simple closed form expression for the resolution
function is not possible in general.

A Monte Carlo simulation of the instrument response
function is used to correct for instrumental broadening.
A model form for the scattering is used as input to the
simulation and the resultant scattering, including resolu-
tion effects, is calculated for each detector using the in-
cident beam properties obtained from the monitor fits
and the known instrument geometry. The output of the
simulation, in counts versus time of flight, is in the same
form as the experimental data and is processed using the
same analysis programs. Any errors in the choice of the
mean energy and time at sample will be identical to those
in the observed scattering. The resultant resolution
broadened J( Y) can then be directly compared to the ob-
served spectra on an absolute scale.

The input of the simulation may be a theoretical calcu-
lation of the scattering to be compared with the data or a
model scattering function, such as a Gaussian J( Y). The
results can be directly compared to the observed scatter-
ing and y evaluated to determine the goodness of fit. In
the case of a model scattering function, the parameters of
the model can be adjusted to obtain the best agreement,
as determined by the smallest y . Errors may be assigned
to the model parameters by performing simulations in the
neighborhood of the best fit and using the curvature of
the y surface.

We used the procedure described above to compare
our observed scattering to theoretical calculations. Fits
of a model scattering function could also be carried out
using this procedure by continuously adjusting the model
parameters and rerunning the simulation. However, this
is extremely time consuming. Therefore, it is convenient
to express the effects of instrumental resolution as a sim-

ple one-dimensional convolution of a broadening function
with the model scattering. Unfortunately, this is not gen-
erally possible since the resolution is a function of four
variables, the energy transfer and the three components
of the momentum transfer.

In particular cases an effective resolution function
which is a simple one-dimensional convolution can be
defined. In terms of this effective resolution function,
I( Y), the observed resolution-broadened scattering
J», ( Y) is

J,b, (Y)=I I(Y—Y')J(Y')dY', (3.1)

where J( Y) is the unbroadened scattering function. Such
a definition will be appropriate when the instrumental
broadening does not depend strongly on the details of the
scattering function measured. In this case, an effective
resolution broadening may be calculated far a scattering
function close to the true scattering and used for model
functions that do not differ significantly from this shape.

In our case, we use a model scattering function,J,d„( Y), that closely approximates the observed helium
scattering for J( Y). The instrumental simulation is then
used to calculate J,b, ( Y) and I( Y) is obtained by decon-
voluting J( Y) from J,b, ( Y). This yields a broadening
function which will accurately represent the instrumental
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FIG. 3. The solid line is the FSE broadening function due to
Silver. The dashed line is the effective instrumental resolution
function I( Y) of the PHOENIX spectrometer for the conditions
of this experiment.

broadening for scattering functions that are similar toJ,d,~( Y). To obtain the effective resolution function ap-
propriate to this work we use a Gaussian n(p ) and the
IA. This provides a model scattering function that is
similar to the observed scattering and exhibits the same Q
dependence and scaling behavior. Figure 3 shows the
effective instrumental resolution obtained using this mod-
el for the scattering. The instrumental broadening has a
FWHM of -0.6 A ', comparable to the resolution used
in previous measurements at reactors. The effective reso-
lution was insensitive to the width of the model scatter-
ing, for widths ranging from 0.2 to 0.8 A . This range
is comparable to the widths observed in these rneasure-
ments.

IV. RESULTS

The scattering was measured from the bulk liquid at
temperatures of 0.35, 1.0, 1.5, 1.8, 2.0, 2.3, 2.8, 3.5, and
4.2 K. All of the measurements were carried out at a
constant density of 0.147 g/cm . The choice to perform
the measurements at constant density was made for
several reasons. First of all, the momentum distribution
at these temperatures and pressures is dominated by the
effects of zero-point motion. Zero-point motion, in turn,
depends sensitively on the effective volume available for
the motion of the atoms, which is directly related to the
density. The density is thus the most physically reason-
able variable to keep constant in a search for
temperature-dependent effects in helium. In addition,
many systematic effects whose influence may be irnper-
fectly treated in the data analysis procedure, such as
final-state effects, multiple scattering, sample attenuation,
and the absolute scattering intensity, are primarily func-
tions of density. By performing the measurements at
constant density, we help to insure that the temperature
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dependence of the observed scattering directly reflects the

temperature dependence of the underlying momentum
distribution.

