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Thermally generated magnetic fields in heavy-fermion superconductors
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We calculate numerically the magnitude of the induced thermomagnetic field due to particle-hole
asymmetry in heavy-fermion superconductors. Close to the transition temperature and for a phase
shift of the order of 5N =0.9m/2, this field can be as high as 10 6 for pure samples. The experi-
mental detection of these induced fields and their orientation dependence can be of great help in

identifying the internal structure of the order parameter in these exotic superconductors.

Thermoelectric effects in superconductors constitute a
valuable tool in studying the nature of quasiparticle
scattering mechanisms and in probing the detailed struc-
ture of the Fermi surface, ' the reason being that ther-
moelectric effects only arise as a result of particle-hole
asymmetry in the relaxation properties of excitations.
These differences in scattering rates of a particlelike and
a holelike excitations will generate a net current in the
system, the symmetry of which will depend crucially on
the symmetry of the order parameter. Thus for an aniso-
tropic order parameter we should expect an anisotropic
thermoelectric coefficient which, as was pointed out by
Ginzburg, will give rise to an induced magnetic field. In
the usual type of superconductors such a magnetic field is
purely due to crystal anisotropy and its magnitude was
estimated to be much less than 10 G, a value still not
very easily detectable experimentally. The smallness of
this magnetic field is mainly due to the abrupt reduction
of the thermoelectric coefficient in the superconducting
phase, which is usually of the order of (trtv /e)(T, /TF),
where crz is the normal-state electric conductivity, e is
the electronic charge; T, and TF are, respectively, the su-

perconducting and Fermi temperatures. Hence, any
enhancement of the thermoelectric coefficient will be
directly reflected in an enhancement of the induced mag-
netic field.

In our previous studies on transport properties in
heavy-fermion superconductors, we have pointed out
that scattering processes in anisotropic superconductors
have some unexpected asymmetries when the normal-
state phase shift is neither small nor resonant. Most im-
portantly for our purpose is the fact that under such cir-
cumstances the scattering rates are not symmetric about
the Fermi surface and will give rise to an enhanced ther-
moelectric effect, generally by a factor of TF/T, com-
pared to usual superconductors.

It is widely accepted by now that most heavy-fermion
transport properties in the superconducting state can be
explained as being due to scattering off nonmagnetic im-
purities with phase shift close to m. /2. The fact that the
phase shift is close to vr/2 was evidenced by a more quan-
titative fit of the low-temperature data on the specific
heat of UBe» by Ott et al. Following the work of
Hirschfeld et al. on the effects of pair breaking on the

V XH =4m. /c(J'+ J"),
J"=—L VT, (2)

J'= — K(q}.A(q},4~

where J' and J" are the supercurrent and normal current,
respectively, and A(q) is the Fourier transform of the
vector potential. The quantities L and K(q) are the ther-
moelectric and electromagnetic tensors, respectively. T
stands for temperature, H for the magnetic field and e for

specific heat, they could fit their experimental data using
a phase shift 5&=0.9m/2. A similar analysis was done
on the low-temperature behavior of the nuclear spin re-
laxation time of Be in UBe», and the best fit to the low-
temperature experimental data was obtained for a phase
shift close to 0.9m/2. Thus it seems to be of practical in-
terest to pursue the analysis of all possible consequences
on transport and relaxation properties of heavy-fermion
superconductors when the phase shift 5~ has the experi-
mentally suggested value of 0.9m/2.

It is the purpose of this paper to give a more thorough
analysis of particle-hole asymmetry induced magnetic
field due to the fact that the phase shift is different from
m/2. The basic idea is the same as that due to Ginzburg,
that is an anisotropic thermoelectric coefficient will result
in the appearance of a persistent current and an associat-
ed magnetic field in the superconducting phase. But, in
our case the anisotropy of the thermoelectric effect is due
to the anisotropy of the gap and not to the crystal anisot-
ropy.

