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Asymptotic limits for the penetration depth of strong-coupling superconductors
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We calculate the asymptotic limit of some select electromagnetic properties when the electron-
boson mass renormalization parameter of Eliashberg theory A,~ 00. Our results apply for any re-
duced temperature t & 0 and &A,t )&1. Local- and London-limit penetration depths are considered
as well as the electromagnetic coherence length. Exact numerical results are given as well as ap-
proximate analytic expressions in a one-gap model for t near 1. For simplicity a 5 function is em-

ployed for the electron-boson spectral density, and the Coulomb pseudopotential is neglected.

I. INTRODUCTION

In two previous papers, we have derived expressions
for the thermodynamics' and for the second upper criti-
cal magnetic field of a superconductor in the limit when
the electron-boson mass renormalization parameter A,

tends towards infinity. In this limit, these properties take
on particularly simple forms. The calculations are valid
for an reduced temperature t )0 with the restriction
that A, t»1, which excludes zero temperature. Simi-
lar work has also been described by Bulaevskii et al. , but
is restricted to temperature T=O and T very near T„so
that the two works mentioned above are complementary.

In this paper, we extend our previous work to select
electromagnetic properties. We will consider the local-
limit penetration depth, which is also related to the dc
critical current flowing in a superconductor-insulator-
superconductor (SIS) Josephson tunnel junction. Also,
the London-limit penetration depth and the electromag-
netic coherence length are investigated.

In Sec. II, we introduce the necessary formalism. This
is followed with a general discussion (Sec. III) of the
asymptotic form of the basic equations that reduce to
universal dimensionless forms independent of material
parameters. Section III also contains results for a simple
one Matsubara gap solution to the universal equations
that give qualitatively valid results for temperatures ( T)
near the critical temperature (T, ). In Sec. IV, we present
our exact results in numerical form for all t & 0 such that
~A, t » 1 while Sec. V is a short conclusion.

II. FORMALISM

Sang Boo Nam derived formulas for the electromag-
netic properties of a superconductor within Eliashberg

I

where the subscript "I"denotes the local limit and crz is
the normal-state conductivity equal to

otv = ', N(0)e vt:s'tt—

with e the charge on the electron and N(0) the single spin
electronic density of states at the Fermi surface. In Eq.
(1), b, (i to„) is the nth Matsubara gap and
ito„=itrT(2n —1), n =0,21,+2, . . . the nth Matsubara
frequency. Except for a difFerent numerical factor formu-
la (1) is also related to the critical current J,(T) of an SIS
Josephson function and we have

J,(T)
J,(0)

A,t(0)
A,t(T)

(2)

so that knowing the asymptotic limit for A,t(T) also im-
plies that we know it for J,( T).

The London-limit penetration depth which applies
when A.L ( T ) »g(0) is given by

theory. Here we will be interested in the magnetic-Geld
penetration depth A,( T) in the local and London limit and
in the electromagnetic coherence length g(T) as a func-
tion of temperature T. The local limit is characterized by
the condition g(0) »1 where l is the electron mean free
path equal to Uz~z with U~ the electron Fermi velocity
and ~z the normal-state scattering time due to normal
impurity scattering. The formula is '

otv ~ b (tto„)
At(T)= 4sr Torso X

n=t ton+~ (tean)

b (ico„)
AL ( T ) = 3srN(0)e vF Tiso g-„=t Z (i co„)[co„+5 (i to„)]

which requires for its evaluation the nth Matsubara renormalization factor Z(i co„)which with b, (i co„)is given by solu-
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tions of the imaginary frequency axis Eliashberg gap equations. These are'

A(i co ) b(i, co„)
b(i co„)Z(ico„)=m. T g [A(n —m ) —JM*(co, )],+n t+

[co +6 (ico )]' [co„+b,(ico„)]'
(4)

vrT ~m 1Z(ico„)=1+ QA(n —m), +mt+
[co +6 (ico )]' [co„+5(ico„)]'

where

2coa F(co)dco
A, n —m =

co +(co„co~)
(6)

and hence

A((T) g(T)
AL(T) I

(10)