Figure 4 shows the measured scattering, converted to
J(Y) as described previously. The scattering has been
converted to an absolute intensity scale using the
helium-gas measurements. The integrated intensity of
the observed scattering, when sample attenuation is taken
into account, is unity at all the temperatures, to within
the 5% error in the absolute intensity scale provided by
the helium-gas measurement. Thus, the observed scatter-
ing satisfies the zero-moment sum rule for incoherent
scattering, which indicates that all the scattering is ob-
served.

As shown in Fig. 4, the scattering is broad and feature-
less at all the temperatures studied. At high tempera-
tures near 4 K, J ( Y) is nearly Gaussian with a width
determined by zero-point motion. As the temperature is
lowered toward T&, the observed scattering becomes
slightly non-Gaussian, with an increase in the scattering
at small Y. The significance of this observation is worth
noting. If the momentum can be expressed as a coherent
superposition of statistically independent normal modes
(not necessarily harmonic), then the momentum distribu-
tion must be Gaussian as a consequence of the central
limit theorem. The observation of non-Gaussian behav-
ior in J( Y) implies that such a decomposition has limited
validity even in the normal liquid. Overall, though, there
is little temperature dependence of the scattering in the
normal liquid phase.

I I I I
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A distinct change in the shape of the scattering is ob-
served as the temperature passes from above to below T&.
The scattering becomes visibly more peaked around Y=O
and the shape of the scattering is decidedly non-
Gaussian. The intensity at small Y continues to increase
with decreasing temperature from 2.0 to 1.5 K, after
which the scattering is relatively temperature indepen-
dent down to the lowest temperature measured. The be-
havior we observe is similar to the results of previous in-
elastic neutron scattering experiments at lower Q's. A
large change in the scattering is observed at the A. transi-
tion, while little change with temperature is observed ei-
ther above or below the transition.

No sharp feature indicative of a condensate peak is ob-
served in the measurements below Tz. The data do not
provide a direct, theory-independent verification of the
existence of a condensate. The general increase in the
scattering at small Y is consistent with the development
of a condensate peak broadened by instrumental resolu-
tion and final-state broadening. However, we note, due
to the finite statistical accuracy of the data, the scattering
is also consistent with momentum distributions that do
not contain a condensate peak. We will discuss this issue
in more detail later. At this point, we simply wish to em-
phasize that we can draw no conclusions regarding the
existence or magnitude of the condensate from the ob-
served scattering alone.

A. Comparison to theory

The most direct test of theoretical predictions for n(p )

is a direct comparison with the experimental results.
Rather than attempt to convert the experimental results
to n(p ), we instead convert the theoretical predictions to
a form that can be compared directly to the experimental
results. The IA is used to convert the theoretical n(p) to
J,~(Y). Finally, J,~(Y) is broadened by instrumental
resolution and, if desired, by FSE.

Figure 5 shows a comparison between the observed
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FIG. 4. Observed J( Y) for all the temperatures at a constant
density of 0.147 g/cm .

FIG. 5. Observed scattering at T=3.5 K. The dashed line is
the PIMC prediction of Ceperley and Pollock broadened by the
instrumental resolution function only.
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scattering in the normal liquid at 3.5 K and a density of
0.147 g/cm and the theoretical prediction of the PIMC
results of Ceperley and Pollock at 3.33 K and a slightly
lower density of 0.138 g/cm . The theoretical prediction
has been converted to J,A( Y) using the IA and

broadened by the instrumental resolution. No correc-
tions for final-state effects have been made. As described
earlier, low-density helium-gas measurements provide an
absolute scale for comparison between theory and experi-
ment to within the 5% statistical accuracy of the mea-
surement. Agreement between the theoretical predic-
tions and the experimental observations is obtained
despite the neglect of FSE corrections. This is not
surprising, since the relatively narrow broadening func-
tion should have little effect on the broad, nearly Gauss-
ian J(F) in the normal liquid.

