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We examine the onset of superconductivity in the surface region of a metal. Surface effects are
particularly important in systems with a short bulk coherence length go. We show that, to the accu-
racy of the calculation, the surface transition temperature T,s equals the bulk transition tempera-
ture T,& if the electron-electron interaction is of the standard BCS form, i.e., a single attractive
square well, extending up to some critical energy coo much smaller than the Fermi energy cF. If one
takes into account, in addition, the repulsive part of the interaction extending beyond coo up to ener-

gies of order cF, then one may have T,s & T,& in certain cases, although, due to restrictions imposed
on the parameter values by various physical conditions, the relative increase of T, is very small, typ-
ically 10,at least in the weak coupling limit. However, we also find a considerable gap enhance-

ment, of order 20%, near the surface which could be of interest for critical-current measurements.
Therefore we suggest an experimental reexamination of systems with short go, i.e., superconducting
degenerate semiconductors and the new high-T, oxides in confined geometries where the surface-
to-volume ratio is non-negligible.

I. INTRODUCTION

Boundary effects in standard superconductors have
been extensively studied in the past. ' In such systems,
the coherence length go is much larger than the intera-
tomic distance (or the Fermi wavelength kF '). Therefore
the detailed modifications occurring in the properties of
the system close the boundaries are of minor importance
and can reasonably be neglected. The superconducting
order parameter is thus well described by the Ginzubrg-
Landau functional, with suitable boundary conditions.
Important results that have been obtained include the fol-
lowing. (i) The theory of H, 3,

' which shows that, in the
presence of a magnetic field higher than H, 2, i.e., while
the bulk of the sample is in the normal phase, a supercon-
ducting sheath nucleates at the surface. In that case
however, the superconducting temperature T, remains
unchanged from its bulk value since, as explained above,
the spatial variations of the order parameter near the sur-
face are neglected. (ii) Dirty normal-superconductor
sandwiches, ' on the other hand, may exhibit transition
temperatures significantly lower than those of the bulk.
But in such case, it was emphasized' that the
modifications very close to the interface are of minor im-
portance compared to the diffusive behavior hnked to the
existence of a finite mean free path, while instead, in
clean systems, the reflection and transmission aspects of
the individual wave functions, on and through the inter-
face, would play an important role. The particle-particle
correlation function, in such dirty systems, was thus com-
puted in the diffusive regime, via a method of images [un-
der the form of the sum of two exponential functions of
(z +z') and ~z

—z'~, respectively, z and z' being measured

perpendicularly to the surface]. It was later shown that
the correlation function actually contains extra terms,
which are oscillatory functions of z and z', but are impor-
tant only close to the surface, over a distance short com-
pared to the conventional value of go, so that the hy-
potheses of Ref. 1 (amounting to the neglect of such
terms) were justified. (iii) The study of quantum size
effects in superconducting films, and the variation of the
transition temperature with thickness, again in the limit
where go is much larger than kF . (iv) The twinning-
plane superconductivity where the superconducting
transition temperature is higher than that of either of the
individual twin crystals. In such case too, a Ginzburg-
Landau functional was used in the theory; the boundary
condition contained an assumption which allowed one to
satisfactorily explain that new phenomenon, i.e., the pair-
ing attraction was supposed to be stronger near the twin-
ning plane than deep in the bulk, possibly due to the
combined effects of new soft two-dimensional phonon
modes and a lattice density of atoms in the twinning-
plane region lower than that in the bulk.

A11 of the preceding arguments (neglecting detailed
structures over a few atomic distances from the surface,
i.e., over distances much smaller than go) are indeed per-
fectly justified in conventional superconductors. Howev-
er, in low-carrier-density materials such as oxide high-T,
superconductors (HTS), where T, is, at present, as high
as 125 K, the values of go are considerably shorter (a few
Fermi wavelengths), as one can see from BCS estimates
[go=0. 180fiuF I(ks T, ), i.e., kF$0=0. 36TF/T„where vF
and TF are, respectively, the Fermi velocity and tempera-
ture]. Therefore those details of the boundary effects ex-
tending also over a few Fermi wavelengths from the sur-
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5T, /T, —= (T,s —T,~ )/T, ~

that we have found is very small, at least in the region of
parameter space that we have studied. To maximize
5T, /T, we should of course concentrate on cases with
small go, i.e., large T,~ (which in itself is a big issue at
present) or small TF or both; obviously semimetals,
doped semiconductors, etc., are candidates to be exam-
ined here, as well as high-T, oxides. We doubt at present
that geometrical effects alone can increase the surface T,
very much. The effects we discuss, however, could yield
a more substantial increase when combined with that of
Ref. 6 (i.e., a local increase in the strength of the pairing
attraction

~ V~ near the boundary:
~
V~+ ~5V~ ). These two

effects would complement each other since it is the prod-
Uct Vppp that is involved in the BCS equation, which
reads in the bulk,

1 —Vy =0 .
PP

(1.2)

Both surface effects should be considered in small go ma-
terials, when surface to volume atomic ratio is important,
i.e., when there are many boundaries or if the system is of
sma11 size. The role in HTS of the second effect (changes
in

~ V~ ) was recently pointed out. ' We address here only

face which are negligible in conventional superconduc-
tors with large go, may be expected to become important
in the new high-T, oxides with small go, and should be
reexamined.

