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Cluster calculations of ZnO with Cu and Ni impurities
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The variational cellular method, extended to study crystalline structures, has been applied to 17-
atom clusters representing a ZnO crystal without and with substitutional impurities. Self-
consistent-field electronic-structure calculations were carried out for the substitutional Cu and Ni.
The (2+)-charge ion states were studied and the optical transitions discussed in terms of
Koopmans s theorem or transition-state calculations, depending on their range of applicability. The
analysis of the results is preceded by a discussion on the general questions of to what extent a cluster
can be used to calculate crystal energy bands and localized states.

I. INTRODUCTION

The aim of this work is to analyze from the theoretical
point of view the behavior of Cu and Ni impurities in the
ZnO semiconductor. The linearized variational cellular
method' ' (VCM) is used to compute the electronic
structure of these substitutional 3d transition-metal im-
purities.

ZnO is a II-VI compound with a large band gap (3.4
eV)," enough to place it in the vicinity of insulating ma-
terials. It is also commonly placed in an intermediate po-
sition between ionic and covalent solids. ' It has a hexag-
onal wurtzite structure in which the tetrahedra are slight-
ly distorted in the [111] direction. ' Rossler' showed
that the difFerence between the wurtzite and zinc-blende
structures of ZnO is just the small splitting of the degen-
erate levels of the cubic arrangement. The conduction
and valence bands of ZnO have been studied by optical
techniques' ' which show that both extrema are at the
center of the Brillouin zone. The upper valence bands
are mainly derived from the 0 2p states, while the lowest
conduction band is primarily made out of the atomic Zn
4s state. ' ' ' The Zn core 3d band lies below the C 2p
band' but there is mixing (hybridization) between the
two bands.

Impurity states in zinc oxide semiconductors doped
with Cu or Ni have been investigated by luminescence
and absorption experiments. ' These impurity centers
display the well-known infrared absorption commonly as-
signed to an internal 3d transition of a doubly-positive
impurity charge state. ZnO:Cu and ZnO:Ni also have a
green luminescence that corresponds to a hole transfer
from the d shell of the divalent impurity to an acceptor
state, supposed to be near the top of the valence
band 22, 26

II. VARIATIONAL CELLULAR METHOD
APPLIED TO CRYSTALS

The variational cellular method was first proposed as a
local-density-approximation scheme for the calculation of

6E„,
V(r)=[c(r)], „,„+5n(r)

(3)

The total energy of the system is written as a functional
of g (r), c(r), n (r), and V(r), and is stationary for varia-
tions on these four functions.

In the crystalline cluster method, one uses the cluster
to solve the Schrodinger equation for the many occupied
states. The resulting number density is transferred to an
infinite lattice, where it is repeated periodically. Then the
Poisson equation for the periodic number density is

the electronic structure of polyatomic systems, ' and
then extended to study crystalline structures through the
crystalline cluster technique. ' The method, which
was used to study ZnS (Ref. 9) and ZnS:Cu (Ref. 1Q) crys-
tals, has several advantages, including the possibility of
introducing a common energy reference for the
"perfect"- and "defect"-cluster calculations, making it
possible to compare the two sets of eigenvalues.

According to the original variational cellular method, '

the space is partitioned into cells characterized by two
parameters y, and R;, so that a point r belongs to cell i if

y;(r —a;) —y;R; (y&(r aj ) —y—~RJ

for any j, where a, is the vector position of the center of
cell i. The space is thus divided into cells with different
shapes that can be adapted to the specific problem. For
the inner cells we choose y;=y& &0 and the cell boun-
daries are planes. For a cluster or a molecule one chooses
an outer cell for which y,„,(0.