Figure 6 shows a similar comparison of the experimen-
tal results at 0.35 K and the ground-state GFMC calcula-
tion of %'hitlock and Panoff at the same density.
Differences between their prediction and the experimen-
tal results are clearly evident. The GFMC calculation
predicts substantially higher intensity than the experi-
mental results near the peak center. If final-state effects
were absent at our momentum transfers, then one would
be forced to conclude that these differences represent a
disagreement between theory and experiment, possibly
the result of a smaller condensate fraction than predicted
by the GFMC calculation. Such a conclusion is unwar-
ranted. Unlike the situation in the normal liquid, FSE
must be taken into account to obtain agreement between
theory and experiment for the non-Gaussian scattering in
the superAuid.

A proper comparison of the theoretical predictions
with experiment must include both instrumental resolu-
tion and final-state effects. Figure 7 shows the compar-
ison between the observed scattering in the normal liquid
at 3.5 K and the PIMC calculation broadened by instru-
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FIG. 7. Observed scattering at T=3.5 K. The dashed line is
the PIMC prediction of Ceperley and Pollock broadened by the
instrumental resolution function and by Silver's FSE broaden-
ing function.

mental resolution and convoluted with FSE using Silver's
theory. The FSE convolution introduces some slight
changes, but they are well within the errors of the ob-
served scattering. Theory and experiment are in agree-
ment for this temperature in the normal fluid.

Finally, we will take FSE into account in the super6uid
phase. The solid line in Fig. 8 is the GFMC prediction,
this time with FSE broadening included using Silver's
theory. Again, no adjustable parameters have been used.
A small ( —0. 1 A ) shift of the simulation relative to
the data has been made which is within the uncertainties
in the FSE theory. The agreement between theory and
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FIG. 6. Observed scattering at T=0.35 K. The dashed line
is the GFMC prediction of Whitlock and Panoff broadened by
the instrumental resolution function only.

FIG. 8. Observed scattering at T=0.35 K. The dashed line
is the GFMC prediction of Whitlock and Panoff broadened by
the instrumental resolution function and by Silver's FSE
broadening function.
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FIG. 9. Observed scattering at T=0.35 K. The three fits
correspond to the momentum distributions for three different
assumed values of the condensate fraction with an uncondensed
component of the same shape as the CxFMC uncondensed com-
ponent of Whitlock and Panoff.

experiment is now excellent. For the Grst time, the
theoretical calculations of momentum distributions, FSE
theory, and the experimental data are mutually con-
sistent.

The GFMC calculation of the uncondensed component
of n(p ) in the superfluid can be used to perform an in-
teresting test of the sensitivity of the data to the size of a
condensate. Under the assumption that the shape of the
uncondensed component of n(p ) is given correctly by the
GFMC calculation, we can fit the data by using the
GFMC calculations for the uncondensed component and
replacing the condensate 5 function with a Gaussian
whose magnitude and width are allowed to vary, subject
to the constraint that the normalization of n (p ) is main-
tained. The best agreement is obtained for a Gaussian
width of less than 0.05 A ' and a value for no of 10%.
Significant deviations are observed for widths greater
than 0.2 A ' and values of n0 less than 8% or greater
than 12%. The best flt and the two limiting cases are
shown in Fig. 9. The data provide clear evidence for a
narrow Bose condensate peak with a magnitude of
10+2%. However, we note that this result depends on
the form used for the uncondensed component of n(p).
As will be shown later, if a different form for the uncon-
densed n (p ) is chosen, the data is also consistent with no
condensate fraction. This value for the condensate frac-
tion and the limits we have placed on it are model depen-
dent.

