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We report measurements of the convective conductance of *He films near the Kosterlitz-Thouless
transition. Data for 14 films are analyzed over a range of critical temperatures from 1.28 to 2.16 K,
and thicknesses 11.7 to 156 A. We obtain good agreement using two different methods of analysis
with the predicted behavior of the dynamic theory. The exponential divergence is observed up to
six decades in conductance and one decade in reduced temperature. We find that the parameter b,
which determines the sharpness of the divergence, and also the cusp in the superfluid density in-
creases with film thickness. This is consistent with the growth of the three-dimensional correlation
length. We find also that the ratio of diffusion constant to the square of the vortex core radius,
D /a?, is a decreasing function of film thickness. We compare this with measurements in which D is
obtained directly. We also report measurements of the nonlinear dependence of the conductance
below the transition. These are shown to be consistent with measurements above the transition.

I. INTRODUCTION

The superfluid properties of “He films have been stud-
ied for many years and continue to be a source of new
and interesting physics. At the simplest, films may be
looked at as a two-dimensional (2D) analogue of bulk
helium. Thus, at low temperatures, films may be de-
scribed in terms of elementary excitations which mirror
in a lower dimension the excitations of the bulk. Films,
however, are much more than this because of the addi-
tional variables associated with the liquid-substrate and
liquid-gas (or vacuum) interfaces. Interesting phenomena
are associated with these interfaces for both *He and *He,
and, as well, for isotopic mixtures.

Near the superfluid transition, in particular, films of
“He differ in a fundamental way from bulk helium in the
sense that they belong to a different universality class, a
2D XY system. As such, their critical behavior is quite
different and distinct from that of bulk helium. The heat
capacity, which in 3D has a nearly logarithmic singulari-
ty,! is expected to be perfectly regular in 2D.2~* The
superfluid density, which in 3D vanishes with a nearly %
power law,> has a discontinuity at T, in 2D.®*” The
thermal conduction, which in 3D has a nearly } power-
law divergence® above the transition, is exponentially
divergent in 2D.° 13

The critical behavior in 3D is well understood. Mea-
surements at present can be done as close as
t=|T/T,—1/=10""7-10"2 of the transition and are ap-
proaching a level where, with reasonable samples, sub-
stantial gravitational rounding can take place. Studies of
bulk helium have yielded very precise checks on theories
of critical behavior and scaling relations.!* In particular,
the concept of universality has been checked in a variety
of experiments both along the A line in the pressure-
temperature plane and in the temperature—>He-
concentration plane.

By comparison with bulk helium, the critical behavior
of films at the transition is much less well understood,
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and certainly not measured with a precision analogous to
the bulk. The reason is that measurements with films are
more difficult. One can run into difficulties associated
with substrate quality, finite-velocity and frequency
effects, film uniformity, and ultimately size effects associ-
ated with an exponentially divergent correlation length.
Films, on the other hand, are very interesting because
they are a realization of a different universality class
which can be obtained over an arbitrary range of thick-
ness provided one has the temperature resolution. More
specifically, a film will undergo a 2D transition after, or
when, the 3D correlation length becomes comparable to
the film thickness. This “event” takes place progressively
closer to the bulk transition T, as d — . The point is,
however, that if one looks at d as simply a variable
(analogous to the pressure for 3D) which shifts T, the
2D critical temperature, then the universal behavior can
be studied over an infinite range of d. There are obvious-
ly practical limitations to this. One of them is the fact
that as d increases the 2D region becomes very narrow in
temperature and is mixed strongly by the “background”
behavior associated with finite-size 3D critical behavior.
This latter is itself of substantial interest in testing ideas
of finite-size scaling.'®

In this paper, we report measurements of thermal con-
ductivity of films near the superfluid transition over a
thickness range from d=11.7 to 156 A One may view
this work as a study of the universal character of the
transition as a function of d. It is thus analogous to stud-
ies of the 3D transition as a function of pressure. Mea-
surements of thermal conductivity have been reported
previously, but not to explore the d-dependence as in our
work. Shorter reports on our work have been published
previously.'>!® Another publication from our work ad-
dressing issues of finite-size scaling has already ap-
peared.* Our work with mixture films will be published
separately.

Below we discuss the theoretical background behind
our measurements. This is followed by a discussion of ex-
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perimental details, data and data analysis. Before a sum-
mary and conclusion, we compare our work with relevant
earlier results.

II. THERMAL CONDUCTION IN “He FILMS

The transport of heat in a helium film near the
superfluid transition is a convective process: liquid flows
toward a hot surface at which it evaporates. Gas then
flows toward the cold surface where it completes the cy-
cle by giving up its latent hat. Such a process is obvious-
ly realizable only when the vapor pressure of the gas is
sufficiently high. Practically, this means temperatures
above ~ 1.1 K and superfluid films greater than about an
atomic layer. This convective process is much more
analogous to thermal counterflow in bulk helium below
T, than to the diffusive thermal conductance measured
above T,.

The superfluid phase of helium films is understood
within the Kosterlitz-Thouless (KT) theory? as consisting
of a background superfluid density p,, which is stabilized
and modified by the presence of pairs of vortices with op-
posite circulation. At the transition, vortices paired at
the largest separation begin to break up due to thermal
fluctuations. This process continues as one moves above
the transition until pairs at the smallest scale are no
longer bound. The static superfluid density at the transi-
tion should jump discontinuously to zero.!” This, in fact,
has never been measured since all experiments to measure
ps involve dynamic processes which render p; continuous
through the transition. Theories of the dynamic aspects
of the KT transition in helium films have been developed
by many authors.!®*”2? In particular it was pointed out
by Ambegaokar, Halperin, Nelson, and Siggia (AHNS)'®
that the convective conduction of a film near the transi-
tion should be inversely proportional to the density of
free vortices, hence, the square of the 2D correlation
length. Expressions for the thermal conduction for a
geometry appropriate to our experiment were derived in
greater detail by Teitel.?

The situation considered by Teitel is that of a chamber
consisting of two parallel surfaces linking two plates (see
Fig. 3 in Ref. 23). One is maintained at a temperature T,
while the other is heated above this by an amount AT. A
film of helium formed on the walls of this chamber moves
in response to the AT while evaporating atoms reflux in
the opposite direction. This convective process is de-
scribed by the time-independent hydrodynamic equations
of third sound. Two modifications are necessary: one is
the inclusion of a dissipative term due to vortex motion
in the equation of the superfluid; the other is the replac-
ing of p; which is zero above T, by p,,, the background
superfluid density in the absence of vortices. One has

2XJ,+Vu,=0, (1)

where 2 is the direction perpendicular to the film, J, is
the vortex flux, u, is the film’s chemical potential. No
additional equations are necessary if one assumes that
there is no net mass flow either along the direction of the
film or perpendicular to it. One also has to assume that
substrate and film are at thermal equilibrium. All these
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are good assumptions for the geometry of our experi-
ment. See, however, Hedge et al.?* for an experimental
geometry where the flux of atoms perpendicular to the
film cannot be ignored.