This is the purpose of the present paper. We will show
that the full structure of the correlation function (oscilla-
tory away from the surface as already noted in Ref. 4) be-
comes crucial. The bare particle-particle correlation
function y, entering the BCS-type instability equation,
is strongly modified compared to that of the bulk happ.
We will investigate the influence of this geometrical effect
on the gap function and also check whether the possibili-
ty exists of having a superconducting temperature in the
surface region, T,z, higher than the bulk one T,~, in oth-
er words whether there exists a temperature range,

Tcg & T & Tcg

for which, while the bulk of the sample is still normal, the
surface region becomes superconducting. An objection
could be raised here though, according to which a surface
represents, for the electron gas of a clean system, a per-
turbation qualitatively similar to the presence of impuri-
ties in a dirty one, so that Anderson's theorem should
apply and thus T, should not change compared to T,z.
However, as emphasized in particular in Ref. 10,
Anderson's theorem applies only when the perturbation
does not cause a long-range spatial variation of the order
parameter, i.e.,"when the system is still homogeneous on
the scale of the coherence length go. But, in the case we
are considering, go is of order of only a few kF, which is
precisely the scale over which the order parameter is
strongly modified near the surface, so that Anderson's
theorem does not apply stricto sensu and thus a variation
of T, is allowed. We do indeed find that such an
enhancement occurs in certain cases although the relative
enhancement

the problem of the modifications in g near the surface.
In order to study possible surface superconductivity,

we will use a simple jellium model to describe the free
system in the normal state, with an infinite barrier at the
surface. This will be done by analogy with another sur-
face instability problem studied earlier, ' the surface
magnetism occurring in exchange-enhanced itinerant fer-
mion systems which are paramagnetic in the bulk. We
will show that, within our simple model, and even if the
pairing interaction near the surface is identical to that in
the bulk (5V=O), there are cases where a T,s exists
slightly larger than T,~. We will also discuss how more
realistic hypotheses are expected to act on such an in-
crease of the critical temperature and what are the best
candidates to optimize that increase. Perhaps more im-
portant, we will show that the order parameter amplitude
is considerably enhanced at the surface of small go super-
conductors even when the increase in the surface T, is
negligible.

The HTS are extremely complicated materials. The
origin of the high-T, values in these compounds is not yet
clear. Going down in temperature from the normal
phase [i.e., when Vgzz (1 in (1.2)], various other factors
may enter to increase the product Vgpp up to 1, so that
T, is increased too. One proposed factor' is a large in-
crease in the density of states at the Fermi level N(0)
which enters into y, due to two-dimensional Van Hove
singularities possibly relevant in the layered structures of
some of the HTS. In the present paper we restrict our-
selves to a simplified study of a three-dimensional system
with a parabolic band of fermions. We thus have the usu-
al parameters characteristic of that case. Although the
relative increase of T, that we find is small, it could play
a more general role in superconductors with small values
of T~/T, or small $0, which are in confined geometries or
which contain multiple boundaries; in particular, the
enhancement of the gap that we find near the surface is
likely to play a role in the experimental values of the crit-
ical currents in the HTS films. Such effects have not yet,
to our knowledge, been studied, except for the case of
large (o.'

II. THEORY

A. The Bethe-Salpeter equation of the surface
superconducting instability

In this section, we examine a half-space itinerant fer-
mion system, with a BCS type of mutual attraction V & 0.
The boundary breaks down translational invariance in
the z direction, perpendicular to it. We suppose that it is
planar and perfect, so we assume specular reflection on
the surface. We wish to know how the presence of the
surface possibly modifies the BCS instability criterion
with V switched on as the temperature is decreased from
the normal phase. Thus we examine at which tempera-
ture the system switches from the normal to the super-
conducting phase, that is, at which temperature the re-
normalized effective interaction in the particle-particle
channel I diverges. I

pp obeys a Bethe-Salpeter equa-
tion analogous to that for I

pp
the BCS bulk interaction
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exhibited on Fig. 1, but with special surface boundary
conditions. Our study will be made easier by using a
close analogy with the case of Ref. 13 where a strong
Hubbard-type contact repulsion I )0 acts between oppo-
site spins, in a half-space itinerant paramagnetic fermion
system. As in Ref. 13 the breakdown of translational in-
variance in the z direction perpendicular to the surface
modifies the Bethe-Salpeter equation for the particle-
particle correlation function. This quantity is given in
the bulk by

~B ~OB+~OB y~B (2.1)

where the zero superscript refers to the noninteracting
system and appropriate wave vector and frequency argu-
ments are understood. In the presence of a surface an in-

tegration over the z direction remains and the Bethe-
Salpeter equation takes an integral form which we write
in the obvious shorthand form:

0 0
~pp +PP +PP +PP ' (2.2)

Note that the absence of a specific bulk index indicates a
surface quantity. As is the case of Ref. 13 for the
particle-hole correlation function y h,

' the particle-
particle correlation function

happ
is not a separable kernel,

so that g„cannot be calculated analytically and its possi-
ble divergence cannot yield a simple equation such as
(1.2) in the bulk case, where it follows straightforwardly
from (2.1). However, as in Ref. 13, numerical computa-
tions will show that ppp is considerably enhanced near the
surface. The numerical computations, as well as a varia-
tional method similar to that in Ref. 13 will show that a
superconducting surface instability occurs in certain
cases for values of the dimensionless interaction for
which the bulk is still in the normal phase.

Our calculations will be performed in terms of the re-
normalized vertex function I

pp
I

pp obeys an integral
Bethe-Salpeter equation of the same form as (2.2). In the
same shorthand notation we write

15. The algebra is cumbersome but straightforward and
the main steps are given in Appendix A. The result is
given by(A15). We find that, asin Ref. 15, y takes the
form

y p(b, b')=D (b)5b~ A—(b, b'),
b =q/(2kF), b'=q'/(2kF) .

(2.4)

Dpp and App ™plicitlydepend on the momentum paral-
lel to the surface K~~, and the frequency co [which was put
equal to zero in (A15}],q and q' are the inomenta in the z
direction, and 5 is the Kronecker symbol. Since the wave
functions vanish at the surface, in real space g must
vanish at z =0 for all z' and vice versa, since

happ
is a sym-

metric function of z and z' (and of b and b' in Fourier
space). This gives us a sum rule analogous to that in Ref.
15:

Dp (b)= J A (b, b')db'.
0

(2.5)

Ei 2=E+ sF(b+b')

k'„/2 —sF
(2.6}

(in atomic units). We thus obtain, for the last two of the
four terms of (A15):

Cp
tanh + tanh

F &]+z

(2.7)

where we exhibit the constant in front of the integral, and
N(0) is given (for one spin direction) by

In the following, we restrict ourselves to the case K~~
=0

(in addition to co=0) because we do not expect any
significant structure in the parallel direction. Then, we
use a suitable change of variables to transform the energy
arguments of the Fermi functions in (A15) into the corre-
sponding denominators:

r„=v+ y'„vr„. (2.3) N(0) =kF/(2m. ) . (2.8)

The numerical solution of (2.3) will yield the spatial
dependence of the gap function.