Inside each cell, the one-electron wave function g (r)
for state a, and the Coulomb potential c (r) are expanded
in spherical harmonics. A spherical average of squared
wave functions defines a model number density through

n(r)= gg'(r)P (r)
SPh. aV.

and a spherica1 average of the Coulomb potential plus the
exchange-correlation term 5E„,/5n ( r ) defines the
Schrodinger-equation potential V (r):
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solved and the resulting potential is transferred back to
the cluster until self-consistency is achieved. In our ap-
plication of this simple idea, the number density and po-
tential of the infinite lattice are put in the muffin-tin for-
mat, so that the transference back and forth from the
cluster is unambiguous. Due to the linearization of
VCM, described in Ref. 6, the whole procedure is fast, al-

lowing the study of many different situations even in our
modest computation facilities (a Burroughs 7900 comput-
er}.

The self-consistent calculation for the impurity is made
with a potential calculated in each iteration as

Gap

G

Bcedwidth
W'

Gap
G' W'& W

6')G

V= V(impure cluster) —V(pure cluster)+ V(crystal)

(4)

where V(crystal) is the self-consistent potential for the
crystalline cluster, V(pure cluster) is the potential ob-
tained when the Poisson equation is solved in the cluster,
not in the crystal, and V(impure cluster) is the cluster po-
tential calculated when the impurity is introduced into
the cluster. So, the calculation of the impurity is a self-
consistent cluster calculation made in the presence of the
external potential

V(crystal) —V(pure cluster)

which converts the impurity in the cluster into an impuri-
ty in the crystal. The cluster potentials are non-muffin-
tin, but the crystal potential is muffin tin by construction.

III. THE CLUSTER METHOD—
LIMITATIONS AND INTERPRETATIONS

To understand our results for ZnO with Cu and Ni im-
purities, we must first understand in what sense the clus-
ter method can be used instead of the full machinery of a
band Green-function calculation. First of all, it is possi-
ble to define the ideal cluster. Let ~n, l ) represent a
Wannier state of band n, centered at the lattice site l.
The ideal cluster would have a potential

V(ideal cluster)= V(crystal)+ Vo g' g ~n, l )(n, i~
n III & R

(5)

where, in the second term, we sum over the Wannier
states centered outside the cluster and over the bands we
want to study. Though the second term is not commut-
ing with the one-electron Hamiltonian, it is band preserv-
ing, that is, it commutes with the projection operator of
the bands. Assuming that Vo is a large positive number,
the energy spectrum corresponding to such potential is
made of discrete levels constructed out of the Wannier
states interior to the cluster (~l ~

(R). Thus the spectrum
samples the energy bands of the crystal as shown in Fig.
l. Of course, the discrete levels are between the band
maximum and minimum, so that we may safely assert
that the ideal cluster has larger band gaps and smaller
bandwidths than the crystal.

Another important property of the ideal cluster results
from the small delocalization of the Wannier states them-
selves. In fact, the width of the Wannier function

FIG. l. Schematic representation of the sampling of the en-

ergy bands by the energy levels of a cluster. In a cluster calcula-
tion, the band gaps are larger and bandwidths smaller.

' 1/2

has been calculated and shown to be always smaller
than the lattice parameter, except for the extremely nar-
row gap semiconductors. Thus we can say that the exter-
nal Wannier states (~l ~

)R) make no contribution to the
number density in the most internal region of the cluster.
Therefore the charge density in the inner region of the
cluster may be calculated using those discrete levels
pulled from the band and represented by Fig. 1.

In a practical calculation, the ideal cluster of Eq. (5) is
not used. Instead one uses a barrier that keeps the eigen-
functions localized. Different cluster schemes present
different recipes for the construction of the barrier. What
we have been using is the potential most likely to behave
as that of Eq. (5), namely,

V(practical cluster}= V(crystal)+ VOB(r R) . (7)—

IV. ENERGY EIGENVALUES
AND OPTICAL TRANSITIONS

The one-electron eigenvalue has different meanings in
the crystalline VCM results depending on the width of
the band that the sample eigenstate represents. The ener-

gy eigenvalue c. is related to the total energy E and the
occupation number f for the state a by means of s

BE
af.