To cast Eq. (1) in terms of measurable quantities, we
note that we must have for the gas and film p,=u,.
Thus, Vu, can be calculated from Vu,=p, VT —p. 'VP.
The pressure can be eliminated by noting that for viscous
flow between two parallel surfaces at a distance d apart,
vg=—(d2/1211)VP, where 7 is the viscosity. For the
first term in Eq. (1), Teitel follows AHNS and replaces
this term by an average over the whole surface over
which the film flows. This gives

(2XJ, ) gree=2m#i/m)X(D /kg Tpon;v, )

where D is the diffusion constant and n, is the number of
free vortices per unit area. To arrive at 2 it is assumed
that an equal number of vortices of opposite circulation
are present. Putting these results together one obtains,

2
21

m

D 247
+
kT p2as

Psods =5,AT . (3)

Or, relating the power adsorbed to the latent heat L

transported by the gas, Q =L Wpy,, we have
LAW/L) AT

(2m#/mA(D /kg)n;+24qT /pid®>

o= 4
where we set L=TS, and W, L, are, respectively, the
perimeter over which the film flows and the distance
across which AT appears.

There are two further modifications necessary in Eq.
(4). One must allow for the parallel conduction associat-
ed with the structural material of the cell, the diffusive
conduction of the gas itself and, in principle, of the film
as well. We can lump all of this together into a term we
call K, for the small background conductance. The oth-
er addition is to recognize that to get heat in and out of
the helium one must overcome a boundary resistance
which is in series with the convective film mechanisms.
See below. In summary, we may write that the measured
thermal conductance K, is given by

S S
K, K, Kg

-1

K,=2 =k, + , (5)

m=AT

where we have separated the film flow and gas refluxing
terms as K, and K,. In a properly designed experiment
one wants K, <<K,<<K,~Kg. In this limit, one has
K,,~K;. Consequently, see Eq. (4), K,, yields directly
the density of free vortices. According to AHNS, n, can
be assumed to be proportional to the square of the inverse
of the 2D correlation length above T,

nf~§;2=ahzexp(—47rt'1/2/b) , (6)

where t =(T/T.—1) and b is a constant which may de-
pend on the film thickness and is not a universal number
for different 2D XY systems. The constant a is the vortex
core parameter which will itself depend on the film thick-
ness. With Eq. (6), we may write K ; as
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LAW/L) -1
K,=F @mt=V2/b), (D
I ki /mAD Jaky T

where F is a proportionality constant of order unity.
This equation shows the very strong exponential temper-
ature dependence which K is expected to have near T,.
Experimentally the divergence is limited by K, or Ky;
and, away from T, one cannot obtain K s once it falls
substantially below K.

There is one important assumption in writing Eq. (6)
and hence (7). All the free vortices are attributed to the
“natural” mechanism of vortex unbinding due to thermal
fluctuations. In practice, since one must drive the film at
a nonzero velocity to obtain a measureable AT, one will
always create additional free vertices. Below the transi-
tion, where n,=0, it is impossible not to perturb the sys-
tem via a small flow. Above T,, however, one can extra-
polate the measurement to Q =0, i.e., v, _y, or work at
sufficiently low velocities that thermally activated vor-
tices always dominate. In practice this procedure be-
comes more difficult as one approaches very close to T,.

Below T, one still retains the relationship K, «n/ !,
but one must calculate an equilibrium value for n/ as the
result of vortex unbinding due to finite velocities. This
has been done by a number of authors.!®!%2? There is a
possibility, as well, that due to film imperfections vortices
might be pinned at special sites and freed upon imposi-
tion of a velocity field.2"?> The depairing and depinning
mechanisms yield quite different dependence of n; on v;.
To obtain the equilibrium value for n £» One must consider
vortex recombination rates as well as creation, annihila-
tion at film boundaries. For temperatures not too close
to T,, AHNS derive for a depairing mechanism

2424122
2

172
b , 8)

n
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a
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where r.~v,”!, is the critical distance at which vortex
pairs unbind due to the velocity field. The restriction of
not being too close to T, comes from the requirement
that ., must be much larger than £_. This latter is given
by In(&_/a)=(bt'/?)"1, a length determined by the re-
normalized dielectric constant below T,. '3
We note now that since v, < Q, we have due to depair-
ing
Kf~Q—(l/2)(4+bt”2) ) )

This equation for T < T, can be tested experimentally
and allows one to obtain independently a value of b which
can be compared to the value obtained via Eq. (7) for K
at T >T,. Note, as remarked before, that Eq. (9) would
not be appropriate to an experimental situation where
there would be convective gas flow in a direction perpen-
dicular to the film.?*

III. APPARATUS AND PROCEDURE

The requirements to make a measurement of thermal
conductivity of helium films near T, are as follows. An
experimental cell is needed which contributes a small
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background conductance and allows for the formation of
helium films over as wide a range of thickness as possible.
Long-term temperature stability is required as well as
high resolution to measure small temperature differences
at very low-power inputs. The film thickness must
remain constant, or very nearly so, as the temperature is
varied. We discuss below how these requirements were
met in two experimental cells we used.

A. Cells

Our first experimental cell is shown in Fig. 1. To
minimize the conductance of the structural materials of
the cell, the substrate for the films were chosen to be a
combination of Mylar and Kapton.?® A strip of Mylar,
300 cm long, 2.5 cm wide and 2.54 um thick was wound
in a cylindrical geometry with a 100 um paper spacer at
the ends. This precaution was taken to ensure a relative-
ly open spacing between the Mylar layers. This mini-
mizes the viscous drag that could limit the convective
heat transport and avoids capillary condensation of the
film. Further, small holes were randomly punctured in
the Mylar strip to aid in vapor equilibration.

The inner and outer body of the cell were made out of
50 um Kapton sheet, type H. The Kapton sheet was
formed into open-end cylinders and sealed along its
length with 1266 epoxy. The inner cylinder had a 1.2 cm
diameter, while the outer cylinder had a 2.5 cm diameter.
The Mylar roll was then staged within the Kapton walls.
A spacing of 1 mm existed between the first and last My-
lar layers and the Kapton housing. We used a Kapton
housing instead of Mylar simply because it binds better to
€poXy.

The cylindrical assembly was then placed to link two
goldplated oxygen-free-high-conductivity (OFHC) copper
plates. A mixture of 1266 epoxy?’ and copper powder
was used to bind the ends of Mylar roll and to seal the
Kapton housing to the copper plates. The idea was to
improve the thermal contact between the helium and the

Si———— FILL LINE
C303!
= | GRT 5000
: HEATER

OFHC COPPER

MYLAR RIBBON

SPACER
EPOXY-COPPER

HEATING PLATE

GRT 413|

FIG. 1. Cross-sectional view of our first experimental cell.
V. P. denotes the vapor pressure gauge. The symbol 6 denotes
two germanium, GRT, and one carbon glass thermometers.
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copper plates where the temperature is actually mea-
sured.

The copper bottom plate was provided with a heater
and a germanium thermometer. The top plate also had a
heater and a carbon glass thermometer which was used
for temperature regulation. It included also a germanium
thermometer of similar characteristics to that at the bot-
tom plate. These two fairly well-matched germanium
thermometers were used to perform a differential temper-
ature measurement. The copper top plate was also pro-
vided with a vapor pressure gauge. The pressure inside
the cell was monitored via a capacitive measurement of
this gauge as compared with a standard capacitor an-
chored at this top plate. This capacitor was based on the
design of Steinberg and Ahlers.?

The net spacing for heat transport in this cell is 1 cm.
The perimeter for film flow is 612 cm. The open volume
of the cell is 7 cm? with a surface area of nearly 1250 cm?.
In order to minimize changes of film thickness as the
temperature is changed, we had to improve on the sur-
face to volume ratio. We did this by connecting the cell
to an area reservoir consisting of Nuclepore filters.?’
This was kept isothermal to the top plate. The surface
area was now 1.15X 10° cm? as measured by N, adsorp-
tion and the surface to volume ratio 4X 10* cm~!. This
arrangement, as well as the overall low-temperature
configuration, is shown in Fig. 2.