%e have also compared our data at 0.35 K to the
HNC/S variational calculations of n(p) extended to
T=0.35 K by Manousakis and Pandharipande. ' Figure
10 shows the HNC/S n(p ) converted to J( Y), broadened
by instrumental resolution, and convoluted with Silver's
FSE broadening function along with the experimental
data. The agreement between theory and experiment is
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FIG. 10. Observed scattering at T=0.35 K. The dashed line
is the HNC/S prediction of Manousakis and Pandharipande
broadened by the instrumental resolution function only. The
solid line is the HNC/S prediction of Manousakis and Pan-
dharipande broadened by the instrumental resolution function
and by Silver's FSE broadening function.

also excellent for the HNC/S calculation. The fact that
good agreement can exist despite the presence of a weak
condensate-induced singularity in the variational n(p)
was explained earlier in Sec. II.

There is one feature in the data for which we have no
explanation. A small bump superimposed on the tail of
the main scattering peak is present near Y=2 A
which is not visible at Y= —2 A . This bump is also
present near Y=2 A ' at higher densities in the normal
fluid, superfluid, and solid phases for Q =23 A ' and at
the density of this paper for lower Q's down to
Q =10 A ' in data taken on the PHOENIX spectrome-
ter at IPNS. A similar bump is evident in helium data
taken on the High Energy Transfer (HET) spectrometer
at the ISIS Neutron Source at Rutherford Appleton La-
boratories for Q =12 A ' and 14 A

This asymmetric feature in the observed scattering
cannot be a property of the underlying momentum distri-
bution because the sample container constraints the total
momentum of the liquid to vanish. Since the scattering
data on the positive Y side of the recoil peak corresponds
to the neutrons arriving at the detectors at later times, it
might be possible to attribute the asymmetric feature to
the effects of multiple scattering, which, if present, would
produce an asymmetry in the observed scattering in the
same direction. However, the relative size of this asym-
metric feature appears to be the same for all of the exper-
irnents mentioned above despite the fact that the sample
sizes vary by an order of magnitude, with differing sarn-

ple cell volumes, geometries, and shielding configura-
tions. Since the relative magnitude of a multiple-
scattering signal should decrease with a decreasing
scattering volume, this explanation for the origin of the
bump is made somewhat unlikely. Finally we note that
no present theories for FSE predict any such effect. The
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asymmetric bump remains an unexplained feature of the
inelastic scattering data.

B. Deconvolutions
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Direct comparison of the observed scattering to
theoretical results is useful for testing the theoretical pre-
dictions. However, it only provides information regard-
ing the specific theory compared to the data. It is desir-
able to obtain a representation of the underlying momen-
tum distribution which is independent of particular
theories. This capability is essential for the extraction of
model independent values of the kinetic energy and the
condensate fraction. In order to implement this goal,
both instrumental resolution and final-state broadening
must be removed from the observed scattering.

Deconvolution of instrumental broadening from sta-
tistically noisy data is an ill-posed problem. For perfect
data with no statistical noise, a unique deconvolution is
possible. However, when statistical noise is present a
whole family of scattering functions can provide an accu-
rate description of the observed scattering. Therefore,
any attempt at deconvoluting the broadening must pro-
vide some indication of the range of similar curves which
also describe the observed scattering.

Rather than attempt to deconvolute the instrumental
resolution, we will fit a model function, broadened by
resolution and, if desired, by final-state effects, to the ob-
served scattering. We will choose the model such that it
has physically realistic behavior and suScient flexibility
to accurately reflect the behavior of the true scattering.