In Eq. (4), p'(co, ) is the Coulomb pseudopotential which
comes with a cutoff at co, and n.t+ =Pi/2~ac describes im-

purity scattering. In Eq. (6), a F(co) is the electron-boson
spectral density. Throughout the work to be described
here, we will use, for this quantity, a delta function of
weight 3 at the Einstein frequency co+, i.e.,
a F(co)= A5(co —co@) and so A(0)—:A, =22/coz. For
simplicity, we will also take p'(co, )=0. [Retaining a
finite p (co, ) does not lead to any qualitative changes in

the results although it does of course affect numerical
values somewhat. ]

A first important fact to notice about the gap equations
is that on substituting (5) into (4) the mt+ impurity term
drops out of the single equation for b,(ico„),which takes
on the form

[b(ico )
—(co / co)b(ico„)]

b(ico„)=nT g A(n —m )
[~2 +g2( i~ ) ]1/2

where l= vF~& is the mean free path. We have used Eqs.
(1) and (3), and (9) to establish this last equation. Thus
we see that local and London penetration depth and elec-
tromagnetic coherence distance are not independent
quantities. Also in the dirty limit equation (8) for Z(ico„)
can be used and the coherence length reduces to

UFA
g(T)=

27Tt+

This is a well-known result which states that for
1 «g, (T), where (0(T) is the intrinsic coherence length,
the coherence distance becomes the mean free path. This
makes sense since g(T) measures the distance over which
information can be transferred between two electrons.

III. ASYMPTOTIC LIMIT NEAR T,
IN THE ONE-GAP MODEL

Z(i co„)=mt+—1

[co„+b(ico„)]'
(8)

On substitution of Eq. (8) into formula (3) for the London
penetration depth, we recover immediately our formula
(1) for the local limit. Thus the London-limit penetration
depth is indeed dependent on impurity factor m.t+ and
tends toward the local limit as m.t+ &&1.

The final quantity of interest here is the electromagnet-
ic coherence length g(T) which is given by the formu-
la5, 13

oo b, (ico„)
vFA' „,Z(ico„)[co„+b,(ico„)]3~

b, (ico„)
„=) co„+5 ( ico„)

so that b,(ico„)is completely independent of mt+ and
hence, the local-limit penetration depth is independent of
~~ except for the factor of 0~ appearing in (1). This is

consistent with the fact that the dirty limit mt+ )) 1 has
already been built into the prescription for X&(T), which

only depends on h(ico„). Of course, mt+ does not drop
out of Z(i co„)and, in fact, for mt+ » 1, w. e can make the
approximation

b(i co )—m
h(i co„)

b, (ico„)=~Tg A(m n)—
mWn [co +b (ico )]'~

But for num and a delta function spectral density
A,(n —m ) reads

2A coE
A.(m n)=- num .

co@+(2m T) (m —n )
(12)

On the assumption that ~~ «2mT, which will turn out
later to be equivalent to the condition &A, t »1, we can
neglect the co@ factor in the denominator of (12) and get

A(m n)=— , mWn,2

(2mT) (m n)— (13)

where the dimensionless temperature T:T/Q Acoz has-
been introduced. If we further write

We note first that the m =n term in the sum on the
right-hand side of Eq. (7) drops out since the combination

[b,(ico ) —(co /co„)b,(ico„)]

is then identically zero. So the gap equation becomes
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h(n ) =5 (ico„)/QA coE

we get from Eq. (11) the dimensionless equation

[b,(m ) —(co /co„)b,(n )]
Z(n)=mT g~„(2nT)(m n) — [co +6 (m)]'

(14)

where co„—= (2n —1)n T. This last equation is for a univer-
sal set of dimensionless functions Z(n ) =f„(t) of the re-

I

duced temperature t=—T/T, which do not refer in any
way to specific normal-state parameters, since T, is given
by a number.