The experimental cell is placed within a light shield
isothermal to the regulated top plate. The total arrange-
ment of cell and Nuclepore reservoir is weakly linked to a
“He evaporator. This link was achieved through seven
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FIG. 2. Overall experimental arrangement. The experimen-
tal cell is shown schematically, a more accurate representation
is given in Fig. 1.
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copper wires, 25 cm long and 0.4 mm in diameter and es-
timated conductance of 5X10~* W/K. A second light
shield provides an isothermal enclosure as shown in Fig.
2.

The arrangement for the above cell is suitable for
measuring films up to about 58 A in total thickness above
the Mylar substrate (56 A for the Nuclepore). At this
point capillary condensation onsets in the 2000 A Nu-
clepore filters and film homogeneity is much harder to
control.’® In order to work with thicker films, we
designed a second cell.3! This is discussed in detail in
Ref. 4. Films of helium are formed in this cell on a Kap-
ton surface which is at a controlled distance from a reser-
voir of bulk liquid helium. The thickness of the film in
equilibrium with the reservoir is dictated by the strength
of the van der Waals attraction of the substrate and the
gravitational potential at a given height above the reser-
voir. The details of how the film thickness is calculated
for this cell are also given in Ref. 4. With these two cells
we were able to measure films ranging in thickness from
11.7 to 156 A, and T, ranging from 1.28 to 2.16 K. Note
that possible errors in our measurements associated with
film thickness are quite different in the two experimental
cells. It is thus quite important that the results from
these two cells are consistent. This, in fact, was more im-
portant for the finite-size-scaling aspects of our data*
than for what we will be discussing in this paper. Here
we mostly parametrize our results in terms of T, which
is self-determined for each film measured. The data
reduction to obtain the film conductance is slightly
different for these two cells. This is discussed in the Ap-
pendix, and see also below. Also, for the two cells heat
was supplied in one at the bottom, and the other at the
top. No instability due to gas conduction was seen in the
range of powers we used.

B. Temperature control and measurement

To achieve good temperature stability at the cell,
several points in the experimental arrangement shown in
Fig. 2 are thermostated. First, the evaporator is either
left self-regulating at its lowest temperature or electroni-
cally controlled at a temperature slightly below the cell’s.
This is done using a resistance bridge and proportional-
integral-differential feedback to a heater. The cell filling
line, which runs through a vacuum line to room tempera-
ture, is weakly linked to the evaporator and regulated
typically at about 3 K. The most crucial regulation is at
the top plate of the cell. This is done at the temperature
at which the measurement is to be taken. This regulation
could be done to better than 1 uK for most of the tem-
perature range. The overall drifts over a 10 h period
were several uK for the first cell and a factor of 3 worse
for the second cell. These long-term drifts are not very
important. In fact, for any given film, data were taken
typically over a period of 4—6 weeks with overlapping
points taken in successive days. The absolute tempera-
ture is calibrated to the T58 “He vapor pressure scale.*
This was done through an intercomparison with a pre-
calibrated germanium resistor. This was also checked
again against the vapor pressure of “He using the low-
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temperature pressure gauge at the cell. This latter was
calibrated against a room-temperature gauge.

To obtain the thermal conductance one has to measure
the temperature difference between the top and bottom
plate of the cell upon the application of a given heat in-
put. This was accomplished by using a differential resis-
tance measurement between two well-matched germani-
um resistors at the top and bottom plates. These resistors
are part of a Zair-Greenfield variation of a Kelvin double
bridge.> In this design one uses unity gain voltage fol-
lowers in the voltage arms of the bridge. This ensures
that the same current passes through both resistors. Fur-
ther, this bridge eliminates the output transformer and
substitutes for it a differential amplifier. The balancing
element in the bridge is a precision ratiotransformer.
Thus, one can achieve high-temperature resolution. The
temperature difference between bottom and top plate AT
can be expressed to a very good approximation as

dr

aT ) (10)

SR |1
T:— _-
A R |r

where 8R is the change in the ratiotransformer setting,
R; and, (1/r)(dr/dT) is the fractional resistance change
of the bottom thermometer with temperature. Equation
(8) is derived in the Appendix. If 8R /R can be resolved
to 1078, then with typical germanium thermometers, AT
can be resolved to ~0.5X 1078,

There is an important limitation in measuring AT.
Since the power dissipation at the bottom thermometer
adds to the power used in obtaining AT, and since the
conductance is often a nonlinear function of power, then
the power dissipated must be always much smaller than
the heater power used to obtain the measured AT. No
such limitation is imposed on the regulation thermometer
at the top plate of the cell.

In Fig. 3 we show an example of how our data are ob-
tained. This is taken from a stripchart recorder where a
signal proportional to the temperature difference between
the top and bottom plate of the cell is monitored as a
function of time. Four “steps” are shown in this figure.
These correspond to incremental power inputs to the bot-
tom plate of the cell. The conductance is the ratio of the
power applied to the temperature offset. Note that for
the data in this figure, this ratio is nonlinear in the power.
This is because the cell temperature is below the
superfluid transition of the film. Measurements such as
these give the power (i.e., velocity) dependence of the film
conductivity. Above the transition, but close to T, these
measurements allow one to extrapolate the film conduc-
tivity to zero power. Well above the transition, these
measurements show a strictly linear dependence of tem-
perature offset with power. In this region a single power
is needed to obtain the conductance. Note that none of
our measurements are done by fixing the power and ob-
taining AT as a function of temperature. This procedure
would introduce systematic errors in the data due to the
power dependence of the conductance close to T.

The amount of time one waits at any given power de-
pends on the relaxation times and how long one wants to
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TEMPERATURE

5 - 5 25
TIME (min)

FIG. 3. Temperature offset of the differential bridge at four
different powers applied to the bottom plate of the cell. The top
plate of the cell is regulated at a fixed temperature below the
transition.

integrate the noise in the temperature. Anomalous drifts
or steps which may appear during the measurements
shown in Fig. 4 are sometimes due to slips in the regula-
tion. This can easily be checked by turning the heater
power off and verifying that the zero-power level is repro-
duced. The two differential thermometers can also be
read independently. Thus, one can check that all three
thermometers track during a series of measurements.
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FIG. 4. Thermal conductance as a function of temperature
for the two experimental cells used in our work. The top curve
is for the Kapton cell, the bottom for the Mylar cell. This is the
background conductance without any contribution from the
helium gas.
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FIG. 5. The measured conductance K,, on a log scale as a
function of temperature for the ten thinnest films we have mea-

surgd. K, is in WK ™!. The numbers refer to the film thickness
in A.

C. The pressure gauge

We use the low-temperature pressure gauge for several
purposes. By knowing the pressure we can calculate the
latent heat of evaporation which is needed to analyze the
data [see Eq. (4) and below]. For the unsaturated films,
we calculate the thickness from the amount of helium ad-
mitted to the cell and the total low-temperature surface

035 T T T
0.25} 4
— -
N
=
e
X
0.15¢ J
0.05 1 1 1
2 4 8 10

[S)
T (K

FIG. 7. Solid symbols, the highest value of measured conduc-
tance K, for films of different thickness. Plusses, the tempera-
ture dependence of K, for a thick film. The solid line is drawn

to guide the eye. The dashed line is a least-squares power-law
fit. See text.

area. This requires that we know the pressure to allow
for the number of atoms in the gas phase. Further, as the
temperature is changed, the film thickness will change.
This can be calculated and a correction applied to the
data in a self-consistent way so that it represents the con-
duction of a film at constant thickness. Typically for our
cell the film will change by about 2% over the region in
which we analyze the data. This is a small effect per se,
however, since the film conductance is singular in the
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FIG. 6. The measured conductance K,, on a log scale as a

function of temperature for the five thickest films. Note the ex-
pansion of the temperature scale by a factor of 4 relative to Fig.
5. The thickest three films shown are saturated films.