The model scattering function that we have found most
convenient for describing the observed scattering is a sum
of Gaussians
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FIG. 11. (a) shows three different two-Gaussian fits to the
data at 0.35 K. (b) shows the corresponding model momentum
distributions J ~,~( Y). One is a two-Gaussian fit with a con-
densate fraction of 10%%uo, another is a two-Gaussian fit with a
condensate fraction of 4%, and the third is a two-Gaussian fit

with no condensate fraction.

whose amplitudes, widths, and common center may be
varied. This form is not unique and many other forms
could be used to fit the data. Nevertheless this form, with
the restrictions that the amplitudes are always positive
and the centers are locked together, does provide a physi-
cally realistic model scattering function. It is symmetric
and positive definite. It is free of spurious oscillations
and other obviously unphysical features which would cer-
tainly appear if a direct deconvolution were attempted.
In practice, the center of the scattering function Y„
which relaxes to a value close to the IA result of zero in
the course of the fit, is allowed to vary to take into ac-
count uncertainties in the center of the FSE broadening
function and any errors in the definition of the absolute
energy scale.

As an illustration of the range of model scattering
functions which can equally well fit the data, consider the
three different two-Gaussian fits to the scattering at
T=0.35 K shown in Fig. 11. The dashed and dotted
lines show the underlying distributions which best fit the
data if they are constrained to possesses a narrow corn-
ponent by fixing the width of one of the Gaussians to be
very narrow (o.=0.03 in this case). The dashed line has a
narrow component with 10% of the total area, and the

dotted line has a narrow component with 4% of the total
area. Finally, the solid line is a two-Gaussian fit in which
both the amplitudes and widths are allowed to vary. The

values of these fits are very close to each other. If we
think of the narrow component of the fits as representing
the contribution from the condensate and the broad com-
ponent as representing the momentum distribution of the
uncondensed atoms, then this example shows that, with
an appropriate choice for the uncondensed component,
the scattering data is consistent with a condensate frac-
tion of zero.

We have performed two-Gaussian fits to the scattering
data for all the temperatures both with and without the
inclusion of FSE broadening effects. Excellent agreement
with the observed scattering can be obtained at all tem-
peratures using only two Gaussians in the model scatter-
ing function. The fitted functions are shown in Figs. 12
and 13, and the parameters used are tabulated in Tables I
and II. Once again, we emphasize that the particular
values of these parameters are only representative of an
entire family of values which can equally well character-
ize the data. The widths and amplitudes of the fitted
Gaussians are highly correlated, and a relatively broad



DEEP-INELASTIC NEUTRON SCATTERING FROM LIQUID He

I I I I I I I I I I I I I I I I

0.50 (b)
A11

Temp 8.

0.25 T=2.3 K

0.00

m —0.25

—0.50

SK

K

K

K

K

K

K

—0.2

0.0—0.75
0

Ki —I I I I I I I I I I I I I I I I—

4 —4 —P, 0 2 4

FIG. 12. J,d,~{ F) for the two-Gaussian fits at all temperatures with instrumental resolution and FSE deconvoluted.

set of parameters can lead to essentially the same shape
for the underlying momentum distribution.

The model momentum distributions are important for
two reasons. First of all, they reveal the qualitative tem-
perature dependence of the shape of the momentum dis-
tribution without the complications introduced by the in-

strumental resolution and, if Silver's FSE theory is accu-
rate, without complications due to FSE. As can be seen
in Figs. 12 and 13, the temperature dependence of the
shape of the model momentum distributions is similar to
that of the uncorrected scattering data discussed above.

They can also be used to obtain model independent
values for properties of the momentum distribution such
as the average kinetic energy and the condensate fraction.
It is true that there is inevitably some model dependence
involved in the assumption of a sum of Gaussian func-
tions for the underlying momentum distributions. The
fact that the two-Gaussian fits are adequate for all of the
temperatures, however, means that any such residual
model dependence is too insignificant to be reflected in
the information which we can obtain from the scattering
data.
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FIG. 13. J,d,~{ Y) for the two-Gaussian fits at all temperatures with only instrumental resolution deconvoluted.
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TABLE I. Two-Gaussian fitting parameters, resolution and FSE deconvoluted.