To calculate the induced magnetic field we closely fol-
low the treatment of Kresin and Litovchenko. We con-
sider the geometry shown in Fig. l, where we take our
slab of thickness d to be parallel to the XZ plane and the
temperature gradient (VP is applied along the F direc-
tion, where XYZ is the laboratory reference frame. For
simplicity, we consider only axially symmetric supercon-
ducting states; the symmetry axis of the gap is denoted by
1 and lies in the YZ plane, making an angle of 6I with the
Z axis. The basis for the solution of the problem is
Maxwell's equation coupled with the superconducting
and normal current equations:
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FIG. 1. Geometry of our sample of thickness d, XYZ is the
laboratory reference frame, xyz has the z axis along symmetry
axis I of the gap, and 8 is the angle between the l=z axis and
the Z axis.

the speed of light. First, we notice from these equations
that if L is not proportional to the unit matrix then the
Meissner-Oschenfeld eff'ect will be incomplete and an in-
duced magnetic field will be present in the sample, this
was actually the main idea in Ginzburg's work. Our
purpose here is to evaluate such a magnetic field by solv-
ing the coupled equations (1)—(3). The analytical expres-
sions of the thermoelectric tensor L have been obtained
before on the basis of a linearized Boltzmann equation
approach. This thermoelectric tensor was found to be di-
agonal in the reference frame in which the gap is axially
symmetric, but not proportional to the unit matrix, for
the polar p-wave state and one representative d-wave
state having a line of nodes at the equator. For the
Anderson-Brinkman-Morel (ABM) p-wave state, it was
found to have a nonvanishing off-diagonal matrix ele-
ments which will give rise to an extra component of the
magnetic field. The electromagnetic kernel, on the other
hand, can be calculated either from a microscopic ap-
proach or by use of a simple argument band on gauge in-
variance as is done in the Appendix.

It is just a simple algebraic exercise to solve the system
of equations (1)—(3), for our simple geometry we found
for the nonvanishing components of the vector potential
the following expressions:

Now since J"(q) varies on the scale of q '»go, Ao,
where go is the zero-temperature coherence length and A,o
is the zero-temperature London penetration depth, the
main contribution to the vector potential components
(4)—(5) will come from small q values so that our
magnetic-field components read

such that X;= U; x, where X refers to a vector in the
XYZ coordinates and x refers to a vector in the xyz coor-
dinates. After some algebra one finds for the two corn-
ponents of the induced magnetic field

Hx = —Hos~n2
8 L (t)
dt R„(t)

L.,(t)
Hz =HocosO—

t)t R„(t} (12)

where Ho is a constant number that sets the scale of the
induced magnetic field and is given by

o~ k~
(13}

c 3 e T

The quantities R;(t) and R, (t) are evaluated in the xyz
reference frame and are defined by

R, (T)=—,
' —2f dE — (p, ),

o BE
(14)

H~ = [IC '( T( Y) )J"(Y)],
c BY

Hz= [E~~(T( Y})JX(Y}] .
c BY

Here we need to stress the fact that while the electromag-
netic kernel and the thermoelectric tensor are simply ex-
pressed in coordinate axes xyz, where z is along 1, the
symmetry axis of the gap, the field components Hz, and
Hz are naturally expressed in the XYZ reference frame.
The reason is that one needs to keep a simple form for
the angular part of the gap function, and thus we choose
our system of coordinates so that the orbital part of the
gap looks simple, i.e., ~

5 ~, the magnitude of the gap, is a
function of O' only, the angle between the z axis and the
momentum direction p. The two systems can be
transformed one into the other by use of a simple rotation
matrix U defined for our simple geometry (Fig. 1) by

1 0 0
U = 0 cosO sinO

0 —sinO cosO

A, (Y)=4 fdqc q +Q(q)
Jr"(q)

A (Y)= f dq e""
c q ++~X(q)

where

J"(q)=Jz —KZY(q)K) Y(q}JY,

I~zz(q) I~zY(q I{'YY(q

(5)