I

I

I

I

I
I

l

I

I

I

I

I

FIG. 1. The bulk Bethe-Salpeter equation for the renormal-
ized interaction I pp the dotted line is the bare interaction V
the shaded square is I pp the straight lines are the electron lines.

B. The bare particle-particle correlation function
near the surface, yo»

To perform our calculations we need first to compute

happ
explicitly. The calculation of

happ
is analogous to that

of the particle-hole correlation function, g h, done in Ref

D ~(b) is more easily obtained through (2.5). D~~(0) is
identical to y, for zero total momentum and frequency.
As in the bulk case, an upper cutoff on c, is needed in (2.7)
to avoid the divergence in the integral when c.~ 'x) ~ Such
a cutoff is a physical quantity imposed by the definition of
the interaction V in the Bethe-Salpeter equation (2.2) and
we will discuss it shortly.

The two terms Dpp and A
pp appearing in y have the

same meaning as the corresponding particle-hole quanti-
ties Dp& and Aph in mph, which were discussed in Ref. 13
(see, for instance, Fig. 1 in the second paper of Ref. 13).
In real space, the D term corresponds to the sum of a
bulklike diagram, plus its image with respect to the sur-
face, which would thus depend, respectively, on ~z

—z'~

and (z+z'). These were the only terms retained in Ref. 1

in the problem of dirty normal-superconductor
sandwiches recalled in the Introduction. In Ref. 1, how-
ever, these terms were studied in the diffusive regime and
long wavelengths, yielding real-space functions exponen-
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tially decreasing for increasing arguments, while in the
present clean system, as in Refs. 13 and 15, the corre-
sponding real-space functions oscillate with ~z

—z'~ and
(z+z'). The A term corresponds instead to diagrams
where one of the two particles scatters specularily from
the surface between the end points R and R', while the
other particle does not, so that the A contribution to

(z,z') depends on z and z' separately. This A term
renders pter(z, z'} nonseparable, which, in turn, precludes
the analytical solution of the Bethe-Salpeter equation
(2.2). However it is precisely this A term that is responsi-
ble for the surface instability, as was emphasized in the
magnetic case of Ref. 13. Indeed, suppressing the A term
makes (2.2) straightforwardly soluble in Fourier space
and yields the same type of instability as in the bulk.
Therefore in order to check for a modification of the sur-
face critical temperature with respect to the bulk, one
must take into account the A term as we will do here.
Moreover, due to the presence of the A term, momenta
of order 2kF and of order zero are equally important,
which is another way of pointing out that in real space,
the correlation functions cannot be reduced to exponen-
tials (for which only vanishing momenta play a role).
These functions oscillate with the arguments (2kFz) and
(2kFz') and thus short wavelengths of order of the inter-
particle distance are crucial, as announced in the Intro-
duction. Although the finite mean free path introduced
in Ref. 1 for dirty sandwiches, would appear, a priori,
sufficient to mimic the case of pure systems with short su-
perconducting coherence lengths, the preceding argu-
ments show that this is not quite so. A finite mean free
path, accompanied by a diffusive regime, allows long
wavelengths to prevail and the oscillations are lost. We
therefore believe that the present formalism, preserving
both long and short wavelengths, would be more ap-
propriate to study clean systems that, for whatever
reason, have short superconducting coherence lengths.

k) &, kg,

k),
&'

FIG. 2. The phonon mediated interaction between the two
electrons in the BCS bulk problem.

In the standard jellium model for instance, the interac-
tion V( Q, Q ) is given as a screened Coulomb potential in
terms of the dielectric function e(Q, Q), which includes
the phonon effects. These effects cause the interaction to
be attractive when:

Q &Qg, (2.11)

where 0& is a longitudinal phonon frequency.
The next step must be carefully analyzed as it will be

most important in the surface case. One must introduce
in all the BCS formulas a cutoff in energy, to avoid diver-
gences in the integrals. Now, Q in (2.10) is, strictly
speaking, a frequency difference Howev. er, one usually
considers that on the energy shell one has

Therefore the phonon-mediated BCS interaction has a
momentum Q and frequency Q such that:

k~ —k, =k', —k,'=g,
(2.10)

C. The interaction V and the cutoff in (2.7)

Q=e(k2) —e(k, ),
Q=e(k', )

—E(k2),

(2.12)

(2.13)

As we just mentioned, a natural cutoff arises from the
Bethe-Salpeter equation in the bulk case as well as in the
present one. In what follows, we will assume that the
pairing attraction V is uniform all over the system, in-
cluding the region close to the surface, i.e., we neglect the
effect considered in Refs. 6 and 12 and we thus may un-
derestimate the instability. We will later discuss the effect
of possible changes in V as done in Refs. 6 and 12 and
analogous to changes in I in the magnetic case of Ref. 16.
For a uniform value of V, let us first recall the usual BCS
arguments' for the bulk. We repeat here only some
well-known features for the bulk to render the messier
surface problem more transparent by comparison.

