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We have presented exact solutions for two-dimensional (2D) hydrogenic donor states in a magnet-

ic field and a study of quantum levels and Zeeman bifurcation of 2D donor states in different

strength of magnetic field. The quadratic effect of the magnetic field partly lifts the degeneracy of
2D donor states in the pure Coulomb potential and results in an increase of all quantum levels.

Then, the first-order term of a magnetic field, i.e., the Zeeman term, completely lifts the degeneracy.
At strong magnetic field, the degeneracy of Landau levels is lifted by the Coulomb potential. As the

magnetic field decreases, all of the values of the energies decrease linearly until the hybridization be-

tween Landau and Coulomb levels occurs. In addition, based on the comparison between energies
of 2D and 3D states, we conclude that there are smaller diamagnetic shifts for 2D donor states than

those for the corresponding 3D donor states.

I. INTRODUCTION

The spectrum of a hydrogenic impurity in bulk semi-
conductors in a constant magnetic field of arbitrary
strength has been studied both theoretically' and ex-
perimentally for many years. Using radiation general-
ly in the millimeter and submillimeter region of the spec-
trum, magneto-optical studies of a variety of elemental
and III-V bulk semiconductors have revealed a multipli-
city of spectral lines, which can be assigned to transitions
of electrons between the excited states of shallow
donors. The Zeeman splitting of inter-excited-state
transitions has been identified by a number of calcula-
tions' of its dependence on magnetic field. In semicon-
ductors, however, typical values of effective mass p and
dielectric constant e make the effective Rydberg %'
about 10 —10 times smaller and the dimensionless mag-
netic field y =fico, /2%* (co, =eB/pc is the cyclotron fre-
quency of a free carrier in a field B) in a fixed field B
about 10 —10 times larger than those of the free hydro-
genic atom, respectively. With the range of intermediate
magnetic fields, the y of semiconductors can be larger
than 1 so that low-field (y (( 1) perturbation methods be-
come inapplicable and other methods should be used to
determine quantum levels and identify excited-state tran-
sitions and their Zeeman splitting. The adiabatic method
was the first to be employed in the high-field regime

y )&1.' Calculations based on the method have usually
been restricted to the ground state and first few excited
states. Apart from purely numerical techniques, other
workers have favored the use of the variational method.
More recently Makado and McGill have based their ap-
proach on that of Aldich and Greene, and used a

different set of basis functions to get quite good results
with high accuracy.

The unique nature of electronic states associated with
semiconductor quantum wells and superlattices has been
the subject of a great deal of interest, both from theoreti-
cal and experimental viewpoints. In view of the potential
applications of these structures, the understanding of im-

purity and exciton states found in these systems, with and
without external fields, is an issue of technical as well as
scientific importance.

Among quantum wells and superlattices, so far, the
GaAs-Ga, „Al„As system is the simplest and the most
extensively studied. Then exciton and impurity states in
the system have been calculated by a number of authors.
For an infinite barrier height, the binding energy ap-
proaches 4W' (%' is effective Rydberg, i.e., the binding
energy of the ground state in the bulk semiconductor) as
the well size reduces. Then excitons and impurities be-
come two-dimensional (2D). For a finite barrier height,
however, several calculations ' have shown that the
binding energy goes through a maximum as the well size
reduces instead of continuously increasing as is found in
the infinite barrier calculation. The maximum of the
binding energy is dependent on the barrier height' and is
less than 4%*. Then, the excitons and impurities become
quasi-two-dimensional (Q2D) as the well width is smaller
and the quantum confinement is stronger. Furthermore,
Mailhiot et al. " have presented the energy spectra of the
ground state and the low-lying excited states for a hydro-
genic donor in a quantum well. All of the above calculat-
ed results have shown that the donor states strongly
confined by GaAs-Ga, „Al As quantum wells can be
correctly described by use of 2D or Q2D hydrogenlike
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atoms with properly variational parameters. Therefore,
we can study 2D or Q2D hydrogenic donors in a magnet-
ic field to understand the behavior of a donor strongly
confined by a quantum well in different magnetic fields.
Although the problem of 2D hydrogenic donors in mag-
netic fields can be separable, we are still prevented from
obtaining an analytically exact solution of the eigenvalue
problem. However, the weak-field regime can still be
treated by considering the magnetic field as a perturba-
tion, while in the strong-field regime the hydrogenic po-
tential is treated as a perturbation. Using a two-point
Pade approximation, MacDonald and Ritchie' have
presented an interpolation between these two limiting sit-
uations and they have obtained analytic expressions for
the magnetic-field dependence of both ground- and
excited-state energies. In addition to the method men-
tioned above, using the method of series expansion, exact
series forms in different regions of the equation can be ob-
tained. Based on such series forms, the quantum levels
and wave functions of 2D hydrogenic donors in a mag-
netic field can be exactly obtained by a numerical method
in all magnetic field ranges. It should be interesting to
compare the calculated results with MacDonald and
Ritchie's and to see whether two independent methods
yield equivalent results.