FIG. 8. The measured film conductance near its smallest

value for the 15.1 A film. The dashed line indicates a back-
ground conductance fit to the high-temperature region of the

data. The solid line is the expected background on the basis of
the empty cell and gas contributions.
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FIG. 9. Log of the film conductance K, as function of tem-
perature. Note that these data are on the same linear tempera-
ture scale, but there are breaks in the temperature axis. The
dashed vertical lines indicate 7.. The solid lines are least-
squares fit to the expected theoretical behavior.

thickness, this must be taken into account. We do this as
follows. We first assume that the thickness does not
change. This gives us an initial set of parameters, D /a?,
T,, and b, which can be used to calculate the effect of a
changing thickness. This process is repeated 2-3 times
until the parameters no longer change. The parameters
obtained with and without this correlation will be dis-
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FIG. 10. Log of the film conductance K as function of tem-
perature. Note that these data are on the same linear tempera-
ture scale, but there are breaks in the temperature axis. The
dashed vertical lines indicate T.. The solid lines are least-
squares fit to the expected theoretical behavior.

D. FINOTELLO, Y. Y. YU, AND F. M. GASPARINI 41

-3
- 4 ’,_

=

<

X -5t

e

g
- 6 -
-7 1 1 .

4 9 14 19

(T/Te -177"2

FIG. 11. Semilog plot of K;/f(T) in sec vs ¢ "!/2. Symbols
correspond to film thickness as indicated in Fig. 5. The solid
lines are least-squares fitted to the data analyzed via method
two.

cussed below. Further details of this analysis are given in
the Appendix. This analysis is not essential for some of
the trends in the conductance which we will discuss;
however, it puts the data for the unsaturated films on
equal footing with the unsaturated films where this
analysis is not necessary.

The gauge itself is after the design of Greywall and
Bush.’* It consists of a capacitive transducer with one
plate at the top of a diaphragm which moves subject to
pressure. The capacitance between this plate and a sta-

log (K, /f(T))

$l/72
)

(T/ Te-1

FIG. 12. Semilog plot of K;/f(T) in sec vs ¢t ~'/%. Symbols
correspond to film thickness as indicated in Fig. 6. The solid
lines are least-squares fitted to the data analyzed via method
two.
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FIG. 13. Semilog plot of K,/f(T) in sec vs ¢t ~'/2. Symbols
correspond to film thickness as indicated in Figs. 5 and 6. The
solid lines are least-squares fitted to the data analyzed via
method one.

tionary plate can be monitored in a bridge network
against a standard which is also located on the regulated
plate of the cell. This gauge, which is calibrated when
cold against a room-temperature gauge, has a typical
reproducibility of 0.002 torr and a resolution about 10
times higher. The gauge contains sintered copper for
thermal contact. It has an area of 5X 10* cm?, about 4%
of the total area available to the helium.

D. Conductance of the empty cells

The thermal conductance of the empty cells was mea-
sured prior to condensing the helium sample. These data
are shown in Fig. 4. The first cell, made mostly out of
Mylar, shows a conductance in the range between 1 and
2X 1073 W/K. With the cross-sectional area of 0.15 cm?
and distance of 1 cm, we obtained a conductivity of
1.0X107* W/cmK at 1.6 K. We are not aware of any
measurements of thermal conductivity for Mylar at this
temperature, but our result is comparable to a number of
plastics. For the Kapton cell, in fact, at 1.6 K we also
obtain a conductivity of 1.1X 10~* W/cm K. However,
the conductance of this cell is much higher due to the
larger cross-sectional area of the Kapton, 1.06 cm?, and
shorter distance between plates, 0.44 cm.

The conductance of the empty cell, plus, upon forma-
tion of a helium film, the contribution from the gas,
should form the regular background conductance above
which the singular, convective conductance of the film
will be measured. We will discuss this in greater detail in
the next section.

IV. DATA AND ANALYSIS

Data for our experiment have been taken over a period
of several years. This involved the two experimental cells
already described. Films were formed on Mylar, Kapton,
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and on an Argon-coated (25 A) Mpylar surface. The latter
was done to investigate possible differences in film behav-
ior when the substrate was coated with a noble gas. No
difference was in fact found within the accuracy of our
measurements. Films range in thickness between 11.7
and 156 A above a non-superfluid layer. Prior to the
present study, a series of measurements had also been re-
ported for films on stainless steel.>> These were more
fruitful in studying the nonlinear aspect of the conduc-
tance'? rather than the critical aspect of the transition
discussed below. Measurements of mixture films'® were
also performed and will be discussed in a subsequent pub-
lication.

The measured conductance K,, for all the films for
which we have a complete set of data are shown in Figs. 5
and 6. As discussed in the Introduction, K,, is bounded
from above by a thermal resistance which is in series with
the helium, and is bounded below by a resistance which is
in parallel with the helium. Between these two bounds
K,, varies over a range of three decades. Even before any
analysis to extract the film conductance, it is clear that as
one increases the film thickness the transition becomes
sharper. Note that in Fig. 6 the temperature scale is ex-
panded by a factor of 4. The implication of this sharpen-
ing is that if the data are described by Eq. (7), then the
parameter b must increase with thickness.

To extract from these data the conductance due to the
convective mechanism of the helium film, we examine the
behavior of the upper and lower bounds. Values of the
upper bound K, as function of temperature are plotted in
Fig. 7. The symbols with the error bars represent K, for
different thickness films. These correspond to data taken
during the same cooldown. These data seem to be con-
sistent with a 7> dependence suggesting a Kapitza
boundary resistance as the mechanism for K,.*¢ The

TABLE I. Results of the analysis with method two with T,
b, and D /a? least-squares adjusted (see text). The standard er-
rors for b are 2%, for D /a? they are 20%. The three thickest
films are saturated and formed on a Kapton surface. The
remaining films are for a Mylar surface. The 11.7 A film is for a
Mylar surface coated with 25 A of argon. In the analysis, the
data are corrected for film depletion, see text and Table II.

Thickness T. D /a?
(A) (K) b (10° sec™))
11.7 1.2811 8.13 15
13.6 1.3683 8.0 6.0
14.7 1.3789 7.75 9.0
15.1 1.4593 9.73 6.2
16.5 1.5193 10.6 5.9
18.6 1.5720 13.4 1.5
19.1 1.5865 16.1 5.1
24.8 1.6200 16.9 0.73
26.8 1.8000 18.0 0.27
36.5 1.8759 34.0 1.1
50.6 2.0113 27.7 0.069
55.6 2.0292 32.8 0.082
95 2.1321 47.5 0.153

135 2.1504 49.9 0.059
156 2.1552 65.9 0.029
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plusses in Fig. 7 represent data in a different cooldown
taken with the same thickness film but extended over a
broad temperature range below the transition. The
dashed line through these data corresponds to a power-
law dependence on T of 2.35+0.05. This is also con-
sistent with a boundary resistance rather than an im-
pedance to gas flow. Our estimate of this flow impedance
yields a value of K, which is a factor of 100 larger than
measured. Further, if K, were due to gas impedance, it
would have to vary more rapidly with temperature than
we observed because the gas density depends on the pres-
sure. In practice, because of the rapid variation in K
near T, it is a good approximation over a narrow tem-
perature range to use for K, a constant value which can
be determined at each individual film. In terms of the no-
tation of Eq. (5), we have for T <T.K,=, thus
Ky =K, ~const.