On the other hand, first-order perturbation theory states
that

where S is the electron self-energy,

6E+ ,' f d r f d r'n (r)—,n (r') (10)
5n(r) 5n(r')
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given in terms of the number density n (r) for the state u
and the exchange-correlation functional E„,. The eigen-
value c. is practically a linear function of the occupation
number f; then

E(f )=E(0)+e. (0)f +S f',
e (f )=E (0)+2S f (12)

If E( —1) is the ionic energy, E (0) the energy of the neu-
tral cluster, and E (

—
—,
'

) the eigenvalue at half-

occupation, that is when one-half electron is removed
(transition state), then

E( —1) E(0—)= —e (0)+S

e, (
—

—,')=E (0)—S, .

(13)

(14)

The two situations of Fig. 2 will be considered.
(a) Broad bands Wha. tever localized excitation (parti-

cle or hole) is created, it is scattered into the band contin-
uum so that the true stationary (quasi) excitations are
Bloch states with vanishing number density and self-
energy according to Eq. (10). Then the eigenvalue e (0)
coincides with the total-energy difference (Koopmans's
theorem).

(b) Narrow bands and localized defect eigenstates. If
the bandwidth is small and the self-energy is large, the lo-
calized excitation will fall out of the range of the band
and thus cannot be scattered into the band continuum.
In this case one measures the energy to create a localized
state with its self-energy, and the comparison with exper-
iment has to be made by means of Eq. (14).

A priori we do not know if we are dealing with a broad
or narrow band. Hoping that the discrete eigenvalues of
the cluster give a reasonable description of the band-
width, we can compare the self-energy calculated accord-
ing to Eq. (14) with that width, and decide. In the case of
the defect localized states, it is possible that its eigenfunc-
tion extends through many atoms. A small cluster, by
confining the state in a smaller region, might create an
artificially larger self-energy. Thus it is advisable to corn-

pare experiment with the eigenvalues at full (Koopmans)
and half-occupation (transition state).

Finally we mention that, when calculating the transi-
tion state for the pure cluster, we must define the self-
consistent potential as in Eq. (4). The localized excitation
is an "impurity" in the perfect crystal and cannot be re-
peated periodically in a lattice, as we do with the number
density of the ground state cluster.

V. RESULTS AND DISCUSSION

The cluster used consists of a central host cation, or
impurity, surrounded by four host anion first neighbors,
and 12 host cation second neighbors, placed in a
tetrahedral configuration compatible with an undistorted
zinc-blende lattice. The parameters of the cells are listed
in Table I. The Zn and 0 radii were chosen between the
ionic and covalent values. ' The deep core states, up to
3p, in Zn, Cu, and Ni were kept within the sphere in-
scribed in the cell (the wave functions being set equal to
zero at the inscribed sphere radius), and so were the 3d
electrons of the outermost shell of Zn atoms. According
to this model, the cluster Zn04Zn, 2 has a total of 42
valence electrons, 32 filling the sp hybrids, and ten filling
the 3d bands of the central cation.

Table II shows the clusters that were calculated to de-
scribe the optical properties of ZnO, ZnO:Cu, and
ZnO:Ni. Cluster I wi11 be referred to as "perfect cluster, "
and represents the ZnO crystal with no impurities and ex-
citations. In clusters II and III, one-half electron has
been removed from the 0 2s and Zn 3d bands, respective-
ly. According to Fig. 2, we interpret the highest valence
band (0 2p) as a broad band for which the hole is delocal-
ized. On the other hand, the Zn 3d and 0 2s bands are
narrow and their self-energy must be included in calculat-
ing the excitation energy.

ZnO doped with substitutional Cu in the ground state
is described by cluster IV, and with substitutional Ni by
cluster VII. Clusters V and VIII were used to calculate
the internal 3d transitions for the 2+ impurity centers.

LLJ

Sample e(genvalue
a "i

S = Self-energy

6 (-1/2)
localized excitation
scattered in the
continuum

Central atom
1st neighbors
2nd neighbors
Outer sphere

1.995
1.743
1.995
8.099

1.0
1.0
1.0

—0.25

TABLE I. Geometric parameters for cluster calculations.