In this paper, we report for the first time exact solu-
tions of a 2D hydrogenic donor in a magnetic field and a
study of quantum levels and Zeeman bifurcation of 2D
hydrogenic donor states in different strengths of magnetic
field. In Sec. II, we present the exact series forms and the
calculation techniques. The main results are presented
and compared with MacDonald and Ritchie's, ' and
Makado and Mcoill's results in Sec. III. A summary of
the results and a conclusion are presented in Sec. IV.

Vz represents (iB/Bx +jB/By), w is equal to 1.
If we choose the cylindrical gauge such that

A= —,'BX r (2)

then the form of the Hamiltonian is (in cylindrical polar
coordinates)

i a a
2p p Bp Bp

+eB t .&eB Bp- —iA
8pc 2pc Bq

1

p Bg

me
(3)

In order to solve the Schrodinger-like equation

H+(p, q)=E+(p, y) (4)

the wave functions of an electron with well-defined mag-
netic quantum number m in the cylindrically symmetric
potential, which is the magnetic field and 2D Coulomb
potential, are written in the form

q(p, y)=e' ~p(p), (5)

d tP+ 1 dg+ 2w m~
mf

dp p dp p p

,'y p +E(m) —$=—0, (6)

where we should take the m as both positive and negative
integers, i.e., -m =0,+1,+2, . . . , to identify each of the
donor states in the magnetic field. It is important for the
study of the Zeeman splitting and the analysis of the
quantum-level degeneracy in different conditions. Substi-
tuting Eq. (5) into Eq. (4), we find an equation for the
function P(p):

II. FORMULA OF EXACT SOLUTIONS
E (m) =E/%',

Within the framework of an effective-mass approxima-
tion, the Hamiltonian of a 2D hydrogenic donor in the
presence of a magnetic field that is perpendicular to the
2D plane can be written as

and

1' —@cd~ /2%

$2+2z+e A + AeA& me

2p 2pc pc ep

where A, p, and e are, respectively, the vector potential,
electron effective mass, and static dielectric constant, and

where %"=pe /2A' e is the effective Rydberg, co,
( =eB/pc) is the cyclotron frequency, and p is in units of
the effective Bohr radii (a'=eR /e p). In the absence of
magnetic field (y=0), the energy eigenvalues and eigen-
functions of Eq. (6) can be obtained exactly and are

and

E(m)= (N —
—,'), N =—1,2, 3, . . .
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respectively, where L (p) is the associated Laguerre polynomial. It is easily seen that the quantum levels are only
dependent on the principal quantum number X and degenerate with respect to m. The degree of degeneracy is equal to
2N —1 (excluding spin degeneracy), i.e., m =0,+ 1, . . . , +(N —1).

We are prevented from obtaining analytically exact solutions of the eigenvalue problem with both Coulomb potential
and magnetic field, as was mentioned in the introduction, because Eq. (6), with suitable boundary conditions is beyond
the analytic problem of conAuent hypergeometric equations. However, using the method of series expansion, we can
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obtain exact series form in different regions of Eq. (6). It should be noted that zero and infinity are a regular and an ir-
regular singular point of Eq. (6), respectively. In the region 0&p, we have a series solution, which has a finite value at

p =0, as follows:

e(p) p Xa p
n=0

where ao is a constant. Noting that a„equal to zero and n is equal to a negative integer, the other a„can be determined
by the following recurrence relation:

a„=—[2wa„&+[E(m)—my]a„2 —y a„4/4] /n (2~m ~+n), n =1,2, 3, . . . .

In the region p & ~, we can obtain a normal solution. ' It approaches zero at p= ~ and is found in the form

(12)

where

""p'X b.p "
n=0

(13)

and

s =E(m)/y —m —1 (14)

b = —mb1 0 ~

b„=—I2wb„, +[(s n+—2) —m ]b„2I/ny, n =2, 3, . . . (15)

and b0 is a constant. The series appear suitable for numerical calculations for large p. ' However, they are not suitable
for small p. In order to get an exact value at small p, we can also find a solution of uniformly convergent Taylor series.
It is as follows:

f(p ) = g c„(p R~ )"+ g—d„(p R~ )", —
n=0 n=1

(16)

where R is a proper point for using Eq. (13) and cp and d, are constants. The other values of c„and d„can be deter-
mined by the recurrence relations.