To correct K, for the lower bound is somewhat more
problematical. The difficulty is shown in Fig. 8. Here we
have plotted on a linear scale the measured conductance
in the ““tail” region above the transition. The solid line in
this figure is the calculated conductance using the empty
cell measurements, Fig. 3, and values of the diffusive con-
ductance due to the helium gas.’” The solid line misses
the data by about 40%. Further, and more importantly,
the temperature dependence is more rapid than expected,
suggesting that it is associated with the film itself. These
two problems become even more acute for thicker films
with higher T,’s. This is not very obvious from Figs. 7
and 8 because of the logarithmic scale, but is very evident
on a linear plot.

There are two ways in which we have analyzed the
data near the lower bound. We assumed at first that the
data determine its own lower bound and assumed that the
critical behavior of K, lies above this background. This
is the dashed line in Fig. 8. K, would then be the
difference between the data and this line. Second, we as-
sumed that we could calculate the lower bound as given
by the solid line in Fig. 8. Consequently, the convective
film conductance would now lie above this latter line.
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These two methods of analysis have a strong effect on the
lower values of the film conductance, but do not affect
the data close to T, which have conductances 1000 times
larger. We will report results using both methods of
analysis. We note that one may view the first method as
taking away from the data a temperature dependence
which, in fact, is associated with the transition, but
represents higher order or less singular terms than given
by Eq. (7). The second method retains all the contribu-
tion to K £ but makes it somewhat harder to isolate the
most singular part. As we will see, these two possibilities
affect our quantitative results for various parameters, but
not the trends in these parameters which we want to em-
phasize. We note that T, in particular is hardly affected
by these analyses. In terms of the notation of Eq. (5), the
two lines in Fig. 8 represent the quantity K,. We remark
that this difficulty in dealing with K, is common to all
measurements of film conductance. The choice of K,
represented by the dashed line in Fig. 8 has always been
made. Our own alternative analysis with a calculated K,
can thus be used to assess how good this assumption is.

Results for K, for some of our data as obtained via
method one, the dashed line for K, are shown in Figs. 9
and 10. The data taken in one cooldown with the Mylar
cell are shown here. We see now that the convective con-
ductance K, extends over about six decades near the
transition. It is more apparent now that the critical re-
gion narrows as we move to thicker films and higher T’s.
For the film with T, below 1.4 K, this region is nearly
100 mK wide. For the film with T, near 1.8 K, this re-
gion is about 20 mK. For the thickest film for which we
have measured K £ 156 A, this region is 3—4 mK.

The solid lines through the data in Figs. 9 and 10
represent a least-squares fit of the data to Eq. (7) with T,
b, and D /a? as variational parameters. Further, as al-
ready discussed, the analysis corrects for film depletion in
an iterative procedure (see the Appendix). Some results
of this analysis have already been reported.'* We note
that the solid lines fit the data rather well over the full
range of film thickness shown. Note that especially for

TABLE II. Results of the analysis with method one with T, b, and D /a? least-squares adjusted (see
text). Standard errors are as indicated in Table I. Two entries are made for each parameter. The first
is before a correction for film depletion, the second is after this correction is made (see text and the Ap-

pendix).

Thickness T. D/a?
A (K) b (10° sec™))
11.7 1.277 1.272 6.64 6.03 27 24
13.6 1.3660 1.3654 6.44 5.93 13 12
14.7 1.3708 1.3705 5.16 4.87 66 62
15.1 1.4579 1.4575 8.73 8.00 4.4 3.9
16.5 1.5184 1.5181 8.78 8.13 9.0 8.5
18.6 1.5699 1.5697 10.5 9.68 23 22
19.1 1.5860 1.5859 13.6 12.7 7.9 6.7
24.8 1.6188 1.6187 14.3 13.8 0.28 0.29
26.8 1.7981 1.7980 12.7 12.2 35 3.6
36.5 1.8751 1.8751 234 22.7 33 32
50.6 2.0117 2.0113 30.5 28.4 0.007 0.007
55.6 2.0292 0.0259 17.8 16.9 0.25 0.22
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FIG. 14. The parameter b as a function of T, —T,. Inset:
log-log plot of b vs film thickness. The solid line is a least-
squares fit to the data for thickest films.

the thin films T,’s, the dashed vertical lines in these
figures, are substantially below the last data point. Thus,
even at conductances of the order of 1 W/K (~ 10*
W/Kcm for a 13.6 A film), one is still not very close to
T,. Measurements in this region are extremely difficult
because the conductivity becomes more strongly power
dependent and measurements in the limit of Q =0 in-
volve very small values of AT.

A more telling way of showing how well the data fit the
expected theoretical relation, Eq. (7), is to plot these data
versus ¢!/2. Such a plot of these data is shown in Fig. 2 of
Ref. 13. Again, one finds excellent fits to Eq. (7) with de-
viations only for a few points close to T, or far from T,.
These deviations are expected (and visible as well in Figs.
9 and 10), close to T, because of the difficulty in measur-

088 0.92
T/Te

FIG. 15. The ratio p(T)/ps(T,) as a function of T/T,, for
various values of the parameter b. From the lowest to the
highest these correspond to films with b =35, 8, 30, 60, or T, ap-
proximately of 1, 1.3, 2 and 2.1 K.
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FIG. 16. The parameter D /a? in sec™! vs T, — T, on a log-
log plot.

ing K,,, and far from T, because of the sensitivity to the
choice of background, or because of being too far from
the asymptotic region in which Eq. (7) is expected to
hold.

We discuss next the analysis according to method two,
i.e., using the calculated value for K,. We write Eq. (7)
for the film conductance in the form

K= F(Texp | 2172 | (11)

a?
D
where f(T) is a weak temperature-dependent function in-
volving the latent heat. This can be calculated using our
measurements of pressure. An extra factor of film thick-
ness d would appear in Eq. (10) if one were to calculate
the conductivity rather than conductance. The function
f(T) contains the geometrical factors of the perimeter
over which the film flows and the distance between top
and bottom plates of the cell. The constant F, which ap-

1.5 T T
o © " T -1ThI$\:IOVK "
T>Te
° o Ref. 44
° T< T,
1.0} oo o © N

D/ (h/m)
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FIG. 17. The diffusion constant D in units of #/m vs temper-
ature. The open circles for T < T, are from Ref. 44. To obtain
D from our data we have assumed that the core parameter is
equal to the three-dimensional correlation length. See text.
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FIG. 18. Power dependence studies for T <T,. K s is in
W/K and Q ip W. The symbgls refertoV,A,e,l, h =14.1 ;X;
V,h=18.6 A, 0,h=13.6 A.

pears in Eq. (7), has been assumed to be one. We see now
that the quantity K /f(T) can be least-squares fitted to
extract D /a?, b, and T.. This was done to obtain the
solid lines in Figs. 9 and 10. The results of doing this for
method two, using the calculated value for K, are shown
in Figs. 11 and 12. These are semilog plots of K, /f(T)
vs t "1/2. On these plots the data are expected to fall on
straight lines. We can see that this behavior is followed

3.0 -

FIG. 19. The value of the exponent of the power dependence
of the conductance A vs the expected exponent A, on the basis of
the behavior of K, above T,. These exponents scatter about a
45° line. The error bars for one point are representative of all
the other. Symbols refer to film thickness as indicated in Fig. 5.
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by the data in a reasonable way; but there are clearly sys-
tematic deviations for low values of K,. These can be
traced to our calculated values of K, as done for this
method of analysis. We show for comparison in Fig. 13
five sets of data spanning the full range of film thicknesses
and for which K, is chosen as in method one. These fits
now show no systematic residuals. In spite of this, we
feel that method two is more logically consistent in the
sense that there is no mechanism associated with the gas
which would give the relatively rapid temperature depen-
dence measured. Thus, it seems more reasonable to attri-
bute it to the film. It is possible that a more complete
temperature dependence for the two-dimensional correla-
tion length would contain higher-order terms to take care
of these systematic residuals. We find that the fitting pa-
rameters which are obtained in method two are better
behaved and scatter somewhat less than for method one.
We have summarized the numerical results from both of
these analyses in Tables I and II. In the second table we
also show results for the unsaturated films before and
after corrections for vaporization. One can see from this
table that the trends in fitting parameters are not affected
by this analysis. The magnitude of T, in particular is
hardly changed. We now discuss the parameter b, D /a?,
and T,.

