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Interatomic potentials and the structural properties of silicon dioxide under pressure
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First-principles interatomic potentials based on ab initio Hartree-Fock self-consistent-field calcu-
lations have recently been proposed for silicon dioxide. These pairwise potentials yield accurate
ambient-pressure internal-structure parameters and dynamically stable polymorphs for several
known forms of silica. We use these potentials to analyze crystallographic data for a-quartz under
pressure. We find the potentials do not describe the changes in the internal parameters of a-quartz
under pressure. Specifically, the potentials do not give the correct trends for the O—Si—O angles
or the ¢ /a lattice-constant ratio. We have included bond-bending terms to modify the pairwise po-
tentials. If the angles in question are fit to reproduce the experimental data, then the bulk modulus
is in poor agreement with experiment. Our findings reinforce the need for a “covalent” term in the
interatomic potential, which is not based on quadratic expansions of bond-bending and -stretching

forces.

I. INTRODUCTION

Recently, Tsuneyuki, Tsukada, Aoki, and Matsui!
(TTAM) proposed a new interatomic potential for silica.
They used Hartree-Fock self-consistent-field calculations
to examine clusters of SiO,. From these calculations,
they fitted pairwise interatomic potentials to the structur-
al energies of large silicon oxide clusters. These poten-
tials were in turn used to examine known polymorphs of
silica: a-quartz a-cristobalite, coesite, and stishovite.
Using molecular-dynamic simulations, TTAM found
stable structures at normal pressures and temperatures.
This was true despite large differences in the topologies
and the densities of the structures considered. Moreover,
they could reproduce the equilibrium structural parame-
ters of the silica polymorphs. Earlier studies®> of silicon
dioxide clusters had suggested that interatomic potentials
would describe qualitatively, and sometimes quantitative-
ly, the Si—O bond in the solid state. Nonetheless, the
TTAM work showed for the first time that dynamic sta-
bility in silica polymorphs could be achieved on the basis
of simply pairwise potentials.

The use of accurate pairwise forces would greatly
enhance our ability to use molecular-dynamics simula-
tions to describe melting and glass formation of the silica
polymorphs.*> Moreover, there are some recent propo-
sals for high-pressure forms of silica which could be ex-
amined by accurate pairwise forces.®* However, SiO, has
traditionally been viewed as a covalent material.’
Tetrahedral units of SiO, dominate the structural proper-
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ties for those structures containing fourfold coordinated
silicon, e.g., a-quartz, a-cristobalite, and coesite. There-
fore, the use of pairwise potentials would not be expected
to reproduce angular forces present in SiO,, especially
the relatively open structures such as found in a-quartz
and a-cristobalite. Indeed, other workers>* have found it
necessary to include three-body forces in their descrip-
tion of silicas to replicate the ground-state structural pa-
rameters. Unfortunately, the use of three-body forces
can greatly complicate the simulations for melting or
crystal stability. Hence, the creation of an accurate pair-
wise potential would be quite useful and would have
widespread applications.

To explore this issue more thoroughly, we have extend-
ed the results of TTAM to the pressure behavior of a-
quartz. Specifically, we use their interatomic potential to
optimize the structure of a-quartz as a function of pres-
sure and compare the results to recent experiments.
Also, we examine possible modifications of their potential
which include explicit three-body interactions.

II. INTERATOMIC POTENTIALS

An interatomic potential for silicon dioxide is often
based on an ionic model. For such a model, the potential
for two interacting species (ij) is given by

U,(R)=g,9,/R
+go(b, +b,)
X exp[(a;+a;—R)/(b,+b;)]—c;c;/R®,
(1)
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TABLE 1. Equation of state and structural parameters for SiO, in the a-quartz structure. The
theoretical values are from the interatomic potential of Tsuneyuki et al. (Ref. 1). The experimental
values are from Levien et al. (Ref. 10) and Ginnemann et al. (Ref. 12). The crystal energy is the energy
required to separate the crystal into the constituent charged ions as defined by Eq. (1).

Property Theory Experiment
Equation of state

Crystal energy gkcal/mole) —1236.7

Cell volume (A") 121.38 113.59

Bulk modulus (Mbar) 0.37 0.38(3)

(0B /3P)p— 3.20 6(2)
Structural parameters

¢ (A) 5.56 5.42

a (A) 5.02 4.92

u 0.4602 0.4698

x 0.4259 0.4151

y 0.2771 0.2675

z 0.1213 0.1194

where R is the interatomic distance between species (i})
and g; is the charge on the ith species. This is the form
used by TTAM (and others). The parameters qa,, b;, g,
and ¢; may be found in Ref. 1. Equation (1) assumes ion-
ic forces dominate the interatomic interactions. Such a
form necessitates the evaluation of Madelung sums,
which can increase the computational complexity of the
problem.