(6)

R (t)R, (t)
R, (t)=

cos ORY(t)+sin 8R, (t}
(15)

where the anomalous average ( . ) stands for the fol-
lowing:

(
4m. (E2—~g ~')' ' (16)

The quantity E/(E ~b,
~

)' is the density of quasipar-
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ticle states per unit energy in the direction p, normalized
to its normal-state value, o.~ is the normal-state conduc-
tivity, e is the electronic charge, k~ is the Boltzmann con-
stant, T, is the critical temperature and t=T/T, is the
reduced temperature. The Fermi function is defined by
n (x)= 1/(expPx + 1), where P is the inverse temperature.
The quantities L„„and L are defined in terms of the di-
mensionless thermoelectric coefficients (or equivalently in
units of o ~/e), L„ is just the off'-diagonal element of the
tensor L;, which is nonzero only for the axial p-wave
state, and L(t)=L (t)—L (t). The superconducting
states we shall consider in this paper are the axial p-wave
state (also called Anderson-Brinkman-Morel or ABM
state) defined by its order parameter

h(p ) =b, ( T)d sin8 expi P, (17)

where h(T) is the maximum value of the gap, (8,P) aie
the angular coordinates of p, and d is a fixed unit vector
in spin space. The second state we shall consider is a d-
wave type of state defined by

b (p }=2k( T)sin8 cos8 expi P . (18)

The full matrix structure of the order parameter reads
5 =io za h(p) .for the axial state and b =erik(p}
for the d-wave states, where cr stands for all three
components of Pauli matrices. The thermoelectric
coefficients for the above-mentioned states have been cal-
culated before and are given in that reference in units of
oN/e by formulas (102)—(104), and (107) and (108), for
the axial and d-wave states, respectively. In order to cal-
culate the temperature dependence of the magnetic-field
components (11}and (12) we need an expression for the
magnitude of the gap as a function of temperature. We
use the following form:

WTc 2 gC Tc T
b, (T)=b,(0) tanh

which tends to b,(0}as T~0, and its behavior close to T,
is such that the specific-heat jurnp at T, calculated from
it is equal to b, C/C, C being the specific heat and b,C the
specific-heat jump at T, . The constant f is equal to —,'for
the axial state, and —,', for the d-wave state. For 6(0) we

adopted the weak-coupling values 6(0)=2.02kii T, (axi-
al), and b.(0)= 21 Ok~T, (d wave). Also we need to
evaluate Ho, which set the scale of the induced magnetic
field in (11) and (12), but before doing that a few remarks
are in order. First, from our formula (13) for Ho we see
that the magnitude of this field is enhanced by a factor of
Tz/T, compared to its usual value. ' The reason is that
the thermoelectric coefficient itself is enhanced by such a
factor due to particle-hole asymmetry inherent to the
scattering amplitude in the superconducting state.
Second, as explained by Varma et al. " on theoretical
ground and supported by experiment, ' the square of the
London penetration depth in heavy-fermion supercon-
ductors is also enhanced by an effective-mass factor
md lm, [md being the dynamical effective mass defined

TF mdE= &1 t-
Tc me

(20)

compared to its value in conventional superconductors.
The numerics for the induced magnetic field will be