R, (a.u. )

(p)
Sample eigenvalue

S = Self-energy
{-1/2)

localized excitation
not scattered

Cubic lattice parameter is 8.62

FIG. 2. Schematic representation of a single-particle excita-
tion (hole) in a broad (upper part of the figure) or narrow band
(lower part). For the narrow band case, the localized excitation
is not scattered into the band continuum and is stationary (or
quasi). In this case, the excitation energy should be calculated
with the transition state, to account for the self-energy.

Central atom
1st neighbors
2nd neighbors
Outer sphere

Ql

Maximum angular momentum
E2 e
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TABLE II. Calculated clusters and their configurations.

Cluster
number

I
II
III
IV
V
VI
VII
VIII
IX

Formula

Zn04Zn12

CU04Zn 1 p

Ni04Zn1z

0 ls band

la lt
la "lt'
la' 1 t

la lt

la lt

Zn 3d band

e4e»0
61e4d120

2t,"le d»

d 120
ext

d 120
ext

0 2p band

lt 2e 3t 2a 4t 3a1
lt 2e3t 2a 4t 3a,
lt 2e 3t 2a 4t 3a1

(2t lt le 3t )2a
(2t lt 1 3t )2
(2t 1 t le 3t )2a"
(2t lt le 3t )2a
(2t lt 1 3t )2
(2t 6

1t 6 le 43t 6 )2a 11. 5

Impurity
3d band

2e 4t2
2e 3.54t 5.5

2e44t,"
2e 4t2
2e "4t4'
2e 4t2'

The possibility of transferring a hole from the d shell of
the 2+ impurity to an acceptor state is described using
clusters VI and IX.

rhe degree of ionicity and charge transfer from Zn to
0 depends to a large extent on the amount of hybridiza-
tion 0 2p Zn 3d. In a cluster calculation, the valence
of Zn and 0 atoms is not that of an infinite crystal. For
the clusters with 17 atoms, the hybridization results
mainly from the interaction between the states 2t2 and
4t2 (cluster I). We found that a stable location of the Zn
3d states (2tz and le, cluster I) could only be attained by
eliminating the basis functions Zn 3d from the 4t2 wave
function, so that hybridization was artificially truncated.

The energy levels at full occupation are shown in Fig. 3
for pure and doped ZnO. The upper valence bands are
mainly derived from the 0 2p state and the lowest con-
duction band from Zn 4s. The levels were classified ac-
cording to the irreducible representations of the Td point
group, and the zero of energy set at the highest valence-
band (VB) state for the "perfect cluster. " In this respect
we recall that the "crystalline cluster" technique being
used allows one to compare one-particle energies of
different clusters because all have a unique energy refer-
ence.

The conduction and the 0 2p valence bands are
wide, ' ' thus the optical transition (OT, ) between them
should be calculated using the Koopmans's theorem (no
self-energy). In calculating the Zn 4s (3a, ) state that
samples the conduction band, the Zn 4s basis function of
the outermost Zn shell was eliminated because it is re-
sponsible for mixing the cluster surface states that we do
not want. This procedure avoids the penetration of the
conduction state into the outer region of the cluster. The
calculated band gap is 5.6S eV, larger than the experi-
mental 3.4 eV (as it should, according to the scheinatic
Fig. l) by a large factor because only the internal Zn
atom is contributing. If the outermost Zn 4s basis func-
tions are maintained the calculated gap becomes 2.9 eV,
which is in an illusory good agreement with experiment.

The results displayed in Table III show the position
and width of the Zn0 bands compared to an experimen-
tal value" and band calculation values. ' ' Observe that
in calculating the entries of the table, one takes the
differences of eigenvalues calculated with different clus-

ters. If one compares the results for clusters II and III in
Fig. 3 with the lower part of the schematic Fig. 2, one
sees that the 0 2s and Zn 3d bands are indeed "narrow"
and the hole self-energy is an important part of the exci-
tation energy. Lacking experimental values it is difficult
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'
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FIG. 3. Energy levels (a) at full occupation for clusters
Zn04Zn» (I), Cu04Zn» (IV), and Ni04Zn» (VII); (b) for the
transition states of the s and d valence bands (clusters II and
III); (c) for the transition states defining the optical transitions
OT& and OT3 of the Cu + impurity {clusters V and VI); (d) for
the transition states defining the optical transitions OT2 and