Using Eqs. (11), (13), and (16) and the matching conditions at p=R and Rp for which Eqs. (13) and (16) are suitable
for numerical calculations, we obtain the equation of the eigenenergies E(m), which can be solved numerically. Once
the nth eigenenergy E„(m) is known, the ap bp cp and d, [hence, P„(p)] are known by the use of the normalized con-
dition g„(p). Thus, lt „(p) depends on the value of m, the magnetic field, the Coulomb potential, and the energy E„(m ).

If there is no Coulomb potential in the Hamiltonian of Eq. (1), the energy eigenvalues and eigenfunctions of Eq. (6)
can be obtained exactly and are:

EL(m, w =0)=(2L+1)y, L =n+m; n =0, 1,2, . . . ; m = n, n+1,——. . . , n, . . . (17)

and

(L —fm )!y
(p, w =0)=

' 1/2 ' 1/2

Xp
2

2 2
XP I I I
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4 L —Im I 2

respectively. It is easily seen that the quantum levels are
only dependent on the Landau quantum number L and
degenerate with respect to the m. The degree of degen-
eracy is equal to L + 1 for positive m (i.e.,
m =0, 1,2, . . . , L) However, we. should point out that
the total degree of degeneracy approaches infinite be-
cause the Zeeman term of negative integer m can make
the energy decrease from a higher level to any lower lev-
el. It is quite different from that in the purely Coulomb
potential, mentioned above. In fact, using the equation of
the eigenenergies E(m), the same exact values of quan-
tum levels can be obtained as w =0. Once quantum lev-
els with and without a Coulomb potential [EN(m, w = I)
and EN(m, w =0)] are obtained, the binding energies

l

[E~~(m)] of the corresponding donor states in the mag-
netic field are given by

E~g(m)=E~(m, w =0)—E~(m, w =1) . (19)

III. QUANTUM LEVELS
AND ZEEMAN SPLITTING

In order to check the calculation method, the energies
of 2D donor ground and excited states in a purely
Coulomb potential and those in a purely magnetic field
have been calculated. The calculated results have shown
that the eigenvalues can approach exactly those shown in
Eqs. (9) and (17). It is interesting to point out that for the
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FIG. 1. The 2D donor energy in effective Rydberg units, ex-

cluding the Zeeman term m y, is shown as a function of the nor-
malized magnetic field y for 1s, 2p, 2s, 3d, 3p, 3s, 4d, 4p, and 4s
states.

FIG. 2. The 2D donor binding energy in effective Rydberg
units is shown as a function of y for 1s, 2s, 3s, and 4s states.

purely Coulomb potential, mentioned above. In princi-
ple, we can use the X and m or the L and m to label 2D
hydrogenic donor states in a magnetic field. Here, the
quantum levels E~(m) are indicated by the principal and
magnetic quantum numbers X and m. Therefore, we
have levels (states) ls, 2p+, 31+, 2s, and so on if the nota-
tion s, p+, d +, . . . is used for the magnetic quantum num-
ber m =0,+1,+2, . . . .

In order to study the quantum levels and their Zeeman
splitting of 2D hydrogenic donor states in a magnetic
field, we have performed a numerical calculation for the
2D donor spectra with and without the Zeeman term m y
in the magnetic field. As a matter of fact, the spectra ex-
cluding the Zeeman term are of the 2D donor in a 2D
parabolic quantum well, which is formed by the magnetic
field. In Fig. 1, we have plotted quantum levels of 2D
donor states excluding the Zeeman term my as a func-
tion of the dimensionless magnetic field y =(fico, /2A'),
where co, and R are, respectively, the cyclotron frequen-
cy and effective Rydberg, as defined in the introduction.
In the figure, it is readily seen that as the y approaches
zero, the quantum levels approach those given by Eq. (9).
As the y increases, the degeneracy is lifted partly by the
parabolic quantum we11. The order of the quantum levels
is 1s, 2p, 2s, 3d, 3p, 3s, and so on. It is easily understood
that all of energies increase with y because the width of
the quantum we11 becomes narrower. It is interesting to
note that the energies of the excited states increase much

case of a purely Coulomb potential, the other form
should be used instead of using Eq. (13). It is as follows:

I& =0
(20)

and

g=[ —E(m)]'~, z =w/g —
—,', (21)

where co is a constant, and the other ck can be deter-
mined by the recurrence relations.