A. The parameter b

This parameter appears as a nonuniversal constant in
the KT theory for the divergence of the correlation
length for T > T, [see Eq. (6)]. This parameter also de-
scribes the magnitude of the ¢!/2 cusp in the superfluid
density as one approaches 7, from below. A value for b
can be obtained in terms of the ratio E./T,, where E, is
the vortex core energy.’® Such a relationship, however,
fails for thicker films because of the assumption that the
superfluid density be nearly temperature independent
near T,. A more general relationship was recently ob-
tained which incorporates a T, (hence thickness) depen-
dence in b via the background (nonvortex) superfluid den-
sity.® All of these relationships do not calculate b but
rather give b in terms of other nonuniversal quantities.

In the first publication of our work we suggested that
the increase of b may, in fact, be related to the three-
dimensional correlation length, &;n.'3 Petschek has sug-
gested a way in which b should scale with size.** He ar-
gues that E_ should scale with &35 and that the difference
between normal and superfluid free energy should scale
as &;5. This, plus finite-size scaling*! of T,, (T,
—T,)~d ", yields

b~d'* . (12)

Our results for the parameter b are shown in Fig. 14.
We have plotted these on a linear scale versus T; —T,
where T, is the bulk, 3D transition. The increase in b as
T.— T, (or as d increases) is obvious from this plot. This
is a reflection of the slope of the lines in Figs. 11 and 12
becoming smaller. From Fig. 14 we see that the scatter
in the value of b is larger than the statistical error which
is of the order of the size of the symbols. This is typical
for these data whether analyzed with method one or two.
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In the inset of Fig. 15, we have a log-log plot of b vs d.*
We have fit a straight line through the data of thicker
films in the region where the scaling arguments might ap-
ply. We find an exponent of 0.691+0.01. This is to be
compared with 1/2v=0.74. We view this as qualitative
agreement. We do not feel, in particular, that Eq. (11)
provides a strong test of finite-size scaling. First of all,
the arguments leading to 11 are not as straightforward as,
for instance, the shift in 7. with d. Second, even though
the statistical error in b is only 2%, the accuracy with
which b can be obtained experimentally is not very high.
This can be seen from the scatter of b in Fig. 14. The
values of b as obtained with both methods of analysis are
given in Tables I and II.

The implications of the increase of b as far as the 2D
superfluid density near the transition can be obtained
from!®

ps(T,)

ps(T)
T T

c

1424

4 (13)

We have calculated the superfluid density for b’s in the
range of 5-60 corresponding to T,’s between 1 and 2.1
K. This is plotted in Fig. 15. We can see that at higher
T,’s there is a strong temperature dependence of p; near
the transition. This, in addition to the strongest tempera-
ture dependence of the background p(T), which is not
included in this figure, would make it very difficult to ex-
tract the universal jump in p, at T, for thick films.

B. The parameter D /a?

The ratio of the diffusion constant to the square of the
vortex core radius is obtained from the prefactor of Eq.
(10). In terms of the plots in Figs. 13 and 14, D /a? is re-
lated to the ¢ ~!/2=0 intercept of the fitted straight line.
The absolute value with which D /a? can be obtained is
related to the accuracy with which we know f(T)/d.
We believe this is about 10%. More importantly, howev-
er, in Eq. (10) the unknown proportionality constant be-
tween free vortex density and correlation length, see Eq.
(7), has been set equal to one. Thus, we would say that
the absolute value of D /a? can be obtained from our
analysis within a factor of order unity.

Our results for this parameter are plotted versus
T, —T,. on a log-log scale in Fig. 16. The general trend
in D/a? is a decrease by about three decades as one
proceeds from the thinnest films to the thickest. This de-
crease might be expected both from the behavior of D
and a. The diffusion constant is a measure of the ability
of vortices to move along the film.!® This is influenced by
interactions with the substrate, which may give a
nonuniversal character to D, and interactions with
thermal excitations. These latter increase with tempera-
ture which would tend to decrease D. Further, D is in-
versely proportional to the square of the background
superfluid density which also increases as the film thick-
ness increases. For all these reasons, one would expect D
to decrease as the films become thicker, i.e., as T, ap-
proaches T.

The vortex core parameter is expected to be propor-
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tional to the 3D correlation length. This quantity in-
creases as T.—T),, eventually diverging with a charac-
teristic exponent v=0.672. This would also make D /a?
decrease. To obtain D, we have assumed that a =§&;p,
and we have calculated the 3D correlation length from
the superfluid density.** This value of D is plotted in
units of #/m versus temperature in Fig. 17.

Our data suggest that D does indeed decrease as the
films’ transition temperature approaches T,. However,
there is clearly not enough accuracy in these results to es-
tablish a functional form for D. One may even conclude
that D ~const=0.3%/m. Plotted in this figure are also
results for D obtained by Adams and Glaberson.** These
are direct measurements of D for T approaching T, from
below. Our results are for T approaching T, from above.
Both of these results show similar trends. A comparison
of the absolute magnitude is not warranted since our re-
sults are only within a factor of order unity.

We note as well that in Ref. 44, as well as 45, it is
found that D has a power-law temperature dependence as
T—T,. In our analysis for T—T,", we assumed that
D=const. In fact, because of these results and the calcu-
lation of Huber,*® we incorporated a power-law tempera-
ture dependence in D as suggested in Ref. 46. We find
that the parameters b and T, are charged insignificantly.
For D /a?, the change is more substantial but still within
the error bars shown in Fig. 17. The reason for such
small effect is that any power-law dependence introduced
in the prefactor of the exponential behavior of K is not
of much consequence.

C. The critical temperature, T,

c

The critical temperature is the parameter determined
most precisely from our data. It is relatively insensitive
to how the data are reduced or the method of analysis.
See Tables I and II. The change in the quantity 7, — T,
as a function of the film thickness should be governed, ac-
cording to finite-size scaling, by the exponent of the 3D
correlation length. A report on this aspect of our work
has been published already.* Here we only remark that
this scaling does not work and that this conclusion is in-
dependent of how we analyze the data.

D. Power studies for T < T,

As discussed in the Introduction, below T, one expects
a dependence of K, on the velocity of film flow. This im-
plies for a depairing mechanism that K f~Q_A, where

=1(4+bt'/?). We have checked this dependence for a
number of films in the velocity range ~10"2-103
cm/sec, for which the restriction r, >>£_ is well satisfied.
Some of these data are shown in Fig. 18.*” Here the film
conductance is plotted versus the power applied on a
log-log scale. Data for three different films are shown at
temperatures below T,. The corresponding film veloci-
ties depend inversely on the film thickness. Given the
geometry of our cell, a power of 107 W corresponds to
2X 107 % cm/sec for a 16 A film.