OT3 of Ni + impurities (clusters VIII and IX). CB and VB are
the conduction- and valence-band extrema, as defined in the
cluster {see Fig. 1 for a comparison between the extrema for the
crystal and for the cluster).
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TABLE III. Energy differences for pure ZnO. c,
' is the eigenvalue for state a in cluster N (Table II).

For the narrow bands, we use the eigenvalues at half-occupation.

Band gap
(OTI)

0 s band
position

Zn 3d band
position

0 p bandwidth

'Reference 11.
Reference 17.

'Reference 18.

Configuration
change

4t 23a, 4t 23a I

la', 4t2 ~1a 14t,

2t 24t 2 ~2t 24t 2

1t24t2 lt l4t2

Energy

I I
&3a ~4t

l 2

I II
~4t ~ la

2 I

I 111
~4t

2 2

I I
&4t &I r

2 I

Calculated
(eV)

5.65

18.60

11.16

2. 1

Others
(eV)

3.4' (expt)

20.68b'

5.85 "

1.52""

TABLE IV. Optical transitions for ZnO with Cu and Ni impurities. c is the eigenvalue for the state
a in cluster N (Table II). The energy differences were calculated for the ground state cluster and for the
cluster where one-half electron is promoted.

Optical
transition

(OT)

OT2(Cu)

OT3(Cu)

OT2(Ni)

OT3(Ni)

'Reference 26.
Reference 22.

'Reference 20.

Configuration
change

(2e 4t 2 ) ~(2e'4t 2 )

(2a14t & ) ~(2a14t'. )

(2e 4t, ) (2e'4t', )

(2a14t 2 ) (2a14t 2 )

Energy

V V
&2e

2
IV IV

~4r2 &2e

VI VI
&4r, &2a

IV IV
412 2a

l

V I I I V I I I
&4t &2e

V I I V I I
41& 2e

IX IX
4~2 2a

l

V I I V I I
&4t &2,

Calculated
(eV)

1.21

1.05

3.01

2.06

0.88

0.81

3 ~ 56

3.05

Experiment
(eV)

0.72'

2.86""

0.51'

3.10'

to decide whether the cluster or the band calculation has
the best results.

Self-consistent cluster calculations were also performed
for the substitutional Cu and Ni impurities. The impuri-
ty atom occupies the central site, as described by clusters
IV and VII in Table II. In Fig. 3 we show the energy lev-
els at full occupation for the 2+ impurities (clusters IV
and VII). The 31 impurity levels are located in the gap
region of the "perfect cluster" and split into e and t2. An
interesting feature is the introduction of a twofold degen-
erate (spin degeneracy) a, acceptor state (deep trap) in
the gap by the substitutional impurities. Our calculation
indicates that this level is essentially (80%) an sp hybrid
state. The 2a

&
state in the pure cluster I has this compo-

sition, indicating that the deep impurity trap is actually a
host state. ' Table IV displays the main results of the im-
purity calculations. The optical transition OTz refers to

the infrared absorption spectrum observed for these im-
purities, and commonly assigned as an internal 3d transi-
tion of a 2+ ion. OT3 represents a hole being transferred
to one of the binding orbitals of the surrounding oxygen.
This optical transition is the green luminescence decay of
Cu and the blue luminescence of Ni. OT2 and OT3 were
both calculated using the transition state and the
Koopmans's theorem, because we do not know how ex-
tended the wave functions are. The two sets of results do
not differ much and are represented in Fig. 3.

To conclude we may say that a cluster calculation, if
one is conscious of its limitations, can do much to the un-
derstanding of the electronic structure of semiconductors
with and without impurities. It becomes especially useful
in the calculation of localized one-particle excitations
when the full machinery of the band Green function is
computationally much too expensive.
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