done for UPt3, which seem to be the cleanest of all
heavy-fermion superconductors and for which a Fermi-
liquidlike picture is applicable, the validity of which is
necessary since we have used the Boltzmann equation ap-
proach in calculating the thermoelectric coefficients
L; (t}. Other heavy-fermion superconductors such as
UBe», CecuzSi& and URh2Si2 have extremely short mean
free paths as deduced from their resistivity measure-
ments. The reason for this is that the inelastic contribu-
tion to the residual resistivity is substantial in these sys-
tems while it is much smaller in UPti. Bearing in mind
that only elastic processes have been included in our cal-
culation of the transport coefficient L;~, we see that UPt3
is the most likely candidate to exhibit the thermomagnet-
ic effects of the type discussed here. For the experimental
data on UPt3 we take the Fermi temperature to be
T~=275 K, the transition temperature T, =0.5 K and
the zero-temperature London penetration depth A,o
=3600 A from the measurements of Palstra et al. ' and
de Visser's thesis. ' From de Haas —van Alphen experi-
ments of Taillefer and Lonzarich' we take the dynamical
mass enhancement factor y=md/m, to be close to 25
and the average Fermi velocity to be v~=6X 105cm/sec,
which is close to the value found experimentally for all
pieces of the Fermi surface. The residual resistivity in
the normal state is taken from the data of Sulpice et al. '

p~ =0.46 pQ cm, from which we can estimate the mean
free path to be 1=2300 A. This value of the mean free
path is close to the one inferred by Taillefer and Lonzar-
ich from their de Haas —van Alphen experiments. The
temperature gradient is taken to have its usual experi-
mental value ~VT~ =0.1 K/cm. Using these experimen-
tal data we found Ho=10 G, if we use a hypothetical
sample of higher purity we can reach values as high as
10 G for a mean free path of the order of 10 A. To
get an idea about the order of magnitude of the induced
magnetic field near T„we evaluate it at t=0.99, the
enhancement factor Eq. (20) for UPti at this temperature

by md=m'/(1+F, /3) and m, is the bare electronic
mass], due to the difFerence between the dynamical
effective mass and the bare mass unlike one-component
translationally invariant Fermi liquids. Consequently, we
are talking about an overall enhancement factor of
( T~ /T, )( md /m, ) in the induced magnetic field com-
pared to its usual value if the numerical factors coming
from the temperature dependence are comparable, here
we neglect the difference between m* and md since
I'f=0(1) in these systems. " But this results in an
overestimate of the induced field. In fact, numerical cal-
culations show that near T, (but not too close to it) we
have H;(t)=const'(t) (i =x,z), whereas in the usual

type of isotropic superconductors one finds close to T„
Hx-—const', (t); thus close to the transition tempera-
ture and for a sample of comparable purity, the induced
magnetic field is enhanced by a factor of
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is calculated to be E = 1.4X 10, so that the induced mag-
netic field becomes of the order of H, =1.4X10 6 for
1=2300 A and H, =.1.4X10 G for 1=10 A (i =X,Z).
We should point out that the highly desired UPt3 samples
with mean free paths of the order of 10 A have not been
obtained yet, but their experimental achievement should
not constitute a major obstacle.

In making the numerical estimates we adopted the
value b C/C =0.86 which was extracted by Sulpice
et al. ' from their experimental data on UPt3. As I have
explained it before we take for the value of the phase shift
the experimentally suggested value 5~=0.9m/2. Now,
due to the fact that the value of the induced magnetic
field is much larger close to the transition temperature,
we thought it would be more beneficial to normalize it by
(b, /k~T, ) so as to have H, =const close to T, . In this
way, we can see the behavior of H, at low temperatures.
In Fig. 2 we show the H» component of the magnetic
field for the axial (ASM) state, which was evaluated for
an angle 8=n /4 (the angle between the symmetry axis of
the gap, I, and the Z axis). In the range of temperatures
between t=0.8 and t=0.98 we can to a very good accura-
cy approximate this component by H» —0.5HO(kaT /
5), while at very low temperatures it can reach values
around 60H0. Very close to the transition temperature
we see an abrupt oscillatory behavior that might have
some interesting physical consequences, but due to the
delicacy of the critical region (which is not our main con-
cern here) we will not pay too much attention to this phe-
nomena. Similarly in Fig. 3 we show the maximum value
of the Hz component of the magnetic field for the same
state, the existence of this component is purely due to the
off-diagonal nature of the thermoelectric tensor L; which
in its turn is due to the phase variation and the odd parity
of the order parameter. While the magnitude of this
component is very small at low temperatures compared
to the H» component, it has comparable magnitude near
T, . Finally, in Fig. 4 we show the Hz component of the
magnetic field for the d-wave state considered and for an
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FIG. 3. Plot of the maximum value of the Hz component of
the magnetic field in units of Ho renormalized by (5/k& T, )' for
the axial state. The inset shows the behavior very close to T, .

angle 8=m /4, similar observations to those made for the
corresponding component of the axial state hold in this
case too.