For evaluation of the electromagnetic properties intro-
duced in Sec. II, we need not only the gaps but also the
renormalization Z(ico„),and it is therefore necessary to
deal with the separate Eqs. (4) and (5) rather than with
the combined Eq. (7) which nevertheless plays a critical
role in our work. %'e can rewrite these in the dimension-
less form

and

[co„+Z(n)]'~ ~„(2nT)(rn —n) [co +Z (m}]'~ [co„+Z(n)]'
(15)

[co„+Z(n}]'~ c„o~~„(2nT)(m n) —[co~+5 (m)]'~ [co„+b,(n)]'

with t+ = t+ /Q—A vE. Now we know from the form of Eq. (14) that b,(n ) is comp/etely independent of any material pa-
rameter. Thus, only the first term on the right-hand side of Eq. (15}and the second on the right-hand side of (16) refer
to material parameters, except, of course, for the impurity factor mt+. In the asymptotic limit, we can assume
mt+ =m t+ /Q A vE to be much smaller than m TA, . This is equivalent to the condition

E+
v XtX»

COE

1 Z(m }
(rn+n —1) [co +6 (m)]'

1 —5„1 (co /co„)b,(n )

(2~T)2 (m n) (m—+n —1) [co +Z (m )]'r

Z(n)=nT g ' z+
=i (2mT)' (m —n)'

m=1

To get exact results, we need to solve this equation numerically. For T near T„wecan expand in powers of Z(m ) to
get

~( ) T
—

~ 2 ~, ~ + 1 h(m) I, Z (m)
=i (2n T)' (m n} (m—+n —1) ~co

~
co

which can always be satisfied for A, )&1 and &At»1 ,assuming t+ represents a finite impurity content. If we think of
A as fixed and coz ~0 so that A,~ oo we rewrite the condition as ~A, t && t+ /A which can always be arranged for any
t &0, for fixed t+ and sufficiently large A, . If we take coz as fixed and A ~~, A, t &&t+/coE can also always be ar-
ranged if A, is taken large enough and t & 0. In this case, the n.t+ term can be dropped in both (15) and (16}so that, in
the asymptotic limit, impurities will not change the London limit penetration depth or the coherence distance. This
theorem makes sense since for A, »1 the electron-boson scattering will dominate over impurity scattering except at
T=0, a case we do not treat here (~k, t )& 1}.

Noting the symmetry Z( n) =Z(n—+1}and co( n}= —co(n+1), w—e can limit the sum in Eq. (14} to the interval
m = 1 to ~ only and obtain

1 —5„
=i (2~T} (m n)—(m+n —1)

, b, (m) h(n}
2 2

~m CO~

(18)

1 b. (T)
2(m.T } (~T}

(19)

A rough approximation to (18}can be obtained if we
assume that Z(1)=h(T) and that all other gaps are zero.
No unit term appears in the last curly bracket because, in
that case, the sum over m must be carried out to ~ and it
gives zero because terms cancel in pairs. This gives

I

To get the critical temperature, we set b, ~(T}=0in Eq.
(19) and get T, =1/&2m. or

T~ = — +AcoE = v A.cog

For T near T, the gap can be written as

v Aco~Z(T)=&1 t and h(T)= — — &1 t-~z
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with t the reduced temperature t=T/T, It is instruc-
tive to use this simple model to get a first approximation
for the electromagnetic properties introduced in Sec. II.
Equation (1) for A, t (t ) reduces to

3.0

2.5

(t }=-4o~cu~v'A, (1 t )—, t ~1 . (21) 2.0

Equation (3) for the London limit is a little more difficult
to dispose of since, in addition to a dependence on the
gaps, it also contains an explicit factor of Z(im„). But in

the limit l(,~~ Eq. (16) gives us

Z( )—= ~T
[co„+Z(n)]'~

and we get

ne2 1 4NPpAi'(T)=4 p,, —(1 t)=— (1 t)—, t 1,
m +N~

1.5

1.0

0.5

0.0
0.0

I

0.2
I

0.4
I

0.6
I

0.8 1.0

VF'fl
f(t)= „,, t~ I .

COE

(24)

All these relationships are approximate and hold only for
T near T, . In the next section, we will get exact numeri-
cal results for any t )0 and compare our results near T,
with the preceding approximate estimates.