Temp.
(K)

0.35
1.0
1.5
1.8
2.0
2.3
2.8
3.5
4.2

Al
(%)

0.785
0.757
0.763
0.765
0.779
0.843
0.592
0.875
0.925

CT I

(A ')

0.95
0.99
1.00
0.98
1.00
1.01
1.11
1.00
1.01

A2

(%)

0.215
0.242
0.237
0.235
0.221
0.158
0.408
0.125
0.075

0'2

{A ')

0.29
0.34
0.34
0.39
0.40
0.42
0.67
0.45
0.33

Y,
(A ')

—0.03
—0.02
—0.01
—0.03
—0.04

0.00
+0.01
—0.04
—0.03

C. Kinetic energy

The most stringent test of the theoretical calculations
of n(p ) is, of course, a direct comparison to the experi-
mental results. Another test which can be performed is a
comparison of the average kinetic energy per atom,
(Ek ), which the momentum distributions imply. In the
incoherent approximation, the kinetic energy is propor-
tional to the second moment of S(Q,co). This relation is
independent of the validity of Y scaling and the existence
of FSE. Given the excellent agreement between theory
and experiment for the momentum distributions as
shown above, one might naively assume that agreement
between the average kinetic-energy values would be au-
tomatic. In fact, such an expectation is overly optimistic.

We have used the second-moment sum rule in the form
which it assumes in Yspace

&E, )=f J(.Ii 3A' Y
(4.2)

0 He

to calculate the (Ek) from our two-Gaussian model
scattering functions. The observed kinetic energies
(Table III) show relatively little temperature dependence
below T&, ranging from 13.3 K at T=0.35 K to 14.8 K
at 2.0 K. (E„) jumps to 16.1 K at T=2.3 K and in-

creases slowly to 17.1 K at T=4.2 K. The size of the
kinetic-energy decrease from just above Tz to the
lowest-temperature value is much larger than one would

&E,(~, )) = f 'JlI ) dI .
0 2mH,

(4.3)

As can be seen in Fig. 14, the experimental and theoreti-

expect using simple models for n (p ) in which the uncon-
densed component is simply reduced in size without
changing shape when the condensate appears. Apart
from the jump in (Ek ) across the A, transition, the tem-
perature dependence of (Ek) at constant density is
smooth.

Above 1 K, the experimental (Ek ) is slightly lower
than, but in fair agreement with, the PIMC calculations.
The values for the (Ek ) from the two-Gaussian models
at 1.0—2.0 K range from 14.0 to 14.8 K. These values are
in excellent agreement with the PIMC values which
range from 14.2 to 14.7 K for temperatures between 1.18
and 1.82 K. Above T&, the agreement is also quite good
between the two-Gaussian values for the kinetic energy
and the PIMC values. In contrast, the experimental
(Ek ) at 0.35 K is 13.3+1.3 K, which is significantly
below the GFMC and HNC/S values of 14.3 and 14.9 K,
respectively. Despite the excellent agreement obtained
for the momentum distribution at 0.35 K, the theoretical
and experimental (Ek ) are different.

The origin of this difference can be exhibited by calcu-
lating the (Ek ) from the second moment as a function of
a cutoff momentum Y,

TABLE II. Two-Gaussian fitting parameters, only resolution deconvoluted.

Temp.
(K)

0.35
1.0
1.5
1.8
2.0
2.3
2.8
3.5
4.2

AI
(%)

0.718
0.666
0.693
0.675
0.625
0.788
0.909
0.841
0.972

01
(A-')

0.95
1.01
1.01
0.99
1.06
1.01
0.96
0.99
0.97

A2

(%)

0.277
0.331
0.303
0.321
0.369
0.210
0.085
0.157
0.024

CTp

(A-')

0.49
0.52
0.51
0.56
0.56
0.59
0.46
0.61
0.28

Y,
(A

—I
)

—0.10
—0.09
—0.08
—0.10
—0.08
—0.08
—0.06
—0.11
—0.11
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TABLE III. Theoretical and experimental kinetic energies.