Consider Fig. 2. The two electrons have total incom-
ing momentum k&+k& and frequency c&+c.&. The corre-
sponding outgoing quantities are k2+ k2 and c.2+ c.z.
From momentum and energy conservation, we have

—
Q& &E(k, ) &Q&,

—Qg &E(k, }&Qg,
(2.14)

and then, 0& is taken to be a typical boson frequency coo

(the Debye frequency in the phonon BCS case), and one is
left with the BCS assumption that V(Q, fl } is a negative
constant within (2.14) and zero outside:

V(g, Q)= —~V~, ~e(k)~&~,

=0, outside, (2.15)

where the e(k) are the kinetic energies of the electrons.
In standard BCS, the total momentum K in (2.9) is zero
so that the two formulas (2.12) and (2.13) are consistently
identical, while they would be different if K were finite.
This taken for granted, a sujgcient but not necessary con-
dition for (2.11) to be fulfilled is that

ki+ ki k2+k2= K,
E)+E) =Cp+ Fp=CO

(2.9) as indicated on Fig. 3(a). One may also wish to separate
V into its attractive and its repulsive parts with the as-
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(c)

FIG. 3. The three models for the electron-electron interaction appearing in the text corresponding to formulas (2.22) and (2.23)
and a model with analytic tails.

teak, , k,
= I

I sk, , I
+ o

t

=0, elsewhere,

(2.16)

where k&, k2 are electronic momenta. In contrast, the
two-square-well model of Fig. 3(b) is more difficult to
write in such a form. In Ref. 18 it was shown that in this
model one has to solve two coupled gap equations. One
can avoid this complication by putting the cutoff
asymmetrically, on only one line. This suffices to make
all the integrals convergent and amounts to writing for V,

V= —vwk wk, v &0
1 2

Wk =1
1

(2.17)

IEk 1&~o

sumption that both of them are constant as indicated on
Fig. 3(b) but with the repulsive part (representing, e.g. ,
the Coulomb pseudopotential) extending beyond coo, up
to the plasma energy, which is roughly of the order of c.F.
This is the Tolmachev two-square-well model extensively
discussed and applied to superconducting semiconductors
in Ref. 18. It is easy to check that, in this alternative, the
main results of the BCS theory are not changed when
compared to those obtained from the standard interac-
tion of Fig. 3(a} except for multiplicative constants of or-
der unity appearing in the formulas for T, and for the
gap function.

Returning to the standard model of Fig. 3(a) and in or-
der to render the calculation of the bulk BCS equation
tractable and eliminate all divergences, one usually sets
the interaction equal to a constant v and introduces a
cutoff in the energies of the incoming (or equivalently, the
outgoing) electron lines. This leads to an effective vertex
V which is separable and symmetric, through

V= —vw w v &0k) k2&

The Bethe-Salpeter equation for the vertex I
pp

is illus-
trated on Fig. 4, where the contributions where one,
both, or none of the two electrons scatter on the surface,
are separately indicated. The first two contributions are
obviously those of the bulk as given in Fig. 1. Let us con-
sider in more detail in Fig. 5 one of the second-order con-
tributions to Fig. 4. We have separated the momenta
parallel to the surface (which will be treated as in the
bulk, in particular we will later assume that K~~ =0) from
those perpendicular to the surface, which are the only
ones affected by surface scattering, after which they
change sign. Also because of the scattering, the sum of
the two incoming perpendicular momenta, equal to E» is
not necessarily equal to that of the two outgoing momen-
ta K2~. However, at each individual vertex between the
interaction line V and either one of the two electron lines,
momentum is conserved; it follows that k ~ is fixed, given

by

Z»+Sr„=Zk., (2.18}

This fixed value of k illustrates that the D part of (2.4) in
(A15) still involves a sum over k (the momentum perpen-
dicular to the surface), but the A part does not.

Now let us consider the first interaction line of Fig. 5.
It carries, equivalently to (2.10) in the bulk, a momentum

Q and a frequency 0 such that:

the calculation is properly preserved in the diagramatic
perturbation calculation. In this procedure, one finds a
bulk critical temperature somewhat lower than in the
case when the attractive and repulsive parts are cut off at
the same energy, while for the symmetric interaction it is
higher. ' However, this does not affect the issue of
whether the surface transition temperature is the same as
in the bulk. The preceding steps, for the bulk problem,
must be then reexamined in the surface case.

D. The surface case

k —k =Q
~ll ~ll II

'

k ~
—k,~=g~,

F~ E)=0

(2.19)

The symmetry of all the physical quantities involved in What we recalled for the bulk in connection with formu-
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FIG. 4. The Bethe-Salpeter equation for I pp
in the surface case analogous to that in Fig. 1 for the bulk. The crosses correspond to

scattering on the surface.

k, () k, ~p) k„o k„~r.„ k„ll -k„~E„
I

I

I

I

I

I

kill k~~,c

las (2.9}—(2.11) applies here too, but there are some
differences. If we wished to write two formulas
equivalent to (2.12) and (2.13), in order for them to be
compatible we should restrict not only K~~=0, but also

E» =0. However, as pointed out in Ref. 13 for the sirni-

lar magnetic problem, a crucial role for surface instability
is played by large values of E», characteristic of the
specific role of the surface. Therefore it is impermissible
to use the approximate formulas (2.12) and (2.13) which
would restrict E» to be negligibly small, in which case
only the bulk result would be recovered. If we recall that
what is involved in (2.11) is, strictly speaking, the fre
quency transfer, identical to e —

e& here for bath electron
lines, the physics is the same regardless of the finite value

E» takes. We may then make an assumption of the form
(2.14) (a sufficient but not necessary condition, as in the
bulk) by writing

—Qg(ck (Qg,
(2.20)—Qg (f], (Qg,

thus choosing to restrict the kinetic energies of the upper
electron line. The diagram analogous to that of Fig. 5
but with a cross on the lower electron line (contributing
to the last diagram of Fig. 4) will symmetrize the entire
procedure if we restrict there also the kinetic energies of
the upper electron line. Inequalities of the form (2.20)
will, according to (2.6), restrict either only (b+b') or
only (b b') Theref—ore th. ere will always be cases where

V= —
UWk Wk, U 00 (2.21)

with the w chosen to correspond to Fig. 3:

model (a)

I ek~, k~ I
& ~o

w
1 ' 2 0 otherwise

model (b)

(2.22)