We will use (1) to examine recent experimental data for
the a-quartz structure. For this structure, the crystal en-
ergy varies with six structural parameters. If we fix the
unit cell volume, then we are left with five parameters to
optimize the crystal energy. We chose to vary the pa-
rameters: a, u, x, y, and z, as defined by Wyckoff.®> The ¢
parameter is then fixed by the unit cell volume. We used
a simplex program to vary the parameters and minimize
the crystal energy.

Our results for the equation of state for a-quartz agree
very well with TTAM. We consider a Murnaghan equa-
tion of state:’

B,V
By(By—1)

VO
1——
V

By
I

where E(V,) is the crystal energy, B, is the bulk
modulus, B, is the pressure derivative of the bulk
modulus, and ¥ is the volume, all taken at equilibrium.
In Table I, we compare our results to the previous work.
Generally, the equation of state parameters agree quite
well. The equilibrium volume is larger than experiment'®
by about 6%. The bulk modulus is nearly in exact agree-
ment with experiment. The crystal energy is the energy
to separate the crystal into the separate ions. (This
presents some conceptual issues for O>~ which is un-
bound in free space.) We have considered a variety of ini-
tial conditions for our structural parameters and are
confident that our structure is a global and not a local
minimum.

E(V)—E(Vy)= B,

Vo
V

We have also checked the TTAM potential results
against two other structures: the calcium fluorite and the
rutile structures. We find that a-quartz is lower in ener-
gy by about 50 kcal per mole than the calcium fluorite
structure. This is a surprising result as one might have
expected the calcium fluorite structure to be favored by
pairwise forces. We suspect that the anion-anion repul-
sion term is so large as to favor the a-quartz structure
over the fluorite structure. However, the total energy of
the optimized rutile structure is within ~ 1 kcal of the a-
quartz structure. Within computational uncertainity it is
indistinguishable from quartz. Our results are in agree-
ment with TTAM, who point out that their potential may
not describe crystal energies between different poly-
morphs. We speculate that the differences may worsen as
a function of pressure since the structural properties were
fixed at ambient pressures.

III. a-QUARTZ UNDER PRESSURE

Pressure measurements can provide a stringent test for
interatomic potentials. For example, charge transfer be-
tween Si and O may occur with pressure. Moreover, we
expect changes in the bonding hybridization between Si
and O. Such bonding changes are difficult to reproduce
with a classical potential. For example, only recently has
it been possible to reproduce accurately the pressure be-
havior of elemental silicon.!! It was necessary for Si to
include explicitly the coordination dependence of the sil-
icon potential and to use an angular-dependent interac-
tion term which is modeled on the ‘“covalent-to-metallic”
transition in silicon.

One advantage we have in this study is an accurate
description of structural changes as a function of pres-
sure. Previous pressure work on SiO, has been carried by
Levien ef al. and Hazen et al.'® However, their results
were limited in pressure range and accuracy. We com-
pare with the recent work of Glinnemann et al.'> who
made measurements to 10.2 GPa. The measurements of
Glinnemann et al. were made on a small single-crystal
sample enclosed in a diamond-anvil cell. The cell design
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and equi-inclination x-ray-scattering geometry allowed
higher pressures while maintaining high precision. The
conventional crystallographic quality factors (R’s) ob-
tained from the least-squares structural refinements were
approximately 2.5%. Consequently, the bond angles and
distances are well determined.

IV. COMPARISON BETWEEN EXPERIMENT
AND THEORY

Using the TTAM potential, we attempted to reproduce
the Glinnemann et al. data. To illustrate the behavior of
a-quartz under pressure, we have considered three fidu-
cial structural features: the c/a ratios, the Si—O—Si
bond angle, and the O—Si—O bond angles. There are
four distinct O—Si—O angles near the tetrahedral angle
of 109.5°. Intuitively, the O—Si—O angle is expected to
be “stiff’ compared to the Si—O-—Si angle. This condi-
tion would account for most polytypes of silica being
based on the tetrahedral unit of SiO,.

We have examined the c/a ratio and find that the
TTAM potentials predict quadratic variation with pres-
sure whereas experiment supports a linear behavior.
Thus one might expect the angular changes to be poorly
reproduced. This is not the case for the Si—O—Si angle.
The angle is too large at zero pressure compared to ex-
periment, but the change with pressure is well replicated
by the theory. This is shown in Fig. 1.

In Fig. 2, we display the O—Si—O bond angles as
measured and predicted as a function of pressure. The
pressure behavior of these angles will provide a strong
challenge to any pairwise force. The spread from the
largest to smallest angle is semiquantitatively reproduced
by the TTAM potential, but the details are poorly repro-
duced. While it is true that the variation in angle is
small, it is also true that subtle variations play a crucial
role in differentating the various polytypes of silica.!