Temp.
(K)
0.35
1.0
1.5
1.8
2.0
2.3
2.8
3.5
4.2
0.0
0.0
1.18
1.54
1.82
2.22
2.50
3.33
4.00
0.0
1.5
2.0
2.1

2.2
3.5
3.5
1.3
2.0
2.3
2.6
3.2
3.8
4.2
1.2
4.2
1.1
4.2

Density
(g/cm )

0.147
0.147
0.147
0.147
0.147
0.147
0.147
0.147
0.147
0.146
0.146
0.146
0.146
0.146
0.147
0.146
0.138
0.128
0.146
0.146
0.146
0.147
0.147
0.137
0.137
0.146
0.147
0.147
0.146
0.141
0.133
0.125
0.146
0.146
0.146
0.125

(&p )
(K/atom)

13.3
14.1
14.5
14.0
14.8
16.1
16.6
16.2
17.1
14.9
14.3
14.2
14.4
14.7
15.9
15.9
16.0
15.6
13.7
13.8
14.3
14.8
15.8
15.8
15.3
13.4
14.5
16.5
14.9
14.8
15.8
15.7
13.2
16.9
13.3
13.6

Error
(K/atom)

+1.3
+1.4
+1.4
+1.4
+1.5
+1.6
+1.7
+1.6
+1.7

+1.0

+0.5
+0.5
+0.5
+0.5
+0.5
+0.5
+0.5

Source

Present
Present
Present
Present
Present
Present
Present
Present
Present
Ref. 18
Ref. 20
Ref. 21
Ref. 21
Ref. 21
Ref. 21
Ref. 21
Ref. 21
Ref. 21
Ref. 53
Ref. 53
Ref. 53
Ref. 53
Ref. 53
Ref. 53
Ref. 53
Ref. 50
Ref. 50
Ref. 50
Ref. 50
Ref. 50
Ref. 50
Ref. 50
Ref. 51
Ref. 51
Ref. 52
Ref. 52

Method

Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
HNC/S
GFMC
PIMC
PIMC
PIMC
PIMC
PIMC
PIMC
PIMC
Elastic
Elastic
Elastic
Elastic
Elastic
Elastic
Elastic

Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
Inelastic
Inelastic

I I I I

i

I I I I

15— 15

&E

10

.35—K model-

/8

0
0

, , I,
4

Y, (A ')
FIG. 14. (E„)(Y, ) vs Y, at T=0.35 K for the GFMC,

HNC/S, and model momentum distributions.

cal (Ek( Y, ) ) are identical up to Y, =2 A ', and the en-
tire difference in the (Ek ) values comes from the larger
momenta in the tails of the distribution. But this is the
very region in which the observed scattering is small and
the errors due to counting statistics are significant. Since
the (E„) is proportional to the second moment, even a
small difference in the high- Y tails of the scattering can
lead to a large difference in the kinetic energy. The
difference in the ( Ek ) can easily be accounted for by as-
suming a small amount of additional intensity in the
poorly known tails of the scattering.

Earlier inelastic scattering measurements at standard
volume and pressure ' have also determined the (Ek )
from the second moment of the scattering. These values
have been summarized by Sears and are shown in Fig.
15. The results show little temperature dependence
below the A, transition and are in good agreement with
our work.

The average kinetic energy has also been determined
using neutron or x-ray structure-factor measurements in
combination with heat-capacity measurements. The ki-
netic energy is the difference between the total energy as
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P2 I I I I

I

I I I f

Present

o PIMC

dFMC

+ HNC/8

g(r), Refs. 54,55,5B,57

I I I

I

I I I I

I

I I

]8 — & Inelastic, Ref. 50

(Ek)
(K)

Inelastic, Ref. 5i

x Inelastic, Ref. 52

o Q

14—
"b

o

xo

sa
0

I VI I l I I I ~ I I I I

8 3 4

FIG. 15. Compilation of (E„)vs temperature from a variety

of measurements. The points with error bars are the results of
the present measurements.

determined from the heat-capacity measurements and the
average potential energy as calculated using g(r ) and the
interatomic potential. The average result of the neutron
and x-ray values is the solid line in Fig. 15. The
curve is in good agreement with the present values.