The data in Fig. 18 were least-squares fitted resulting in
the straight lines shown through the data. These fits are
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reasonable although the range of data, ~1 decade in K,
is not very large. These data, as well as other, indicate
that the expected power law is observed irrespective of
the thickness or the separation from T,. Also, for a given
coverage, as the transition is approached, a smaller
amount of power is needed to generate the same free vor-
tex density. This is consistent with a picture where the
energy required to unbind vortex pairs becomes progres-
sively smaller as T, is approached. We have, in addition,
data which extend to higher powers and lower values of
K. Some of these data are shown below the dashed line
as the up triangles. These data deviate sharply from a
power-law dependence. It appears that at higher values
of Q, a finite velocity field is not as effective in lowering
K as for small velocities. A type of saturation seems to
be taking place, even though we are still well within the
criterion of r, >>& _.

The value of the slopes in the power-law plots is the
quantity we have called A. This quantity can also be cal-
culated using the value of b and T, determined from the
exponential dependence of K ; above T,. We call this cal-
culated value A.. We plot in Fig. 19 A vs A,. If the
theory were correct and the data very precise, the data
should fall on a line of slope one going through the ori-
gin. This is the line which is drawn in Fig. 19. We see
that the data scatter about this line within a band of
about +10%. We consider this quite reasonable given
the precision with which b can be determined. Note that
the data in Fig. 19 represent different films thickness and
different temperatures. We believe this represents the
first check of this kind for the parameter b obtained in-
dependently from the conductance for T'> T, and the Q
dependence obtained for T <T,. We remark that the re-
sults shown in Fig. 19 are for what we have called
method one of data analysis for T >T,. Had we used
method two, the data would tend to lie somewhat below
the line and the agreement would not be as good.

The data were also tested for a depinning mecha-
nism.2""?2 One finds good agreement with this mechanism
as well over a considerable range of powers. However,
the size of the pinning site as extracted from the fits
seems rather large. Pinning sites of the order of 10* A
are required.?’

V. COMPARISON WITH OTHER EXPERIMENTS

There have been many experiments in which the
thermal conductivity of “He films near the transition has
been measured.” !> These have been done with films
formed on a variety of substrates, with different experi-
mental arrangements and emphasis on different features
of the transition. Broadly speaking, there have been two
principal areas of investigation: the nonlinear depen-
dence of the film conductance on power for T <T,, and
the linear dependence for T > T,. This latter, which tests
the divergence of the 2D correlation length, has been the
principal focus of this paper. We compare this with oth-
er results.

The earliest measurements to show an exponential
divergence of K ; were those of Liebenberg*® and Ratman
and Mochel.* The first were for a saturated film, the
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latter were for a film with 7,~1.25. These latter data
were originally analyzed with an activation-type expres-
sion and, subsequently, by Teitel according to Eq. (4).2
He finds that the data obey this equation with b <4 over
a region of about a decade of K,. This value of b, as can
be seen from Fig. 14, is in reasonable agreement with our
own results.

Agnolet et al. have reported measurements of a single
film with T,~1.28 K.!® This film was formed on Mylar
and a four-terminal technique was used to measure the
conductance. This was obtained over a range of seven
decades. Their data yield b=6.96, while D /a?>
=6.39X 10" sec ! if, in keeping with our own assump-
tions, one takes F to be unity. A correction of these data
for evaporation effects gives b =4.65 and D /a? remains
unchanged. The value of b is in good agreement with our
own results. D /a?, however, is larger than expected
when compared with the results in Fig. 16. In fact, their
value of D /a? is in better agreement with our own when
compared with results of using the first method of
analysis. This is a more meaningful comparison since
this is the kind of analysis used in Ref. 10.

Maps and Hallock® measured film conductance in a
different arrangement from our own or that of Ref. 10.
The film was formed on a Mylar strip suspended in an
open chamber with isothermal walls. This is a similar
geometry as for Refs. 11 and 24. The film conductance
for seven films with T’s in the region between 1.3 and 1.6
K was obtained. This was done by varying the thickness
at a fixed temperature. These data yield a constant value
of b=~3+0.5. This is somewhat low when compared to
our results, and does not show the T, dependence in Fig.
13. We would expect that b would change by about a fac-
tor of 2 in this range of T,. The value we obtain at
T,~1.6 is about 16. For D /a? these data yield values in
the range 10'2-10"" sec™!. This is in close agreement
with the single measurement of Agnolet et al.,!® but is
more than two decades higher than values in Fig. 15, and
is also higher than values obtained with our method one.
There is, however, a slight trend toward smaller values of
D /a? with higher T,’s which is consistent with our own
observations.

Joseph and Gasparini studied the conductance for films
formed on a stainless steel substrate.!?> Of the two cells
for which they obtained data, cell 3 is the one of compa-
rable design to the ones discussed in the present work.
They obtain for b values which increase from 7.6 to 11 in
the range of 1.63-1.75 K. For D /a? they find in the
same range a decrease from 2X10° to 4X107 sec” .
These trends are in the right direction when compared to
the present work, but are somewhat lower than values in
Figs. 14 and 16. We remark that their data can be ana-
lyzed only over a limited range in K, 2—3 decades, and
that the stainless steel surface is likely to give different
values for their parameters, at least D /a 2. when com-
pared to Mylar. The stainless steel substrate is not as
smooth as Mylar. Indeed, their work for the nonlinear
dependence of the conductance on power shows that a
depinning mechanism seems to be dominant as opposed
to a depairing mechanism as seen for films on Mylar in
this work, as well as in Refs. 9 and 24.
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Hess and Muirhead!! measured the superfluid behavior
of films on various substrates. In particular, for a gold-
plated copper substrate they obtain the film conductance
for the linear region. Their data are obtained for a ther-
modynamic path similar to Ref. 9. The temperature is
fixed and the film thickness is varied. From the analysis
of the films, they obtain D/a?~108-10° sec™! and
b =14—12. This for T.’s in the range of 1.155-1.485 K.
The trend in these parameters is contrary to our own ob-
servations, but it is not clear that this is significant, since
the range of data over which the exponential divergence
is tested is very limited, one to two decades.

VI. SUMMARY AND CONCLUSIONS

We have reported measurements and analysis of the
convective conductance of “He films near the superfluid
transition. These data span a region of temperatures
from 1.28 to 2.16 K and film thickness from 11.7 to 156
A. The main goals of our work are, first of all, the
verification of the dynamic theory predictions for the
convective conductance at the Kosterlitz-Thouless transi-
tion and, second, to see how parameters in this theory are
renormalized as T, approaches T, .

We find that there are two consistent ways of analyzing
our data. These are associated with how one treats the
lower bound of the measured conductance. Both
methods yield reasonable fits to the expected theoretical
expressions, one method being slightly better than the
other. These two methods affect the resulting parame-
ters, especially D /a 2. but do not affect the trends which
we wish to emphasize. These trends are that b increases
with T, while D /a* decreases. The behavior of b is con-
sistent with a growth which parallels the 3D correlation
length. Empirically, the growth of b is a reflection of the
fact that the film is 2D in character over a progressively
narrower temperature region as the film thickness in-
creases. We find that the parameter b, obtained from
T > T, by fitting the data to the exponential divergence,
is consistent with the parameter b as obtained from the
nonlinear dependence of the conductance on power for
T <T.. We have shown in Fig. 15 the implications
which a large value of b has on the behavior of the
superfluid density.