IV. EXACT NUMERICAL RESULTS

We start with Eq. (17), which is dimensionless and
universal. Linearization in Z(n ) leads to an equation for
T, which, through numerical solution, gives

T, =0.2584 or T, =0.183&icoE (25)

a result first obtained by Allen and Dynes. ' The condi-
tion co@ &(2m T, which is the fundamental approximation
made throughout our work, can be transformed into a
more useful form using (25). We see that co@ «2m T can
be rewritten as 1 « &A,t or &A, t »1, which restricts the
range of values of A, and reduced temperature t=—T/T,
for which our work is valid.

In general, at reduced temperature t & 1, the full non-
linear form (17) must be retained and, as stated before, we
get a universal dimensionless function K(n ) =f„(t ) from
which we can evaluate the local limit penetration depth
given in Eq. (1). It can be written as

+)(,Cdg 0'allo
A, '(t)= — ' '(t)I

——
e2 f, g (26)

with

f„'(t)
g '(t)=4vrT, t g, ",(27)

„=&(mT, t }'(2n —1)'+f„'(t)

(23)

where we have used the relation n =—', N(0)mu~ with n

the number of free electrons per unit volume and m the
electron mass. From Eqs. (21} and (23) and reference to
the general relationship (10), we immediately obtain

FIG. 1. The universal dimensionless function g(t ) (solid linc)
which determines the temperature dependence of the local
penetration depth in the asymptotic limit. The inverse function

g '(t) (dashed curve) is also shown. While our calculations are
valid only for &A, t &&1 and so, t &0 for any large but finite
value of A, , the curves for g and g

' are flat over a large temper-
ature range around t ~0 and so the value of g(0) can probably
safely be obtained by extrapolation of our lowest-temperature
results (t =0.01) on the assumption that at yet lower tempera-
tures the behavior does not change unexpectedly.

which is a dimensionless universal function that plays a
crucial role in asymptotic expressions for electromagnetic
properties at any t &0 with the condition ~A, t &&1 un-
derstood.

On comparing (26) and (27) with our one-gap result
(21) for A, (t) with , t~l, we see that in the one-gap
model

g '(t)=—4&2(1 —t)=5.66(1—t) . (28)

1/2

At(t)= g(t)
pp

=7.33X10 g(t), (29)

where the units are meV' m/(0 m)'
The function g(t ) is plotted in Fig. 1 where its inverse

is also shown for the convenience of the reader. As we
know from our one-gap model results, this function goes
to Oo as t ~1. In fact, we find that as t ~1

g '(t }=9.64(1 t ) . — (30)

The difterence in numerical coefficient from the one-gap
model result [Eq. (28)] is significant although the temper-
ature law is, of course, the same. As the temperature is
lowered, the one-gap model becomes less and less valid
and our full numerical calculations cannot be compared

In the exact case, the number 4v'2 is different, as we will
see shortly. From (26), we have

+A,cog
+N
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with any analytic qualitative result. %e see from Fig. 1

that as t~O the curve for g(t) becomes rather fiat.
While, as established above, our numerical work is only
valid for YA, t »1 and so we must have t &0, it never-
theless, seems reasonable to extrapolate to zero tempera-
ture from our lowest temperature which was t =0.01. If
we do this, we get 0.67 for g(0) and the curve remains
nearly flat for a considerable low-temperature range.
This feature has often been interpreted in actual experi-
ments, as a signature of s-state pairing with a finite gap
everywhere on the Fermi surface. Of course, in experi-
ments, we are not necessarily in the local limit. Some-
times the London limit is more appropriate.

The London penetration depth given by the full Eq. (3)
can also be related to the same function g (t ) that we have
just introduced. On reference to (22), we obtain in the
asymptotic limit

16.0 s

I

I

I14.0
I

12.0
I

I

I
10.0

I
I
I8.0

6.0

4.0

2.0

0.0
0.0

I

0.2

~aa
%lag awe

l

0.4
I

0.6
I

0.8 1.0
&L (&)= g (t) .

mk, t2m. T,
(31)

While, as previously stated, Ar(t) i,s given by the same
function g(t ) as A, &, the reader should note the extra fac-
tor of t in the denominator of (31). Thus

&n AL(t) =1 274A&.r g(t ), (32)

where

A =0.5317 X 10 m(10 /cm )'

VF'R

2 TA.
(33}

is the classical penetration depth first introduced by Lon-
don.