Before calculated results are shown and discussed, it is
worthwhile to note that there are several ways to indicate
the quantum levels. In general, we can use m (magnetic
quantum number) and n, which is equal to the number of
the root of the equation of the eigenenergies in order of
increasing magnitude, to label the quantum levels. In the
limit of zero magnetic field, the states are labeled by the
principal and magnetic quantum numbers N and m. The
N is equal to n + ~m ~. As shown in Eq. (9), the quantum
levels are only dependent on the X and degenerate with
respect to m. The degree of degeneracy is 2X —1. In the
limit of zero Coulomb interaction, the states are labeled
by the Landau and magnetic quantum numbers L and m.
The L is equal to n +m. As shown in Eq. (17), the quan-
tum levels are only dependent on the L and degenerate
with respect to the m. However, the degree of degenera-
cy approaches infinite and is quite different from that in a

QUANTUM LEVELS AND ZEEMAN SPLITTING FOR TWO-. . .
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FIG. 3. The 2D donor energy in effective Rydberg units, in-

cluding the Zeeman term m y, is shown as a function of y rang-

ing from 0 to 1 for 2p, 3d, 2s, 2p+, 3p, 4d, 3s, 3p+, 4p
3d+, 4s, 4p+, and 4d+ states.

r
FIG. 4. Same as Fig. 3 but adding 1s state for y ranging from

0 to 20. The corresponding Landau energy levels are shown by
broken curves for comparison.

more rapidly with magnetic field than that of the ground
state, and the energy differences between these states in-

crease with applied field. In fact, the energies of the
s(m =0) states approach asymptotically the correspond-
ing Landau levels. The Coulomb binding energy of a par-
ticular Landau level can be obtained using Eq. (19). The
results are shown in Fig. 2 for the first four s states, i.e.,
1s, 2s, 3s, and 4s states. It can be seen that the binding
energy increases with the y for each of these states and
that for a fixed field, the binding energy increases as we

go to lower-lying donor states due to a stronger
confinement of electrons in lower-lying states with a
stronger field.

In Figs. 3 and 4, we have plotted quantum levels of 2D
donor states, including the Zeeman term m y, as a func-
tion of the y. In Fig. 3, it is shown that as the y in-
creases slightly, the 2p+, 3p+, 3d+, 4p+, and 4d+ levels
split, respectively, into two parts because of the Zeeman
term my. Clearly the positive and negative m levels are
not symmetrical about the corresponding s {m =0) levels
because the degeneracy of different

~
m ,

'states has been li-

fted by the parabolic quantum well, mentioned above. As
the y increases continuously, the energy values of the
positive and negative m states close correspondently to
those of lower and higher s(m =0) states, and the curves
of some negative m states, for example, 3d, 4d, and

4p states cross those of positive m states. Then, the hy-
brid levels between Coulomb field levels and Landau
(magnetic field) levels are obtained. Clearly there are
minima for the the 2p and 3d states. It is because of
competition between two interactions of the Zeeman
term and the parabolic quantum well in a range of small

y. In Fig. 4, it is shown that the degeneracy of Landau
levels is lifted by the Coulomb field at high magnetic
fields, and that as m =0 there is one-to-one correspon-
dence between energy levels of s states at zero magnetic
field and Landau levels at high magnetic fields. The ener-
gies for other states approach those of the corresponding
Landau levels in a finite y and lie in values between the
energies of the s states and the corresponding Landau lev-
els. It is readily seen that the order of the quantum levels
for the X=O and 1 Landau levels is, respectively, 1s,
2p, 3d, and so on and 2s, p+, 3p, 4d, and so on.
The split level order for the other Landau levels is simi-
lar, as shown in the figure. However, the split differences
of higher Landau levels are much smaller than those of
lower Landau levels. As the y decreases, all of the values
decrease linearly until the hybrid of the levels, mentioned
above, happens in a small y range.