WI
—1

1

IEk, I
& ~o

(2.23)

b, or b', or both may take large values, a condition that,
in the magnetic case, is necessary to obtain a surface in-
stability different from the bulk one. For the same reason
(the important role of high e values, i.e., high b and b'

values) we will consider, in the following, not only the
standard BCS structure for V of Fig. 3(a}but also that of
Fig. 3(b). We could also consider different tail shapes. A
model potential very close to that of Fig. 3(b) is shown in
Fig. 3(c) where repulsive tails decreasing as the inverse
energy replace the repulsive square well of Fig. 3(b). We
checked that the potentials in Fig. 3(b) and 3(c) give qual-
itatively the same results and will present only work done
with the former. These potentials allow, in the surface
case, the inhuence of the higher values of b and b' to be
felt [which the model of Fig. 3(a) does not] and they are
therefore more likely to allow for a surface instability
different from that in the bulk to take place. Further-
more, in Fig. 3, ~p may in all cases be identified either
with QD if the attraction is of phonon origin, or more
generally, any other characteristic energy if the source of
the attraction is nonphononic, provided only that
COp ((CF

We then will perform our calculations with

111 11) ~

K)
— )~]— k

—Eq

Kq)) —k~))
= —

K~))
—k~)),
+k

&)) 2.))' '
—k

wk = . —a, coo& Iek I &eF, 0&a&1
2 2

0, Iek I&eF .

FIG. 5. The basic ingredient of Fig. 4 to second order in the
interaction. Note that momenta conservation imposes that
sc„+re„=2k.,

Similar expressions could be written for the potential in
Fig. 3(c). The various cutoffs will then be rejected in the
calculation of (2.7) as follows:
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~ (0) +„jtanh[s, /(2T) ]+tanh[s~/(2T) ] j—A (b, b')= [w(e, )+w(c2}]dePP ' 4 6)+Ep
(2.24)

Note the already mentioned asymmetrical character of
model (b). The calculation is symrnetrized as indicated
below (2.20). Each of the w(si) or w(sz} is the product
of two wk's in (2.24), one of them being identical to unity
according to (2.23).

where e = 1.'781. This implies T,z & T,B when

Vs & ( Vs = 1). As will be shown below (T,s —T,s )((T,B, and thus one can relate, in a first approximation,
the variation of the coupling constant V to the variation
of T, by

III. RESULTS

A. Analytical considerations

We can now compute y [needed for I'„P in (2.3)]
through (2.4) with (2.5) in which the physical cutoffs are
imposed by (2.22) and (2.23). The superconducting insta-
bility will obviously arise as a solution of the homogene-
ous equation corresponding to (2.3), which we write in
real space as

V~
—

VB D'( T,s )=(T —T )
V

' ' D(T )

In Fourier space (3.3) reads

b, (b) = Vf yo (b, b')h(b')db',

which we rewrite as in Ref. 13 in Dirac notation

~a&=vy'„~a& .

(3.8)

(3.9)

(3.10)

I (z, z') = Vfy (z, z")I (z",z')dz' .
Thus we get

(3.1)
(3.1 1)

We focus on the integral over z' of I
pp

which has the
structure of the Gor'kov gap equation

a(z)= f r„(z,z )dz' (3.2)

with

E =1—1/V (3.12)

with I „„(z,z') given now by (3.1). We thus get

b,(Z) = Vfy (Z, Z')5(Z')dZ', (3.3)

(Z Z )=I (Z Z )/X

Z:—2kFzy Z 2kFz' .

(3.4)

The superconducting instability equation (3.3) is the ana-
log of the instability in the magnetization studied in Ref.
13.

At a given temperature T = T,z a surface instability
occurs, from (3.3), at a value of V, V = Vs. At the same
temperature, the bulk would be superconducting for a
value Vs =1/D(T,s, 0), where we define D(T„b) to be
the expression of D(b) at the temperature T, . On the
other hand, if we work with a fixed value of V= V&, the
bulk would be superconducting at a temperature T,B
given by 1 = VzD ( T,s, O). Therefore we have

Vs/Vs =D(T s, O)/D(T s,O), (3.5)

which we find in some cases to be smaller than unity.
One can show that the leading contributions to VB and

Vz may be written in the BCS form

V, =
I Vl&(0)in

cB
(3.6)

V, = ~
V~X(0)in

7T 2T g
(3.7)

where the above-discussed cutoffs are understood and
normalized quantities are defined as

V=—VyoB, ,pp '

and we must look for the lowest eigenvalue Es of (3.11).
This can be done numerically. One can also use the ap-
proximate variational method of Ref. 13. If 6„is a trial
wave function, we will thus have the variational inequali-
ty

(3.13)

If we prove that F (0, then E& (0, which means from
(3.12), Vs &1, i.e., Vs &(Vii=1). Therefore surface su-
perconductivity then arises for a value of V for which the
bulk is still in the normal state, i.e., at T,z & T,B.

We take a tria1 function of the same form as that in
Ref. 13

b,„(b)= b,„(b)/y = —8(1 b)—
PP (g2+b2)

(3.14)

with A, the variational parameter. In real space, as in Ref.
13

b,„(Z)=b„(Z)/gP =e —sin(Z)/Z . (3.15)

When A. ~O, A,„(Z) is very close to the natural quantity
N(Z) obtained from (3.2) with I

P (Z, Z') reduced to
yo (Z, Z') in the absence of interactions, as was the case
for mo(Z) in Ref. 13. X(Z) measures, as pointed out in
Ref. 1, the spatial variations of the local density of states,
near the surface. The algebra is then the same as that in
Ref. 13 where it was shown that the denominator in
(3.13) is proportional to A, , when A, ~O. In that limit
the numerator may be evaluated to zeroth order in k,
which involves only b,„(b)=5(b) —8(1 b) and then, —
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G —= & a„l I —y',„a„)
1 —D„b 6 b 'db

+ f f A pp(b, b')h„(b)b, „(b')db db' . (3.16)

1.5

1.0—

~ I f I l I I I
J

~ ~ I I ) ~ I ~ I

On physical grounds, D (b)=D (b)/D (0) is even in
Pg PP PP

b, thus D (b)-I+O(b ) when b~O. Therefore (3.16)
reduces to

Cl
0.5—

G=P —P
1 2

with

(3.17)

0.0 —.