The function &t g(t) is given in Fig. 2 as its inverse.
The very low-temperature dependence of this function is
very interesting. While our work is restricted to the
asymptotic region with &A, t » 1 and so to t & 0 for any
large, but fixed value of A, , we see again that &tg (t ) ap-
pears to be well behaved as t ~0 and seems to go towards
zero. On the other hand, the inverse function and there-
fore, AI'(t) goes t,o oo like 1/&t as t~O This is a co. m-

pletely different behavior from Bardeen-Cooper-Schreiffer
(BCS) and is characteristic of the asymptotic limit. It is
valid for any finite impurity content and does not map
directly into our previous results for the local limit. A
word of explanation is perhaps in order. If we assume

mt+ to dominate in the Z(iso„)channel then, as we have
demonstrated, the London limit goes into the local limit.
But in the asymptotic limit, we first assume A, ~ ~ and so
the mt+ term in th. e Eq. (16) for Z(iso„)can be dropped
against the second term for TA. »mt+ which we assumed
is valid for finite t+. It is a question of which limit is tak-
en first. The physical limit is Tk»n. t+, of course, indi-
cating that electron-boson scattering dominates, in this
case, over any impurity scattering.

Finally, we look at the asymptotic limit of the coher-
ence length given by Eq. (9}. Noting that as A, ~~,
Z(iso„)can be approximated by Eq. (22), we obtain im-
mediately

FIG. 2. The universal dimensionless function &tg(t) (solid
line) and its inverse (dashed line) which determine respectively
the reduced temperature dependence of the London penetration
depth and of its inverse. The calculations are valid only for
&k t &&1 and so for any large but finite value of A, we need
t & 0. Nevertheless, the curve for &tg ( t ) indicates that as t ~0
this function appears to go smoothly to zero as 0.67&t at least
up to t =0.01.

But T, =0.183' A,coz and so

0.87UFA

~3rzcoEA, t
(34)

which is to be contrasted with the approximate result (24)
valid only for t =1 in which case the numerical factor is 1

rather than 0.87. Note that (34) was derived as for all
other formulas in this paper under the approximation
~A. t » 1 so that the 1/t factor is not a problem.

V. CONCLUSIONS

We have calculated the temperature variation of the
local- and London-limit penetration depth in the asymp-
totic limit A, ~ ~ where A, is the electron-boson mass re-
normalization parameter. We find that &A, times the lo-
cal limit penetration depth [A,I(t)] is proportional to a
universal dimensionless function g(t ) which does not de-
pend on material parameters and which determines the
temperature variation of AI(t). The num. erical work is
limited to &A, t » 1 which implies that for any large, but
finite value of A, , we need t &0. Nevertheless, the behav-
ior of A&(t ) down to t =, 0.01, where we have stopped the
numerical work, is very flat and would indicate that a
straight mathematical extrapolation to t =0 may be valid
provided it is assumed that no unexpected special behav-
ior sets in at yet lower temperatures.

We have found that the temperature variation of the
London limit is also determined by the same universal
function that we have computed numerically but now it is



41 ASYMPTOTIC LIMITS FOR THE PENETRATION DEPTH OF. . . 11 119

multiplied by &t. This result is valid for any finite im-

purity content and indicates a very di8'erent behavior
around t =0 for A,I (t ) than found in BCS theory.

Finally, the electromagnetic coherence length takes on
a particularly simple form, namely,

((t)=0.87 v~A!A, co~t,

which holds for V'A, t )) l. A simple one-gap approxima-
tion gives the same result near t=1 except that the nu-
merical factor 0.87 is to be replaced by 1.0. This same
model gives similar rough estimates for the penetration

depth near t =1. At lower temperatures, it is necessary
to do complete numerical calculations as we have
presented here.
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