To examine this feature is more detail, we considered
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FIG. 1. The Si—O—Si angle in a-quartz as a function of
pressure from experiment (Ref. 12) (dashed line) and as predict-
ed by the interatomic potential of Tsuneyuki ez al. (Ref. 1).
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FIG. 2. (a) The O—Si—O angles in a-quartz as a function of
pressure from experiment (Ref. 12). There are four distinct
0O—Si—O angles in a-quartz. An illustration of these angles
may be found in Ref. 10. (b) The O—Si—O angles in a-quartz
as a function of pressure as predicted by the interatomic poten-
tial of Tsuneyuki et al. (Ref. 1). The agreement with experi-
ment is poor.

the inclusion of nonpairwise forces, i.e., bond-bending
forces. These forces in their simplest form can be written
as

— A0 2
2 ( GSi-—O-—Si OSi—O——Si )
Si—O—Si

Ebond-bending =a

(6o—si—o—0d_si0) (3)

+8 3

0—Si—O0

where 0g,_o_g; and 65_g;_ o correspond to the equilibri-
um Si—O—Si and O—Si—O bonds. We take the equilib-
rium angles for the constant angles in (3) as
0% o s=144° and 63  ,=109.5°. Lasaga and
Gibbs? have used this type of bond-bending interaction
where (a,f) are fit to quantum chemistry calculations.
Since the TTAM potential is not identical to the Lasaga-
Gibbs potential, we have adjusted (a,f) to fit the pres-
sure data.

We find that it is possible to adjust the two parameters
(a,B) to reproduce qualitatively the experimental results
for the complex O—Si—O bonding angles. This is shown
in Fig. 3, where we illustrate the O—Si—O angles as a
function of volume. The values we find for (a,f) are
larger than those suggested by Lasaga and Gibbs, i.e.,
a=0.02 Kcal/mole/deg? and B8~0.08 Kcal/mole/deg?.
This results in a “stiffer” lattice.
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FIG. 3. The O—Si—O angles as a function of volume . The
angles are from the interatomic potential of Tsuneyuki et al.
(Ref. 1) as modified by the bond-binding forces as indicated in
Eq. (3). While the behavior of the angles as a function of pres-
sure is in qualitative agreement with experiment, the detailed
behavior is not correct. The pressure vs volume curve for this
potential yields a bulk modulus for a-quartz which is about 4-5
times larger than experiment.

We find that the first term in Eq. (3) will improve the
agreement at the equilibrium volume. Specifically, the
TTAM potential yields angles for the O—Si—O angles
which deviate noticeably from the ideal tetrahedral angle.
The first term in (3) reduces such deviations. The second
term in (3) improves the angular dispersion with pressure.
This suggests that the key term in controlling the pres-
sure behavior is the “stiffness” of the Si—O—Si bond.
However, this procedure has a serious flaw. Namely, the
terms in (3) can only “stiffen” the crystal as they are posi-
tive definite terms. After adjusting (a,8) to reproduce the
angular terms, we find that the bulk modulus is nearly 1.9
Mbar or about a factor 4 to 5 too large compared to ex-
periment.

It is likely that the key issue here involves a subtle in-
terplay involving the O-O repulsive interaction, i.e., the
q:9;/R term where (i,) refer to the oxygen ion. This
term is important in stabilizing the a-quartz structure
versus the CaF, structure and in controlling the compres-
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sibility of silica. By reducing this term, the bulk modulus
could be lowered. Conceivably, one could lower the
charge on the Si and O ions to lower the bulk modulus
and using (3) get an accurate angle dependence. Howev-
er, in such a situation the relative stability of a-quartz
structure versus the CaF, structure might suffer.

V. CONCLUSIONS

In summary, it is very significant that the TTAM po-
tential results in dynamically stable structures for known
polytypes of silica. As the authors note, the strong Si—O
bond is no doubt responsible for this. However, as we
have shown, pairwise interactions cannot fully reproduce
the properities of silica. Specifically, the details of the
internal structural parameters are not well reproduced.
This result can be attributed to “covalent forces” which
affect the angular interactions.

The TTAM potentials and similar ones have been used
to describe structural features of silica polytypes. Given
the results of our study it is unclear whether these poten-
tials are accurate enough to provide detailed structural
information, especially in comparing one polytype with
another. From our work with angular forces, it might
appear that one could achieve greater accuracy with the
inclusion of the simple ‘“bonding-bending” forces. At
present, we feel this is not the best way to proceed. We
feel potentials for silica should be made via the route for
silicon interatomic potentials.!! If we had detailed
quantum-mechanical calculations for crystalline po-
lymorphs of silicon dioxide, we could test whether a par-
ticular interatomic potential would yield the correct
equation of state for a large number of structures.
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