(3.18)
P, =1+A (0,0)—2f App(b, O)db,

P2= f db f A „(b,b')db',

where A (b, b')= A (b, b')/D (0). If the coefficient a
of the repulsive part of the potential is zero, then the in-
tegrand in (2.24) is positive definite, A (b, b') and

Dpp( 0 ) are negative, so that A ( b, b '
) and P2 are posi-

tive. A surface instability (F (0 or G (0) will then
necessarily occur when P, ~0. In the magnetic prob-

13lem, P, =0, but this is not the case here, and we have to
compute P, for the various models (2.21} and (2.23).
When a & 0, the sign of P2 is no longer obvious. Howev-
er, examination of the integrals involved leads one to ex-
pect that P2 &&P, . In most cases the surface instability
would thus depend only on the sign of P& even in the
presence of repulsive interactions. This has been checked
for a11 the models studied. Some values of P and P ob-zo-
tained by numerical integration are presented in Table I.
In Appendix B we present the calculation of P in detail
for the two models (a) and (b). We find that, as in the

e ai

magnetic case, the role of the high-energy values allowed
by the repulsive tails of V in model (b) and in other mod-
els with repulsive tails that we have checked, as indicated
at the end of the preceding section, is crucial for a surface
instability to take place. The variational method proves
that a surface instability can occur if the inequality (B18)
for model (b} can be fulfilled, provided that P2 is not too
negative, which proved to be the case for all models stud-
ied. For model (a) the variational method is not con-
clusive in its analytical form and one can only use the nu-
merical work.

-0.50 (' 0.5 1.0
b'

I I ~ i a

1.5 2.0

FI pp~ ) at &F 1000' ~0=300, T=50, and a=0.8
for several values of b as a function of b'.

B. The numerical results

For general values of the parameters it is impossible to
solve (3.3) analytically but a numerical solution is always
straightforward. We perform first a numerical integra-
tion to determine A (b, b'). An example of the results ob-
tained is given on Fig. 6. Using the sum rule (2.5) it is
possible to obtain D(b} by an additional numerical in-

tegration, and the results are indicated in Fig. 7.
The gap equation in Fourier space (3.9) can be rewrit-

ten

crt(b ) = f g~~(b, b')b, (b')db' (3.19)

1.0

0.8

with o =—1/V. The problem is, as described previously,
to find the largest eigenvalue and the corresponding
eigenvector of the integral equation (3.19}. For this pur-
pose, the integral equation is reduced to an algebraic ei-
genvalue equation by replacing the integral by a sum.
The largest eigenvalue of the matrix obtained is then

0.6-

TABLE I. Values of Pl and P2 obtained from a numerical in-

tegration for model (b). For all the values considered here

lpil »l&zl and P, —&2 (0. The variational method of Sec.
III A proves, therefore, the existence of a surface instability.
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0.4
0.6
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—0.3354
—10.91
—5.326
—7.311
—3.7018
—0.8309

P2
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—0.32 x 10-'
—0.62 x 10-'
—0.123
—0.167
—0.101

0.0 ———

0200 I ~ I I I I ~ I ~ I

0.5 1.0
b

1.5 2.0

FIG 7 Dpp(b) at cF= 1000, no= 300, T =50, and a=0.8 as
a function of b. Notice that the maximum of D»(b) is always at
b =0, as expected physically since D (b) =y

pp pp
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del (a } (a =0) for the same values of theTAB q ii 4ated for model (b}. Model (a} (a=
o racy 5V=O and t usto the numerica accuracy,parameters, gives, up o racy

one is in principle limited to——D (0)) 1.
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(T&s Tca ) /T, g
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Dpp(0}
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tails in the potential. Some of the results are plotted in
Figs. 8 and 9.

IV. DISCUSSION

The results of our paper can be summarized as follows.
With the BCS bulk-type attractive square well of Fig.

3(a), an enhancement in b, is present but there is no sur-
face instability different from the bulk one; the variation-
al method is inconclusive (P, is positive) and, to the accu-
racy of the numerical calculation, no instability is found.
If the width coo of such a well becomes infinitely small,
then P, =0, one gets the exact analog of the magnetism
case, and a surface instability follows. However, this
would correspond to an unphysical case, with coo~0 (so
that coo « T) and, consequently, V —+ ~.

In order to get a surface instability at a temperature
where the bulk is still normal it appears to be necessary to
include repulsive tails such as those of Fig. 3(b) or Fig.
3(c), extending to higher energies than the attractive well,

up to roughly e„. Such a picture allows b and b' to reach
high values and not to be confined to the neighborhood of
zero. In other words, this allows for the actual surface
effect to play a role by locally enhancing the density of
states, yielding the surface instability. However, despite
the fact that T,s & T,a, the relative increase 5T, /T, is ex-
tremely small, typically of order 10 in the weak-
coupling region (V & 1). A relative increase of order 10
could be reached only for V&)1 where the present BCS-
like calculation would not make sense. For such strong-
coupling values, an extension to the present theory would
require the solution of the Eliashberg equations as was
done in the bulk; ' this is beyond the scope of the present
paper. We also need to deal with small values of c.z. It is
easy to check, through small T/c. ~ and small coo/c. z ex-
pansions that all the quantities of interest vary inversely
proportional to cF. Mathematically, in contrast with the
magnetism case, the kinetic energies involved in the
denominators of