For the parameter D /a 2. the decrease with thicker
films makes physical sense both on the basis of the behav-
ior of D and of a%. If we take a? as the square of the 3D
correlation length, we can calculate D for T > 7, and
compare with direct measurements of the diffusion con-
stant for T <T,. We find that both of these data show a
D which decreases as T, approaches T,. In our own
case, however, the scatter is such that a constant value of
D would also be a reasonable interpretation. The abso-
lute value of D cannot be compared since, from our
analysis, we can only determine D to within an unknown
factor of order unity.

Our analysis of the shift in transition temperature T,
as a function of film thickness, and the implications vis-
a-vis finite-size scaling were discussed in an earlier publi-
cation. We remark here that the conductance we mea-
sured for our thickest film shows no evidence of dimen-
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sionality crossover. Even for the thickest films we have
studied, with T, 15 mK from T, the smallest value of
conductance that we measure is several decades above
the highest measured diffusive conductance for bulk heli-
um above T,. Thus, we see no evidence of a crossover in
temperature dependence from a power law to an ex-
ponential.

We have compared our work with earlier results. We
find good qualitative agreement but not at the level that
one would wish. The lack of complete agreement is to a
great extent due to the difficulty in measuring the very
singular behavior of K, over a wide range of 7-T, to ex-
tract the critical behavior. It seems clear to us that a new
generation of experiments should be planned utilizing
thermometers of higher resolution and cells which allow
a wider range of conductance to be accessible. This
would resolve the ambiguities in the method of analysis,
allow for a more detailed study of the power dependence,
and possibly obtain behavior showing 3D to 2D cross-
over.
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APPENDIX

1. Differential temperature measurement

We consider the situation of Fig. 1 where we apply a
heat input to the bottom plate of the experimental cell
and want to measure the resulting temperature difference.
We define r(T), r,(T), and R(T) as the resistances of
the top and bottom thermometers and the bridge ra-
tiotransformer setting at equilibrium. These are related
as

r(T)=Ry(T)ry(T) , (A1)

where we denote by R,(T) the setting corresponding to
zero-power input on the bottom plate, Q =0. Let us now
consider Q0, and assume that both top and bottom
thermometer suffer a shift in temperature 87,87,. In
principle, the regulated top thermometer should remain
constant, but we assume for generality that §7,70. Us-
ing

r(T+8T,)=Rr,(T +8T,), (A2)
and
dr dr dR
! 2 ) (A3)

—_— a—_.+ ,
dT _ ogr " ar

we obtain upon Taylor-series expansion of (A2)
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dr, -
8T, = R—d—T- (Ry—R)ry(T)
8T, |r(T)— 4Ry 2R ara
172 odT
(A4)
Thus, the temperature difference, AT=06T,—8T,, be-
tween top and bottom plates is given by
R, 1 dr, -1
AT=|[——-1| |——=
R [rz daTr
-1
1 dr; 1 d"z R,
+8T, | ———= +—=1].
"\R dT |r, dT R ] (A3

The first term in the above is the leading-order term. The
second, which involves 8T, represents a correction in
case the regulation slips, or if some of the heat applied to
the bottom plate travels through the leads of the top ther-
mometer to the cold sink at the “He evaporator. We find
empirically that the second term gives <1% correction
at large powers. When necessary, as when doing power
studies, we correct for this. In practice, the important
data for film conduction is in the limit of Q =0, hence the
leading term in (A5) is sufficient

2. Film depletion

As the temperature increases, the pressure of the gas in
equilibrium with the film also increases. Then, in a
closed system where the amount of helium is fixed, as the
temperature is raised, an unsaturated film will thin. The
rate at which such thinning takes place depends largely
upon the surface to volume ratio of the experimental cell.
To display more explicitly the thickness dependence, we
write the conductivity as follows:

3K,
ad

VK,

72y aTl’
RT

27?2

T

—d '+
T,

T

=372
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K;=f(T)d "'exp[at(d)~'?], (A6)

where f(T) is a function that depends on temperature
through the latent heat, and d is the film thickness. The
total differential along a thermodynamic path where both
T and d change is

dKf=(8Kf/aT)ddT+(8Kf/ad)Tdd . (A7)
For small AT, Ad we write
AK,=(0K,/dd)rAd +(3K,/9T),AT . (A8)

The first term on the right-hand side of (A8) represents
the correction to the film conductance due to the change
in the film thickness. We derive below an expression for
this term.

Taking the derivative of (A6), we have

K; 3K ;/3d)r=—d '+(aT/2T}T/T,—1
X(dT, /dd) ,

)—3/2

(A9)

where dT./dd may be obtained from experimental data
and, in terms of the notation in the Introduction,
a =47 /b. We have ignored in (A9) the weak dependence
of f(T) on thickness. In the analysis of the data, howev-
er, we take this into account by calculating f(7) for
every point. We now expand d(T') near T,

dd
d(T—T,)~—(T—-T.)—= aT
We can relate the thickness to the number of moles of
helium by treating the gas as ideal (a more precise expres-
sion using the second virial coefficient has no effect on the
analysis),

dd _
dT

Ad(T)=d(T,)— (A10)

dP P

dT T

dd
dn’

—V— (A11)

where V is the volume available to the gas. The correc-
tion term can now be written as

dT,
dd

dpP

T

_ P
T

dd

(T—T,) (A12)

Now what is measured is the dependence of the conductivity on temperature modified slightly due to a change in film
thickness. Since we are interested only in the temperature dependence, the thickness dependence as indicated (to a first
approximation) in (A12) should be removed. We can write this as

-3/2
vV ||dd - aT || T dT, dp P
K1+—————d1 — | | =1 — = |= T—-T,)t, Al3
Koo =Ky RT | |dn 272 | | T. l dd dT 7| ) AL
I
where K, is measured film conductance. In (A13), the film thins, its T, will shift towards lower tempera-

(dd /dn) is a function of the surface area and is deter-
mined from the amount of helium needed to form, say,
one layer or 3.6 A of film. Since the second term in (A13)

is positive, K. >K,. This is understandable since, if

tures. As the measurements are performed farther away
from T,, the measured conductance will be smaller than
what would be measured for a constant film thickness.
This implies that K s when the film is allowed to thin, is
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sharper than the true conductance. We note that the
correction is singular at T,. That is, in spite of the fact
that thickness changes are very small near T, the correc-
tion is larger because of the singular dependence of K.
Finally, we note that the correction involves T, and a,
which are not known a priori. Thus, the correction in-
volves an iterative procedure.

The data were analyzed in the following way. The film
conductance was extracted from the measurements and it
was divided by the latent heat and geometrical ratio as
discussed in data analysis. A three-parameter least-
squares fit to the data was performed. From the fit, the
parameters T, and a =4w/b were extracted and substi-
tuted in (A13) to calculate the corrected conductance.
This was again least-squares fitted, and new parameters
T, and a =4w /b extracted. The iterative procedure is re-
peated until 7, and b do not change. In all cases, this
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takes at most three iterations.

We note that this thinning correction leaves the data as
K along a path of constant thickness but with a slightly
different thickness at different values of T-T,. A further
correction is needed involving changes of K, at constant
T-T, due to the fact that parameters b and D /a? change
with d. We expect, however, this correction to be small
since these parameters vary little within the range in
which d changes. Details of how the thinning correction
affects the results can be found in Table II.

Finally, we note that the correction we have outlined is
completely analogous to what is done in extracting the
heat capacity at constant chemical potential from the
heat capacity at constant concentration in *He—*He mix-
tures. The details of the functional forms are, of course,
different.
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