To compare our results with MacDonald and Ritchie's
results, we have plotted quantum levels for ls, 3d, and
4s 2D donor states as a function of the transformed mag-
netic field y'=y/(I+y) in Figs. 5(a), 5(b), and 5(c). It is
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FIG. 6. The 2D and 3D donor energies in effective Rydberg
units, excluding the Zeeman term m y, are shown as a function
of y for 1s, 2p, and 3d states (see the text). The corresponding
energy levels of a free 2D electron confined only by the parabol-
ic quantum well are shown by broken curves for comparison.
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tion, chosen by them, is reliable and converging, and that
the two independent methods yield quantum levels with
high accuracy for 2D hydrogenic donor states in arbi-
trary magnetic fields.

To compare quantum levels of 2D donor states with
those of 3D donor states in magnetic field, we have used
some data from Makado and McGill. They have chosen
basis functions of the form

FIG. 5. The 2D donor energy in effective Rydberg units, in-

cluding the Zeeman term my, is shown as a function of the
transformed magnetic field y' =y/(1+ y ) for the (a) 1s, (b) 3d
and (c) 4s states. The circles, crosses, and solid curves
represent, respectively, the prediction of the low-field expan-
sion, the high-field expansion and the two-point approximation
in Ref. 13. The solid triangles represent the prediction of the
text.

readily seen that the diA'erence between ours and Mac-
Donald and Ritchie's' is very small in any case. The
m = 1 and —1 levels obtained by MacDonald and Ritchie
are also very close to ours. Therefore, it can be conclud-
ed that the sequence of the two-point Fade approxima-

—ap —Pz2 2

g =p 'e' ~z~e ' e (22)

and calculated eigenvalues for all states up to n =4. For
the purpose of making a direct comparison of the results
of 2D and 3D donor states, we have restricted ourselves
to the case of q =0, which includes the ground state and
some strongly localized states in the z direction, i.e., the
direction of magnetic field. In Fig. 6, excluding the Zee-
man term my, we have plotted quantum levels of 1s, 2p,
and 3d states of 2D and 3D donors as a function of the y.
It is true that the energy levels of a free 2D electron
confined only by the parabolic quantum well are higher
than those of the corresponding states of 2D and 3D
donors in the well because of the 2D and 3D Coulomb
potentials. Clearly the energy of the 2D ground state is
much smaller than that of the 3D ground state, and the
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energy shift of the 2D ground state is also much smaller
than that of the 3D ground state. This is because of a
stronger confinement in the 2D condition. The shifts of
the 2p and 3d states of a 3D donor are similar to and
larger than those of a 2D donor. However, the
differences between 2D and 3D conditions are much
smaller in the 2p and 3d states than in the ground states.
It should be noted that the other 3D states, which are
more extended in the direction of the magnetic field, will
be quite different from 2D states.

IV. SUMMARY AND CONCLUSION

Using different series forms in different regions of Eq.
(6), we have obtained exact solutions for 2D donor states
in a magnetic field by a numerical method and studied
the effect of the magnetic field on the quantum levels,
binding energies, and the Zeeman splitting. Effects of
second order of magnetic field become very appreciable
in semiconductors even though it is in a range of inter-
mediate magnetic fields. Calculated results have shown
that the quadratic effect makes the degeneracy of 2D
donor states in the purely Coulomb potential partly lift
and all of the energies increase. Then, the first-order
term of magnetic field, i.e., Zeeman term my, makes the
degeneracy lift completely. It has been shown that the

positive and negative m levels are not symmetrical about
the corresponding s(m =0) levels and the hybrid levels
are obtained. There are energy minima for some negative
m states, shown in Fig. 3. It has also been shown how
the degeneracy of Landau levels is lifted by the Coulomb
field at high magnetic fields and the kind of order of
quantum levels that are obtained. The calculated results
are found to be in good agreement with MacDonald and
Ritchie's. In addition, based on the comparison between
energies for 2D and 3D donor states, we conclude that
there is much smaller diamagnetic shift of the ground
state of a 2D donor than that of a 3D donor. The shift of
some 3D states, which are strongly localized in the direc-
tion of magnetic field, are similar to and larger than those
of the corresponding 2D donor states.

To close this paper, it is worthwhile to point out that
our calculation method is much better than the other
methods, such as the Wentzel-Kramers-Brillouin (WKB)
approximation, the variation method, and the adiabatic
method, and suitable for not only lower magnetic fields
but also higher magnetic fields. Finally, it is also
worthwhile to point out that using the obtained wave
functions of a 2D donor in a magnetic field as trial func-
tions with variation of parameter tu shown in Eq. (l), the
quantum levels and wave functions of shallow donors and
heavy-hole excitons in quantum wells in the presence of
magnetic field can be correctly calculated and compared
with other calculations' ' and experiments. '
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