happ add, so that c~ survives while in yp„
the same quantities subtract and cF disappears. At
present we do not know whether there would be ways of
experimentally testing our finding that T,s) T,z. We
need, at any rate, to have samples in confined geometries
so that the surface to volume atomic ratio be non-
negligible and thus the surface effects do play an impor-
tant role. A possible course of action would be to reex-
amine, in confined geometries, the low carrier density su-
perconductors such as the superconducting degenerate
semiconductors studied in Ref. 18. Our treatment does
not include the enhancement in the bulk T, found in Ref.
18 but the relatiue increase in the surface transition tern-
perature should survive a more thorough calculation. It
would therefore be worthwhile to reexamine those sys-
tems experimentally. However 5T, /T, is also higher
when T,~ itself is high, which is not the case in the super-
conducting semiconductors. In contrast, the new super-
conducting oxides offer a better prospect for success since
T,~ is large; moreover c~ is low. The c~ values are not
well known in these compounds; however, they are be-
lieved to be from 1 eV down to 200 meV. If, in addition,
it could be proved in the future that these compounds are

strong-coupling superconductors (which is far from being
clear at present), then these systems should definitely be
investigated in confined geometries or when multiple
boundaries are present. A possible experimental test of a
T,z larger than T,~ might be given by high resolution
photoemission experiments such as that described in Ref.
22. The experiments performed there were made on sin-

gle crystals of BizSrzCaCuz08. However, only a few lay-
ers close to the surface were examined that way, given
the mean free path of the photoelectron at the energy
that was used. If, in the future, that energy may be made
low enough so that the photoelectron mean free path is
suSciently increased and thus a much larger amount of
layers can be reached, possibly reflecting the bulk charac-
ter, then a comparison between the two sets of data
would tell whether the superconducting transition tem-
perature near the surface is the same as in the bulk or
not.

The gap enhancement near the surface that we have
found is a phenomenon more prominent (a 20% effect)
and more widespread in parameter space than any
enhancement in T, . It is therefore likely to be of consid-
erably more experimental significance. It is widely re-
ported that critical currents in oxide superconductors are
higher in films than in bulk systems. This may be taken
as some indication of a gap enhancement, but certainly
not as a conclusive confirmation of our theory since other
explanations (including experimental artifacts) are possi-
ble. Tunneling measurements do give direct evidence
about the surface order parameter but published results
are, here too, far from conclusive.

Returning to the theory, the model studied here is of
course very rough. In particular we do not take into ac-
count band structure, possible singularities in the density
of states or the anisotropic quasi-two-dimensional charac-
ter often encountered in the superconducting oxides. On
the other hand, in the analogous magnetic case, a number
of improvements were examined in order to see whether
or not a more realistic model would make the surface in-
stability to be an artifact of the simple model. An in-
teraction I with a nonzero range was considered and it
was shown that there is a critical range beyond which the
surface magnetic instability disappears. However, it was
later shown' that, if one takes into account the variation
induced by the presence of the surface on the magnitude
of I, then a larger range is needed to suppress the surface
instability. The increase in the magnitude of I in Ref. 16
has to be compared with the increase in V in Ref. 6: In
both cases, the surface instability is favored. With an I
constant throughout the sample, the authors of Ref. 25
studied the case where the single-particle potential V(z)
includes a van der Waals attractive well between the sys-
tern and the wall in a small region 0&z &a close to the
surface. This hypothesis proved to reinforce the magnet-
ic instability. Finally it was shown in Ref. 26 that, when
the barrier potential at z =0 is finite, instead of infinite,
the surface magnetic instabihty disappears when the
height of the barrier vanishes, which is reasonable since,
ultimately, there will not any longer be a surface and one
would recover the bulk system results. Thus, the instabil-
ity is known to be a very robust phenomenon in the mag-



41 ONSET OF SURFACE SUPERCONDUCTIVITY 11 043

netic case and it is reasonable to expect that similar con-
clusions apply in our superconductivity case. The e8'ect

of the surface is to induce Friedel-type oscillations away
from it, which are strongest within the first few atomic
layers, as reAected in the variation of 5 shown on Fig. 8.
Physically these strong oscillations act to increase the lo-
cal density of states near the surface and their existence
explains both the magnetic and the superconducting in-

stabilities. We repeat that such e8ects will be more im-

portant for systems with small coherence lengths compa-
rable to the distance over which the Friedel oscillations
are strongest. In the strong-coupling regime not only the
whole formalism should be reexamined within the frame-
work of Ref. 21, but also fluctuations effects (paraCoope-
rons} should be considered as possibly enhancing the
effect. This would require computing the frequency
dependence of p which is beyond the scope of this paper.
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[ —,' V—+V(z) ] /= ED

with the potential representing the surface

(Al)

z~O~"=
o, .)0. (A2)

We use atomic units (a.u.}. 1i follows from elementary
quantum mechanics as was already done in Ref. 13,

Il~llq(z) (A3)

sin(kz}, z ~0
&"= o .(o (A4)

E =k2/2+k2/2, (A5)

y»(R, R';ico„)= T g G(R, R', ico„)G(R,R',ico„ico„—),

where the one-particle Green's function G (R, R', E}

(A6)

Translational invariance is assumed to be conserved
parallel to the surface. pii and kii are, respectively, the
two-dimensional coordinate and momentum parallel to
the surface, while z and k are the ones in the direction
perpendicular to the surface. We want to calculate the
free particle-particle correlation function between the
points R and R'. With cu„and cu, „being the Matsu-
bara frequencies of the two particles, we have

APPENDIX A: CALCULATION OF gpss

In the half-space system, the bare particle wave func-
tion P obeys the Schrodinger equation

I

G(R R'E)= g e II II II g(k
kii

Then (A6) reads

(A7)

"
"ii "ii

Setting kll+kll K.
ll

we get
I

Kll

where we have defined

(AS}

(A9)

y»(KII'z, z;i'„)=Tg + 9 Ilk'z, z;i o„c)Q(KII kll'z, z;ico, „) .
n k

(A 10)

We thus have to compute (Alo). The 0's are easily computed from the P's as was done already in Ref. 15. Replacing
the sum gI, by an integral jd kII/(2m ), we obtain y analogously to y h in Ref. 15,

y»(KII, z, z', ico„)= g J sin(kz)sin(kz')sin(k'z)sin(k'z')
k, k ~O

XTQ 1 1

Q(kII, k) —i co„Q(KII—kII, k') —(i co, i co„)— (Al 1)