D. Estimate of the condensate fraction

Because of the importance of the presence of a conden-
sate in our present understanding of superfluidity in bulk
He, several attempts have been made to estimate its

size. ' ' ' Given the lack of a detailed microscopic
theory for liquid He, the only measurable property of
the liquid which can unambiguously reveal the size of the
condensate is the momentum distribution. Yet no dis-
tinct condensate peak characteristic of the superfluid has
ever been observed in any deep-inelastic neutron scatter-
ing experiment to date. Unfortunately, even the best
present method of estimation of the condensate fraction,
known as the Sears method, relies on assumptions about
aspects of the momentum distribution which are difFicult
to verify.

We have chosen not to include a discussion on the es-
timation of the size of the condensate fraction in this pa-
per for two reasons. A detailed discussion of the Sears
method, including both a clear indication of the various
assumptions involved and a history of its application in
the past, would require a relatively large amount of space
to be devoted to a method whose physical significance is
not compelling. In addition, we are currently developing
an alternative method for the estimation of the conden-
sate fraction which may represent a significant improve-
ment on the Sears method. A separate paper on the ex-
traction of the condensate fraction which contains a dis-
cussion of both methods is in preparation. '

V. CONCLUSIONS

We have shown that excellent agreement exists be-
tween the theoretical results and the experimental obser-
vations for all aspects of the momentum distribution in
liquid He. Our results, due to finite instrumental resolu-
tion and statistical accuracy, can be described by a range
of momentum distributions and a unique determination
of n (p ) is not possible. In particular, it is possible to ob-
tain agreement with the results in the superfluid both
with momentum distributions that contain a condensate
contribution and with those that do not. However, the
excellent agreement between theory, which predicts a
Bose condensate containing -9%%uo of the atoms near
T=O, and experiment provide convincing evidence for
the existence of Bose condensate. Thus, we believe that
these measurements settle beyond any reasonable doubt
the long-standing question regarding the existence and
magnitude of a Bose condensate in the superfluid.

This recent convergence of theory and experiment has
been made possible through several simultaneous ad-
vances. The availability of more powerful computational
techniques and facilities for the calculation of n(p ) has
lead to very accurate theoretical predictions. In addition,
the development of accurate theoretical predictions for
final-state effects, particularly in the superfluid, has al-
lowed ab i'nitio comparisons of the theoretical and experi-
mental results. The development of spallation neutron
sources has enabled us to obtain high quality, interpret-
able experimental results with good statistical accuracy.

A better understanding of the strengths and
weaknesses of deep-inelastic neutron scattering as applied
to determinations of n(p ) in quantum systems has also
evolved. The insensitivity of the observed scattering to
some of the singular behavior in n (p ) is now understood,
and the difficulties involved in determining the behavior
of n(p ) for large p are now appreciated. We have tried to
indicate which aspects of the momentum distribution are
tightly constrained by the measurements and which as-
pects are not.

Some may be disappointed that the original goal for
much of the high-g neutron scattering work in liquid
helium, a direct observation of the condensate peak, has
not come to pass. In the foreseeable future, it is unlikely
that this goal will be reached in deep-inelastic neutron
scattering experiments. But the failure to directly ob-
serve a condensate peak is more than offset by the pro-
gress in both theory and experiment which has followed
from the search. The insights gained from the final-
state-effect theories, for example, are applicable to inelas-
tic scattering experiments in other areas of physics. In
addition, the numerical and variational calculations
which have been successfully tested on helium promise to
improve our understanding of many other dense, strongly
interacting systems. Finally, the techniques developed in
deep-inelastic neutron scattering hold promise for future
measurements in liquid He at higher densities, liquid
He, liquid He- He mixtures, He in confined

geometries, and solid helium. Far from being a disap-
pointment and a curse, the invisibility of the condensate
has been a blessing in disguise.
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