In conclusion, we think that the experimental detection
of such a thermally induced magnetic field and its orien-
tation dependence in heavy-fermion superconductors
would be of great help in identifying the correct internal
structure of the order parameter. Recently Ginzburg'
stressed the importance of thermoelectric phenomena in
heavy-fermion and high-T, superconductors, and using a
phenomenological approach he estimated the thermo-
power in these compounds to be at least 2 orders of mag-
nitude larger than in usual type of superconductors. Our
study shows that the magnitude of the induced magnetic
field in UPt3 can be enhanced by factors as high as 10
compared to their usual values. Hence the possibility of
observing such effects in UPt3 is very great indeed. Final-
ly, we should mention that even though we have predict-
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FIG. 2. Plot the Hz component of the magnetic field in units
of Ho and renormalized by (6/k& T, )' for the axial state. The
inset show the behavior very close to T, .

FIG. 4. Plot the H& component of magnetic field in units of
Ho renormalized by (6/k&T, )' for the d-wave state. The inset
shows the behavior very close to T, .
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ed a relatively large value of the induced field at very low
temperatures, this should not be taken very seriously be-
cause impurity renormalization effects become very im-
portant in this region and might result in some quantita-
tive changes in our low-temperature results.
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APPENDIX

In this appendix we will calculate the electromagnetic
kernel K(q). For that we need to maintain gauge invari-
ance to avoid spurious effects. ' Since we are interested
in the static Meissner effect the local charge conservation
reads

and ( . ) is defined by Eq. (16}in the main text. Now,
we do a gauge transformation according to (A2) and re-
quire the physical current, which is defined by

J,.(q) = — K,"(q)[AJ(q)+iqiA(q)], (A5)

to satisfy the local charge conservation equation (Al).
Solving for the function A(q} we find

; (R(p)(p q)(p A))~A(q}=-
(R(p)(p tl)'),

(A6)

where ( ) denotes the angular average over the
directions of p, to be distinguished from the anomalous
average ( ) defined by Eq. (16) in the main text, and
is defined by

q j(q)=0. (A 1) &, =f (A7)

A(q}~ A(q)+iqA(q), (A2)

where A(q) is an arbitrary function to be chosen so that
local charge conservation (Al) is restored. The calcula-
tion of K; is straightforward and we obtained in the
long-wavelength limit

It is known that local charge conservation is equivalent
to gauge invariance, ' thus in making sure that our elec-
tromagnetic kernel satisfies (Al), our results will au-
tomatically be gauge invariant. The exact way to solve
this problem is to calculate the renormalized vertex,
which amounts to solving an integral equation for the
vertex. ' Another way to handle this question is to calcu-
late the simplest kernel, that is using the unrenormalized
vertex, which we call K; (q), then in the last stage we do a
gauge transformation

Putting (A6) back in the current (A5) we find that the
physical kernal of interest to us is given by

(R(p)(p q)p, )K( )= R(")" "—
( )

(R(p)(p q)')

(A8)

This is exactly the expression derived by Millis on a mi-
croscopic basis. To evaluate this kernel (A8) we notice
that it is easier first to evaluate the kernel K;&. (i,j =x,y, z)
in the reference frame having the symmetry axis of the
gap 1 along the z direction, then using the rotation matrix
[Eq. (10)] given in the main text we can evaluate KkI
(k, !=X,F, Z) in the laboratory reference frame, which
are the quantities needed in calculating the induced mag-
netic fields.
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