The sum over n is, as usual, converted to a contour integral and one obtains



T. GIAMARCHI, M. T. HEAL-MONOD, AND ORIOL T. VALLS 41

with

d~k~~ 1 —f [Q(k~~, k)] —f[Q(K~~ —
k~~, k')]

Kl, z, z', icLi ) = — g f sin(kz)sin(kz')sm(k'z)sin( 'z')
k k &o (2m)

CO
—l COv,

(A13)
Q(ki k):kii/2+ k /2 Ep

where Ez is the Fermi energy EF =k~/2 in a.u. . We use then the same one-sided cosine Fourier transform as in Ref. 15,

(K~~, q, q', c0)=f f X (K~~,z, z', co)cos(qz)cos(q'z')dz dz',
(A14)

(K(,z, z';co) =f f & (Kll, q, q';co)cos(qz)cos{q'z')dq dq
0 0

Note that z, z', q, q' cannot be negative. On the other hand, numerical constants appearing in front of the sums or the
integrals have been omitted because only normalized quantities will be of interest at the end. When needed we have in-
dicated in the text the appropriate multiplicative constants. We find, using some algebra developed in Ref. 15 and in
the simple case of co=0 of interest for the static instability,

o (K r 0)
dzk +" 5 1 —f (K —k, k+q) f(k, k—) 1 —f (K —k, k —q) —f (k, k)

II II' II' + ll II' II'f (2 ) „2 Q(Kii —
kii, k +q)+ Q(kii, k) Q(Kii —

ki~~, k —q)+ Q(kii, k)

1 f K k f k
II II' 2 II' 2

Q K —k 'q q' +Q k 'q+q'
II II' il'

1-f K-k 'q+q'
II

(q —q')

(A15)

Q K k
(q+q') +Q k (q —q')

II II' II' 2

APPENDIX B: EVALUATION OF 6
We want to calculate 6 as given by (3.17) which implies to first compute (2.24) with (2.6) for the various cutoff mod-

els. We first rewrite (2.24) as follows:

with

N(0) +~ N(0) +~—A (b, b')= f,g(,e) t(o E) de+ f,g(,s) to( e)z«2
F+&F( b+b') F+&F(b —b')

E) 2 6) 2+4BF66
tanh ' + tanh

(81)

2ci 2+4cFbb

We first consider model (a) with the w given by (2.22). The calculation of —A„„(b,b ) is straightforward. We find

for the quantities of interest in (3.18) for I'&

tanhX

0

with

2 tanhX+8(coo+ sF sFb )8(coo ——sF + s~b ), dX—xF[i —b')
(B3)

X~=EF/(2T), Xo=coo/(2T), —A, (0,0)=N(0) f dX .
0

With (2.5) and integration by parts we get

(B4)
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( )
)

N(0) 0

2 0

1/2 ' 1/2

1+ + 1—
XF XF

OB
Xpp (BS)

It is of course not surprising to recover for D"(0) the usual BCS bulk result X . In the bulk, and since X &Xo «XF
one usually drops the X term under the square roots. In other words in

tanh[ei(2T)]
dXPP dc

0

=N(0)

one usually approximates N(E) by N(0) through

+2(a+EF )
N(e) = =N(0) 1+

27r2 XF

(B6)

(B7)

p(aj
1

&0.' 1/2
X tanhX''
X, X

' 1/2

1+
F

assuming that co0 « EF.
However, here we cannot use this approximation. If we did use it, then we would find that P, vanishes identically

and thus G would be negative and the surface instability would be demonstrated. Instead without using (B7) we find

1/2 1/2
X X tan hX

0 XF XF X

Expanding the square root beyond (B7), we find

T In[cosh((u()/(2T) )]p(a)
EF Xtp /N (0)

(B9)

(g) N (0) (uo

~OB(a)
+pp . F

T
ln2 for co0»T .

EF
(B10)

P„although small, is positive. Since P2 is also positive, G appears as the difference of two small quantities and its sign
is not obvious. We will see that, for model (b), where values of X larger than X() contribute, this result is drastically
modified.

We now consider models with repulsive tails. The algebra is straightforward and we just give the result. For the case
of a potential such as that in (2.23) we find

D(0)= — [I,—a(Iz I, )], —(b) N (0)
(B1 1)

P (b) N (0) [J,—a(J~ —J, )],—2D'"'(0)

with
1 /2

F XI, 2= 1+
0 XF

' 1/2

1+
XF

1/2
X tanhX

d
XF X

1/2
X tanhX

d
XF X

(B12)

(B13)

(B14)

(obviously Jz & J) and I2 & I)). The bulk transition tem-
perature T,B for this model will be given, using (2.21) by

I1 —2—D' '(0) & 1 so that a & I (816)

1=(—u)D'"'(0)

We have to ensure that the bare particle-particle correla-
tion function exists, i.e., that —D' '(0) &0. This means
an upper bound for a. On the other hand, if we restrict
ourselves to the weak-coupling limit when uN(0) & 1 [as
already noted, values of uN(0) »1 would be allowed
only within the Eliashberg framework ']. We therefore
get

Obviously cx &0 for the repulsive part to exist but is also
smaller than 1 as clear from Fig. 3(a). Otherwise the cen-
tral part of V, which in reality results from the difference
between the attractive and the repulsive contributions to
V in the central region, would be zero, an obviously un-

physical result. With n&0, I, must be larger than 2,
which restricts the possible range of values for the pa-
rameters co0 T cF.
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Assuming (B16) is fulfilled, in order for Pi ' to be nega-
tive we need

J) I) —2
&a &min 1,

J2 —J, '
I2 —I, (B18)

J)a) J —J (B17)

(B16) and (B17) have to be combined with 0 & a & 1, and
thus for this model we end with

If the values of T, too, ez are such that (B18) is fulfille
then P', ' (0 and the surface instability is proved.

Similar results have been obtained for the model in Fig.
3(c).
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